
ORIGINAL RESEARCH
published: 31 March 2016

doi: 10.3389/fphar.2016.00085

Frontiers in Pharmacology | www.frontiersin.org 1 March 2016 | Volume 7 | Article 85

Edited by:

Alison Motsinger-Reif,

North Carolina State University, USA

Reviewed by:

Jatinder K. Lamba,

University of Florida, USA

Daniel Rotroff,

North Carolina State University, USA

*Correspondence:

Jia-Bo Wang

pharm_sci@126.com;

Xiao-Ping Dong

dongxiaoping11@126.com;

Xiao-He Xiao

pharmacy302xxh@126.com

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Pharmacogenetics and

Pharmacogenomics,

a section of the journal

Frontiers in Pharmacology

Received: 10 December 2015

Accepted: 16 March 2016

Published: 31 March 2016

Citation:

Zhang C-E, Niu M, Li R-Y, Feng W-W,

Ma X, Dong Q, Ma Z-J, Li G-Q,

Meng Y-K, Wang Y, Yin P, He L-Z,

Li Y-M, Tan P, Zhao Y-L, Wang J-B,

Dong X-P and Xiao X-H (2016)

Untargeted Metabolomics Reveals

Dose-Response Characteristics for

Effect of Rhubarb in a Rat Model of

Cholestasis. Front. Pharmacol. 7:85.

doi: 10.3389/fphar.2016.00085

Untargeted Metabolomics Reveals
Dose-Response Characteristics for
Effect of Rhubarb in a Rat Model of
Cholestasis
Cong-En Zhang 1, 2 †, Ming Niu 2 †, Rui-Yu Li 1, 2, Wu-Wen Feng 1, 2, Xiao Ma 1, 2, Qin Dong 1, 2,

Zhi-Jie Ma 2, 3, Guang-Quan Li 1, 2, Ya-Kun Meng 2, Ya Wang 2, Ping Yin 2, Lan-Zhi He 2,

Yu-Meng Li 2, Peng Tan 2, Yan-Ling Zhao 2, Jia-Bo Wang 2*, Xiao-Ping Dong 1* and

Xiao-He Xiao 2*

1College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2China Military Institute of

Chinese Medicine, 302 Military Hospital, Beijing, China, 3Department of Pharmacy, Beijing Friendship Hospital, Capital

Medical University, Beijing, China

Cholestasis is a serious manifestation of liver diseases with limited therapies. Rhubarb,

a widely used herbal medicine, has been frequently used at a relatively large

dose for treating cholestasis. However, whether large doses are optimal and the

therapeutic mechanism remain unclear. To explore these questions, the anti-cholestatic

effect of five doses of rhubarb (0.21, 0.66, 2.10, 6.60, and 21.0 g/kg) in an

alpha-naphthylisothiocyanate (ANIT)-induced rat model of cholestasis was examined

by histopathology and serum biochemistry. A dose-dependent anti-cholestatic effect

of rhubarb (0.21–6.6 g/kg) was observed, and an overdose of 21.0 g/kg showed a

poor effect. LC-MS-based untargeted metabolomics together with pathway analysis

were further applied to characterize the metabolic alterations induced by the different

rhubarb doses. Altogether, 13 biomarkers were identified. The dose-response curve

based on nine important biomarkers indicated that doses in the 0.42–6.61 g/kg range

(EC20–EC80 range, corresponding to 4.00–62.95 g in the clinic) were effective for

cholestasis treatment. The pathway analysis showed that bile acid metabolism and

excretion, inflammation and amino acid metabolism were altered by rhubarb in a

dose-dependent manner and might be involved in the dose-response relationship and

therapeutic mechanism of rhubarb for cholestasis treatment.

Keywords: metabolomics, cholestasis, rhubarb, dose response, pathway analysis

INTRODUCTION

Cholestasis is one of the most common and devastating manifestations of liver diseases. The
interrupted excretion of bile due to functional disorders of bile-producing cells or a mechanical
block along the course of the biliary channels outside of the liver can lead to cholestasis (Trauner
et al., 1998; Ghonem et al., 2015). Although the importance of the disease has been promoted,
more research is needed for the complete understanding of cholestasis. Additionally, only limited
therapies are available for this disease (Bacq et al., 2012; Beuers et al., 2015).

At present, ursodeoxycholic acid (UDCA) is the only widely used drug to treat cholestatic
diseases. However, UDCA does not provide consistent efficacy, and some patients do not respond
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to UDCA (Beuers, 2006; Jones et al., 2010). Herbal medicine
has a long history for the treatment of cholestasis (Ghosh
et al., 2011). Rhubarb (Rhei Radix et Rhizoma) is a famous
medicine officially documented in the Chinese Pharmacopoeia
(National Pharmacopoeia Committee, 2010), that has been used
for the treatment of cholestasis since the time of the Eastern
Hang dynasty (25–220 AD) as part of the Yin-Chen-Hao-
Tang preparation (Wang et al., 2011b). Rhubarb has been
shown to possess broad spectrum activities, such as antioxidant
(Silveira et al., 2013), anti-inflammatory (Hu et al., 2014), and
hepatoprotective activities (Neyrinck et al., 2014); moreover,
rhubarb encourage bilirubin excretion (Sim et al., 2015), and has
been applied for the treatment of cholestasis in the clinic (Ho,
1996; Huang et al., 1997).

To date, rhubarb has been frequently used at a relatively large
dose to treat cholestasis (up to 60 g of crude drug per day),
which is more than four times the regular dose recommended
in the Chinese Pharmacopoeia (3–15 g). Some clinical cases
and experimental studies have demonstrated its satisfactory
therapeutic effects with no toxicity and side effects (Hu, 1986;
Huang et al., 1997; Lv et al., 2011; Yang et al., 2012). However,
the anti-cholestatic effect of rhubarb at a low dose is not well-
documented, and little is known about the scientific connotation
of the dose-response relationship of rhubarb for the treatment
of cholestasis. Therefore, further study is needed to explore
suitable doses of rhubarb and its therapeutic mechanism of
action for the treatment of cholestasis. Because the various
chemical constituents of rhubarb can simultaneously hit different
therapeutic targets for cholestasis, studies on the dose-effect
relationship of rhubarb for the treatment of cholestasis and its
pharmacological mechanism of action are limited by the inability
to measure a wide spectrum of potential biological changes.

Untargeted metabolomics has been widely applied to evaluate
the therapeutic effects of herbal medicines due to their multiple
components, multiple actions, and multiple targets (Wang et al.,
2005, 2011c). Based on the analysis of specific early biomarkers
and perturbed pathways during disease or drug treatment,
untargeted metabolomics provides a holistic insight into the
relationship between the substance and metabolic pathways that
might clarify the mechanism of action (Suhre et al., 2011).
Additionally, researchers have shown that alterations in the
profiles of endogenous metabolites may parallel the development
of cholestasis (Aoki et al., 2011; Wang et al., 2012; Long et al.,
2015). Untargeted metabolomics has been successfully used to
explore the therapeutic mechanisms of emodin (Ding et al.,
2008), Yinchenhao (Sun et al., 2014), and the Huang-Lian-Jie-Du
decoction (Wei et al., 2015) for the treatment of cholestasis.

α-naphthylisothiocyanate (ANIT) is a model hepatotoxin that
induce reproducible hepatobiliary toxicity in vivo characterized
by cessation of bile flow, hepatic parenchymal cell injury, and
infiltration of neutrophils around bile ducts, which pathologically
similar to cholestatic hepatitis. In experimental medicine,
ANIT treatment has been extensively used, permitting to
describe not only cholestatic alterations but also compensatory
mechanisms (Padda et al., 2011). In the present study,
five different doses of rhubarb were administered to an
ANIT-induced rat model (Di Padova et al., 1985; Jean and

Roth, 1995) of cholestasis. The anti-cholestatic effect of
rhubarb was investigated using conventional approaches. To
explore the dose-response relationship of rhubarb and its
therapeutic mechanism of action for the treatment of cholestasis,
a liquid chromatography-mass spectrometry (LC-MS)-based
untargeted metabolomics approach was applied to characterize
the metabolic alterations induced by different doses of rhubarb.
Finally, a systematic analysis of specific biomarkers and unique
biochemical pathways was conducted with multivariate data
analysis techniques.

MATERIALS AND METHODS

Chemicals and Reagents
Acetonitrile and methanol (HPLC grade) were purchased from
Merck (Darmstadt, Germany) and Burdick and Jackson (Ulsan,
Korea), respectively. Formic acid was purchased from Sigma-
Aldrich Co. (St Louis, USA). Double-distilled water was purified
by Millipore water purification system (Millipore, Bedford, MA).
Other chemicals were of analytical grade. Rhubarb (Rheum
tanguticumMaxim.ex Balf., Batch number R/20140423) collected
from Ruoergai county, Sichuan province, China. The herb was
authenticated by Dr. Xiao-He Xiao (Director, Military Institute
of Chinese Materia Medica, Beijing, China). The decoction
pieces of rhubarb were prepared with the aid of China Medico
Corporation (Tianjin, China).

Sample Preparation and Quality Control of
Rhubarb
At first, the decoction pieces were added into boiling water,
extracted twice, and 20 min each time. After the extraction was
completed, the extract was filtrated and collected. The extract
was concentrated by rotary evaporators under 60◦C and dried
to dryness in vacuum drier at 45◦C. The final ratio of powder
to raw herb was 28.82%. To ensure the quality of rhubarb
used for animal studies. The content of main components was
determined by using High Performance Liquid Chromatography
(HPLC), and the chemical fingerprint of rhubarb was established.
What’s more, the chemical information of water extract was
established by ultra-high performance liquid chromatography-
mass spectrometry (UHPLC-MS) system. Full methods and any
associated operational details are available in the Supplementary
Materials.

Animal Handling and Animal Experiment
Design
A total of 80 male Sprague-Dawley rats weighing approximately
220–240 g were obtained from the Laboratory Animal Center of
the Academy of Military Medical Sciences (Certification number
SCXK-JUN 2007-004). The room temperature was regulated at
20 ± 2◦C with 60–70% humidity. A 12-h light/dark cycle was
set and the animals were provided free access to standard diet
and water. All animals were acclimated for 7 days prior to the
experiments.

Figure 1 shows the experimental design for the animal studies.
The animals were randomly divided into eight groups with ten
rats each as follows. Group (1) was the normal group and served
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FIGURE 1 | The schematic diagram of the animal experimental design. Con, control group treated with normal saline; Mod, model group treated with normal

saline; UDCA, positive control group treated with ursodeoxycholic acid; Rhu1 – Rhu5, rats treated with rhubarb extract at doses of 0.21, 0.66, 2.10, 6.60, and

21.0 g/kg, respectively. × in the figure indicates rats without ANIT treatment.

as the control; the rats received normal saline each day and were
treated with the vehicle (olive oil) alone. All other groups were
intragastrically treated with 100mg/kg ANIT in an equal volume
of olive oil to establish the cholestasis animal model on day 4 (Di
Padova et al., 1985; Jean and Roth, 1995; Zhao et al., 2009). Group
(2) was the model group; except for the single dose of ANIT, the
model group was treated with normal saline each day. Group
(4)–Group (8) were the five rhubarb dose groups. The rhubarb
water extract was dissolved in normal saline and intragastrically
administered to the rats at doses of 0.21 (Group Rhu1), 0.66
(Group Rhu2), 2.10 (Group Rhu3), 6.60 (Group Rhu4), and 21.0
(Group Rhu5) g/kg, respectively, for 4 days before and 2 days
after intragastric treatment with 100 mg/kg ANIT. Group (3)
was the positive control UDCA group (60mg/kg, Group UDCA)
(Ding et al., 2008); the rats were treated with the same conditions
as the rhubarb dosage groups. The animal doses of rhubarb
corresponded to doses of 2.0, 6.3, 20, 63, and 200 g of rhubarb,
respectively, (measured as the quantity of crude material) per day
for a human weighing 60 kg (Xu et al., 1982).

After the last administration, the rats were provided a
standard diet and water and then fasted for 12 h prior to sacrifice.
The rats were sacrificed at 48 h after the administration of ANIT
(on the sixth day) by intraperitoneal injection of pentobarbital
sodium. Blood samples were collected from the inferior vena
cava and the livers were removed from the rats immediately after
sacrifice. Efforts were made to minimize animal suffering. The
experimental protocol was approved by the Committee on the
Ethics of Animal Experiments of the 302 Military Hospital.

Serum Biochemistry and Histopathological
Analysis
Serum samples were obtained by separating the supernatant from
the blood after 30 min of coagulation at room temperature.
After centrifugation (3000 rpm for 10 min), the serum ALT,
AST, total bilirubin (TBIL), direct bilirubin (DBIL), alkaline

phosphatase (ALP), and total bile acid (TBA) levels were
measured with an Olympus AU5400 automatic biochemistry
analyzer (Olympus Optical, Tokyo, Japan). Liver tissues for
histopathological examination were fixed and preserved in 10%
neutral buffered formalin, processed and trimmed, embedded in
paraffin, sectioned to a thickness of approximately 5 µm, and
stained with hematoxylin and eosin (HE).

Serum Sample Handling
Two hundred microliter thawed serum samples and 600 µL
methanol were transferred to a 1.5 ml polypropylene tube, then
the solution was mixed and allowed to stand for 20 min at 4◦C
before use. The samples were collected after centrifugation at
12,000 rpm for 10 min at 4◦C to remove any solid debris, and the
supernatant was transferred to a polypropylene tube, and then
filtered through a syringe filter (0.22µm), 4µL of the supernatant
were injected into the UHPLC-MS system.

Chromatography and Mass Spectrometry
Conditions
The metabolic profiling analysis of the biofluids was
conducted on an Agilent 6550 iFunnel Q-TOF LC/MS (Agilent
Technologies, USA). The sample sequence was random and 4 µL
aliquot of each sample was injected onto a ZORBOX RRHD C18
analytical column (2.1 mm i.d. × 100 mm, 1.7 µm i.d., Agilent
Technologies, USA), the column temperature was maintained
at 30◦C. For the ESI+ analysis, separation was achieved with
a 25 min linear gradient with the mobile phases of solvent A
(Acetonitrile spiked with 0.1% formic acid) and solvent B (Water
spiked with 0.1% formic acid). The flow rate was set as 0.30
mL/min. The gradient was used as follows: a linear gradient of
5% A over initial-1.0 min, 5–40% A over 1.0–9.0 min, 40–90%
A over 9.0–19.0 min, 90–100% A over 19.0–21.0 min, 100%
A over 21.0–25.0 min. The eluent was introduced to the mass
spectrometer directly. To ensure the stability and repeatability
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of the systems, 10 µL of each sample were pooled as a quality
control (QC) sample, which inserted and analyzed in every 10
samples. For the ESI− analysis, the mobile phases used were (A)
acetonitrile and (B) water. The other analysis conditions were
identical to ESI+ analysis.

For mass spectrometry, the Agilent 6550 Q-TOF/MS with
an electrospray ionization source (ESI) in both positive and
negative mode was used. The combination use of both positive
and negative ionization LC-MS offers more comprehensive
metabolome coverage than the use of a single polarity (Lei et al.,
2011).The electrospray source parameters were fixed as follows:
electrospray capillary voltage was 3.0 kV in negative ionization
mode and 4.0 kV in positive ionization mode. The mass range
was set from m/z 80 to 1000. Gas temperature was 200◦C in
negative ionization mode and 225◦C in positive ionization mode.
Gas flow was 11 L/min. Nebulizer was set to 35 pisg (negative)
and 45 pisg (positive). Sheath gas temperature was 350◦C and
sheath gas flow was 12 L/min. Nozzle voltage was 500 V in
both negative and positive mode. For internal mass calibration
during the MS analysis, reference masses 121.0509 (Purine,
[C5H4N4+H] +) and 922.0098 (HP-0921, [C18H18O6N3P3F24+
H] +) were used in positive mode, and 112.9856 (TFANH4,
[C2H4O2NF3− NH4]−) and 1033.9881 TFANH4 + HP-0921,
[C20H22O8N4P3F27− NH4]−) were used in negative mode.

Data Processing and Pattern Recognition
Analysis
All data were pre-processed with Profinder (version B.06.00,
Agilent Technologies, USA). For molecular feature extraction,
up to 2000 compounds with a peak height above 300 counts
were extracted. The initial and final retention times were set
for data collection. The missing value estimation, data filtering
and data normalization were achieved by the MetaboAlalyst 3.0
online software. The resultant data matrices were introduced
into the SIMCA-P+ 13.0 (Umetrics, Umeå, Sweden) software for
multivariate statistical analysis including principal component
analysis (PCA) and orthogonal partial least-squares discriminant
analysis (OPLS-DA). Prior to PCA, all variables obtained
from the data matrix were mean-centered and scaled to the
pareto variance. The PCA score plot was used to present the
natural interrelationship among observations. To find potential
biomarkers, the OPLS-DA model was used to explore deep
differences between the control, model and rhubarb-treated
groups. Variables with a VIP value (VIP ≥1.0) and |p(corr)| ≥
0.5 (Wheelock andWheelock, 2013) in the OPLS-DAmodel were
selected as potential biomarkers.

Biomarker Identification and Metabolic
Pathway Analysis
Fold changes were calculated by the MetaboAnalyst 3.0 software.
The significant differences were determined using the fold
change value (> 1.5) combined with the ANOVA (p < 0.05) and
t-test (p < 0.05). Only variables with significant changes were
selected as potential biomarkers and subjected to identification
of their molecular formulas. All biomarkers were tentatively
identified with the accurate mass charge ratio by the online

METLIN database (http://www.metlin.scipps.edu/) (20 ppm
was set as the accepted mass error). For each mass ion, several
candidates were provided by the above-mentioned databases.
Candidates were subjected to further MS/MS experiments
(data not shown), and target molecules were validated by
the characteristics of their fragment information. Then,
identities were tentatively concluded based on online databases
[including the METLIN database and the Massbank database
(http://www.massbank.jp/)] and the literature. Finally, to
identify the metabolic pathways disturbed by the administration
of ANIT and rhubarb, pathway analysis of the identified potential
biomarkers was performed with MetaboAnalyst 3.0 (Xia et al.,
2015) (http://www.MetaboAnalyst.ca/) based on the pathway
library of Rattus norvegicus (rat).

Statistical Analysis
The data were analyzed with the SPSS software program (version
22.0, Chicago, IL, USA). One-way analysis of variance (ANOVA)
with the post hoc test followed by Student’s t-test (the Mann–
Whitney U-test was used when the t-test was not suitable) was
used for the evaluation of significant differences of the results
(Zhang et al., 2015; Zhao et al., 2015). The differences were
considered to be statistically significant when p< 0.05 and highly
significant when p < 0.01. FDR correction was not used during
the univariate analysis of the metabolomics analysis because the
metabolites with small p-values had been examined by building
the classification model (Bender and Lange, 2001).

RESULTS

Multicomponent Quantification,
Fingerprint Analysis, and Component
Identification of Rhubarb Extract
First, the aloe-emodin, rhein, emodin, chrysophanol, and
physcion contents were determined according to the Chinese
Pharmacopoeia (CP) (National Pharmacopoeia Committee,
2010). The results showed that the aloe-emodin, rhein, emodin,
chrysophanol and physcion contents were 0.41, 0.84, 0.36,
0.43, and 0.1%, respectively. The total content of the five
anthraquinone compounds was 2.14%, which was in accord with
the quality standard of the (National Pharmacopoeia Committee,
2010). Figure S1 shows the representative HPLC chromatograms
of the rhubarb water extracts (Figure S1A) and the mixed
standards (Figure S1B).

To ensure the quality of the rhubarb, the chemical fingerprint
of the rhubarb was established. The same batches of rhubarb
used for the animal studies were used for the fingerprint analysis.
Ten samples were selected by random sampling; the samples
were extracted twice for 20 min each time. Then, the sample
solution was prepared and injected into the HPLC system. The
analysis process and results were depicted in the Supplementary
Materials. The results showed that the similarity values of all 10
samples were higher than 0.95, thereby proving the stability of
the sample. These fingerprints can be used for future reference.

The chemical information of the rhubarb extract was
established by UHPLC-MS in the ESI+ and ESI−modes, and 37
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components of rhubarb were tentatively identified. The detailed
content determination and UHPLC-MS identification of the
components in rhubarb were depicted in the Supplementary
Materials.

Rhubarb Showed an Obvious Therapeutic
Effect on Rats with Cholestasis
The serum biochemistry results are presented in Table S4
and Figures 2B–G. Serum ALT and AST are well-recognized
markers of various liver damages. As shown in Figures 2B,C,
rats given ANIT displayed a remarkable increase in ALT and
AST, which indicated that severe liver damage occurred after
ANIT administration. The ALT and AST levels were significantly
reduced when the rats were treated with the 6.6 and 21.0 g/kg
doses of rhubarb, respectively. TBIL, DBIL, ALP and TBA,
which are classical indicators for cholestatic liver injuries, were
remarkably elevated in the ANIT-treated rats (Figures 2D–G),
which indicated that severe cholestasis had occurred. UDCA at
a 60mg/kg dose efficiently decreased the serum levels of ALP
but had a mild effect on decreasing ALT, AST, TBIL, DBIL, and
TBA; thus, UDCA had a moderate treatment effect on ANIT-
induced severe cholestasis. The TBIL, DBIL ALP, and TBA levels
were significantly decreased in rats treated with rhubarb at a
dose of 6.60 g/kg (Rhu4) compared with the model group. The
efficacy of rhubarb at the 6.60 g/kg dose on ANIT-induced severe
cholestasis was better than that of UDCA and the other rhubarb
doses.

Liver tissues were examined by microscopy to provide visual
evidence of the protective efficacy of rhubarb on cholestasis. As
shown in Figure 2A, the liver sections of normal rats (Con)
showed normal hepatocyte structures. The specimens in the
model group (Mod) displayed acute neutrophil infiltration,
sinusoid congestion, severe demolition, or loss of the interlobular
ducts, and hepatic necrosis. The concurrent administration
of UDCA and 6.6 and 22.0 g/kg of rhubarb resulted in a
milder degree of bile duct epithelial damage and hepatocyte
hydropic degeneration with less neutrophil infiltration, which
was similar to the normal group. The specimens treated with
0.21, 0.66, and 2.10 g/kg of rhubarb displayed a slightly reduced
severity of inflammatory cell infiltration and other ANIT-
induced histological damages. The liver damage in the specimens
treated with 0.21, 0.66, and 2.10 g/kg of rhubarb demonstrated
almost no attenuation of portal tract edema, cholangitis and bile
duct epithelial damage. Notably, 21.0 g/kg of rhubarb also had
an obvious treatment effect in terms of some biochemical indices
and histological sections. However, the efficacy of rhubarb at the
21.0 g/kg dose was inferior to rhubarb at the 6.60 g/kg dose,
and the excessive dose of rhubarb was likely to generate side
effects. Moreover, the TBA level was significantly elevated after
administration of 21.0 g/kg of rhubarb.

Taken together, our results demonstrated that the model of
cholestasis was successfully established. Rhubarb at the 6.60 g/kg
dose showed a significant therapeutic effect on severe cholestasis.
The therapeutic effect observed for the Rhu4 group (rhubarb at
the 6.60 g/kg dose) was much better than the effect observed for
the other groups.

Multivariate Statistical Analysis of the
Metabolomics Data
The UHPLC system provides a rapid, effective, and convenient
method to analyze the chemical constituent’s variance
between different samples of the rats. The base peak intensity
chromatograms (BPC) of samples from the control, model, and
Rhu4 groups in positive and negative ion mode are presented
in Figures S4, S5, respectively. Visual inspection of these spectra
revealed differences in BPC profiles among the control, model
and Rhu4 groups, indicating that the metabolite levels were
perturbed by ANIT and rhubarb administration.

As therapeutic effect of rhubarb at 6.60 g/kg on the cholestasis
is the best. The normal, model, Rhu4 groups were specifically
selected to get an explicit classification. At first, PCA was used
as an unsupervised statistical method to study the metabolic
differences between control, model and Rhu4 groups. The score
plots of PCA analysis derived from data of ESI+ mode and
ESI− mode are shown in Figures 3A,B, respectively. As shown
in Figure 3, the QC samples clustered closely in both PCA
score plots, demonstrating the stability of the LC/MS system
throughout the whole analysis. Besides, an obvious separation
trend can be observed between the Con, Mod and Rhu4 groups in
both PCA model, indicating there was a considerable metabolite
difference between the three groups.

OPLS-DA was used to investigate deep differences between
control group and model group, model group and Rhu4 group
respectively to find potential biomarkers for discriminating
cholestasis and drug types. Figures 3C–F displays the result
of OPLS-DA model derived from data of ESI+ analysis (M2,
M3). Figures 3C,E displays the result of OPLS-DA model (M2)
using the data from the control and model groups. As shown
in Figure 3, the score plot (Figure 3C) showed good fitness of
model. The model group can be separated from control group
very clearly. The model demonstrated good predictive ability
with a R2Y (cum) of 0.995 and Q2(cum) of 0.949. Similarly, the
OPLS-DA model (M3) was constructed based on the model and
Rhu4 data (Figures 3D,F). The model group can be separated
from Rhu4 group clearly. The R2Y (cum) and Q2Y (cum) were
0.974 and 0.708 respectively. The data analysis of ESI−mode was
also conducted and are shown in S5. All the parameters of PCA
and OPLS-DA model are listed in Table S5.

The Exploration, Selection, and Tentative
Identification of Potential Biomarkers
The S-plot (Wiklund et al., 2008) and variable importance for
projection (VIP) values of the OPLS-DA model were used to
select the variables responsible for group separation. Variables
with a VIP value > 1 were pre-selected as potential biomarkers.
To decrease the risk of false positives in the selection of potential
biomarkers, variables with |p(corr)| ≥ 0.5 were selected as
the variables that were most correlated with the OPLS-DA
discriminant scores. Figures 3E,F show the S-plots of models M2
and M3, respectively. The same process was performed for the
data from the ESI− analysis; the OPLS-DA models M5 and M6
were established and the score plots and S-plots of M5 and M6
were shown in Figure S6. TheM5 andM6 parameters depicted in
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FIGURE 2 | (A) Typical histopathological section photographs of rat liver specimens for H&E analysis (200 × magnification). (B–G) Shown are the serum ALT, AST,

TBIL, DBIL, ALP and TBA levels, respectively. ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, serum total bilirubin; DBIL, serum direct bilirubin;

ALP, alkaline phosphatase; TBA, total bile acid. ANOVA with the post hoc test was used to calculate the significance of the differences, *** represents p < 0.01

compared with the control group, ˆ, ˆˆ, and ˆˆˆ represent p < 0.05, p < 0.01 and p < 0.001 compared with the model group, respectively.

Table S5 illustrate the good fitness of the model. By applying this
analysis process, the variables responsible for group separation
were selected as potential biomarker candidates.

Next, metabolites that differed significantly (p < 0.05) in
the model group compared with the control group as well
as when those in the Rhu4 group compared with the model
group were selected as candidate biomarkers. The criteria were
restricted to features with an average normalized intensity
difference of 1.5-fold. Finally, the metabolites in the ESI+ and
ESI− mode analyses were combined and subjected to further
identification of their molecular formulas. All biomarkers were
tentatively identified with the accurate mass charge ratio by the
online METLIN database (http://www.metlin.scipps.edu/). To
determine the potential structures of the ions, targeted MS/MS
analysis was applied to identify the metabolites. The MS/MS
spectra obtained at the 10, 20, and 40 eV collision energies
were implemented to obtain the fragmentation patterns of these
potential biomarkers.

Metabolite identification was conducted with high resolution
MS and MS/MS fragments as well as database analyses. To
illustrate the identification of metabolites, we used the ion
at 8.10_465.3071 with a retention time of 8.10 min and a
molecular weight of 465.3071 (neutral ion) as an example. This
ion may contain an odd number of nitrogen atoms because
its precise molecular weight is 465.3071; its molecular formula
was speculated to be C26H43NO6 based on the analysis of its
elemental composition and fractional isotope abundance. In the
negative ion spectrum, the main fragment ions analyzed via
the MS/MS screening were observed at m/z 402.2986, 95.0505,
74.0246, and 69.0332, which could be the [M - H]− of lost -
CO3, -C20H34NO5, -C20H34NO5, and -C22H36NO5, respectively.
Finally, we used the online METLIN database to define its
structure and tentatively identified the metabolite as glycocholic
acid. Its mass spectrum (Figure 4B) and proposed fragmentation
pathway are displayed in Figure 4A. Using the protocol described
above, a total of 13 potential biomarkers, including 7 metabolites
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FIGURE 3 | The score plots of Con, Model, Rhu4, and QC from PCA in the ESI+ mode (A) and ESI− mode (B) for PC1 vs. PC2. QC indicates the quality

control group. OPLS-DA analysis of the data derived from the ESI+ mode. OPLS-DA score plots for the pair-wise comparisons between the Con and Model (C) and

the Model and Rhu4 (D). S-plot of the OPLS-DA model for the Con and Model (E) and the Model and Rhu4 (F), the axes that are plotted in the S-plot from the

predictive component are p1 vs. p(corr)1, representing the magnitude (modeled covariation) and reliability (modeled correlation) respectively. The points in red indicate

the identified biomarkers.

from the ESI+ analysis and six metabolites from the ESI−
analysis, were identified and listed in Tables 1, 2.

Alterations in Potential Biomarkers
Induced by Different Doses of Rhubarb
In the evaluation of the control group and model group that
sought biomarkers of ANIT-induced cholestasis (Table 1), 12
metabolites (except sulfuric acid) were significantly (p < 0.05)
altered. The significantly altered metabolites from rats with
cholestasis induced explicit metabolic changes compared with the
healthy controls. Notably, treatment of cholestatic rats with 6.60
g/kg of rhubarb also induced dramatic metabolic perturbations
in 11 metabolites. Through comparison, we found that 9 of
the 13 biomarkers (creatine, indoleacetaldehyde, leukotriene D4,
phytosphingosine, taurine, taurocholic acid, glycocholic acid,
taurochenodeoxycholate, and 15(S)-HETE) were simultaneously
altered during ANIT and rhubarb treatment and that the nine
altered metabolites in cholestatic rats were reversed after rhubarb
treatment. The results suggest that the metabolic pathways for
cholestasis and rhubarb treatment are quite similar.

The results of the in vivo experiments demonstrated that
rhubarb at a dose of 6.60 g/kg showed significant therapeutic
effects on the rat model of cholestasis. The other rhubarb
treatment groups also exhibited a certain efficacy against
cholestasis. However, no obvious histological and biochemical
changes were detected in the rats compared with the model
group after treatment with a low dose of rhubarb (0.21, 0.66,
and 2.10 g/kg). To obtain a deeper insight into the metabolic
differences caused by the different doses of rhubarb, the changes
in the above-mentioned nine potential biomarkers were further
analyzed.

As shown in Figures 5A–I, the taurine, indoleacetaldehyde
and phytosphingosine levels were significantly elevated in the
Rhu4 group compared with the model group; with the decrease

in the rhubarb dose, the levels of the three biomarkers were

gradually reduced with the reduced level of rhubarb. In contrast,
the taurochenodeoxycholate, leukotriene D4 and creatine levels
were significantly reduced in the Rhu4 group compared with
the model group, and the levels of the three biomarkers
were increased with the reduction in the rhubarb dose. In
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FIGURE 4 | Mass spectra and mass fragment information for glycocholic acid. The proposed MS fragmentation mechanism (A) and product ion spectrum of

glycocholic acid in ESI− mode (B).

summary, the above-mentioned six metabolites were altered by
rhubarb in a dose-dependent manner. Conversely, taurocholic
acid, glycocholic acid and 15(S)-HETE did not show obvious
dose-dependent changes in rats administered different doses of
rhubarb.

PCA Analysis and the Dose-Response
Curves Based on Biomarker Variations
To evaluate the comprehensive trend and regularity of the
alterations in metabolites after rhubarb treatment, the PCA
model was established using the normalized peak areas of the
nine important metabolites as variables. Figure 6A displays the
score plot of the PCA model with the first principal component.
The eight studied groups can be well-separated. The control
group was separated from the model group with most of the

metabolites altered (Figures 5A–I), and the positive control
group showed a similar trend of separation. For the five rhubarb
doses groups, rhubarb at the 0.21 g/kg dose exhibited a slight
difference compared to the model group. With increased doses of
rhubarb, the metabolome differences compared with the model
group gradually increased. The Rhu4 group showed the shortest
distance to the control group on the t[1]-axis, which indicated its
potent therapeutic effect.

As shown in the PCA score plot, a clear dose-dependent
response was observed with the doses of 0, 0.21, 0.66, 2.10,
and 6.60 g/kg. The dose-response curve was established using
the principal component score extracted from the PCA model
as an effect indicator. The detailed modeling process of

the dose-response curve was depicted in the Supplementary
Materials. Figure 6B shows the fitting of the dose-response curve
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TABLE 1 | Differential identified metabolites for discrimination among control, model, and Rhu4 groups.

tR (min) Metabolite Mod vs. Con Rhu4 vs. Mod

VIP Fold pa VIP Fold pa

DATA FROM THE ESI+ MODE

0.64 Cytosine 1.23 0.29 0.009 <1 2.02 0.222

0.87 Creatine 2.90 3.46 < 0.001 3.35 0.53 < 0.001

0.98 Arginine 1.58 0.25 0.003 < 1 1.77 0.440

1.15 Indoleacetaldehyde 1.15 0.45 < 0.001 1.51 2.13 0.011

7.17 Leukotriene D4 2.16 55.40 < 0.001 1.77 0.64 < 0.001

10.46 Phytosphingosine 1.32 0.40 0.004 1.98 2.34 0.024

14.9 5(S)-HETE lactone 2.54 0.37 < 0.001 1.07 0.73 0.064

DATA FROM THE ESI− MODE

0.51 Sulfuric acid <1 0.93 0.095 2.93 0.62 0.003

0.86 Taurine 7.74 0.16 < 0.001 10.38 3.68 < 0.001

7.63 Taurochenodeoxycholate 2.12 125.58 < 0.001 2.84 0.34 0.001

7.81 Taurocholic acid 8.91 1317.39 0.001 11.49 0.39 0.009

8.10 Glycocholic Acid 1.59 39.64 < 0.001 2.59 0.19 < 0.001

12.97 15(S)-HETE 2.48 0.23 < 0.001 2.29 1.85 < 0.001

aThe significant differences were generated from the Student’s t-test or Mann–Whitney U-test when the Student’s t-test was not suitable.

TABLE 2 | The identification of potential biomarkers based on UHPLC-MS/MS.

tR (min) Identified compound Mass (Neutral) Error (ppm) Formulate MS/MS fragment ions (m/z)

DATA FROM THE ESI+ MODE

0.64 Cytosine 111.0413 17.67 C4H5N3O 112.3924 [M+H] + 95.0709 [M+H-NH3]
+ 67.0455 [M+H-CH3NO]

+

52.0229 [M+H-CH4N2O]
+

0.87 Creatine 131.0699 −3.23 C4H9N3O2 132.0757 [M+H] + 90.0543 [M+H-CH2N2]
+ 58.0643 [M+H-C2H4NO2]

+

0.98 Arginine 174.1125 −4.73 C6H14N4O2 175.1193 [M+H] + 116.0704 [M+H-CH5N3]
+

1.15 Indoleacetaldehyde 159.0709 −15.63 C10H9NO 160.0704 [M+H] + 132.0772 [M+H-CO] + 117.0539 [M+H-CO-CH3]
+

7.17 Leukotriene D4 496.2659 −10.46 C25H40N2O6S 497.2737 [M+H] +

10.46 Phytosphingosine 317.2940 −3.17 C18H39NO3 318.2994 [M+H] +, 300.2929 [M+H-H2O]
+, 256.2642 [M+H-C2H6O2]

+

14.9 5(S)-HETE lactone 302.2188 19.12 C20H30O2 303.2266 [M+H] + 105.0698 [M+H-C12H22O2]
+, 91.0543

[M+H-C13H24O2]
+ 81.0697 [M+H-C14H22O2]

+

DATA FROM THE ESI− MODE

0.51 Sulfuric acid 97.9675 −1.24 H2SO4 96.961 [M-H] −, 79.9579 [M-H-OH] −

0.86 Taurine 125.0127 15.71 C2H7NO3S 124.0049 [M-H] − 79.9570 [M-H-C2H6N]
−

7.63 Taurochenodeoxycholate 499.2883 16.94 C26H45NO6S 498.2805 [M-H] − 124.0073 [M-H-C24H43O3]
− 106.9818

[M-H-C24H41NO3]
− 79.9575 [M-H-C26H44NO3]

−

7.81 Taurocholic acid 515.2911 1.11 C26H45NO7S 514.2883 [M-H] − 124.0070 [M-H-C24H37O4]
−

8.10 Glycocholic Acid 465.3071 4.16 C26H43NO6 464.2993 [M-H] − 402.2986 [M-H-CO3]
− 95.0505 [M-H-C20H34NO5]

−

74.0246 [M-H-C22H38O4]
− 69.0332 [M-H-C22H36NO5]

−

12.97 15(S)-HETE 320.2315 11.38 C20H32O3 319.2256 [M-H] − 301.8645 [M-H-H2O]
− 257.2287 [M-H-CH2O3]

−

219.5090 [M-H-C6H12O]
− 59.0145 [M-H-C18H28O]

−

(R2 = 0.8174). As a result, the EC20, EC50, and EC80 values were
0.42, 3.26 and 6.61 g/kg, respectively. The 0.42–6.61 g/kg dose,
which corresponded to 4.00–62.95 g in the clinic, was in the
ED20–ED80 range for the treatment of cholestasis.

Rhubarb Regulates Metabolic Pathways
with Differences Compared to UDCA
MetaboAnalyst, a free web-based tool that combines the topology
with a powerful pathway enrichment analysis; this tool was used

to perform the pathway analysis. The changes in the potential

biomarkers (Table S6) suggested that nine pathways were affected

by cholestasis and rhubarb treatment. As shown in Figure S7
and Table S6, the most affected pathways among the nine

disturbed pathways were primary bile acid biosynthesis, taurine
and hypotaurine metabolism, arachidonic acid metabolism, and

arginine and proline metabolism. Figure 6 displays the schematic

diagram of the disturbed metabolic pathways related to ANIT

and rhubarb treatment.
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FIGURE 5 | Variations in the trends of the metabolites that are biomarkers of both cholestasis and rhubarb treatment. (A–I) Shown are the variations in

the trends of taurine, taurochenodeoxycholate, taurocholic acid, glycocholic acid, leukotriene D4, 15(S)-HETE, phytosphingosine, creatine and indoleacetaldehyde,

respectively. ** and *** represent p < 0.01 and 0.001 compared with the control group, respectively. ∧, ∧∧, and ∧∧∧ represent p < 0.05, 0.01 and 0.001 compared

with the model group, respectively.

Further analysis of the disturbed biomarkers and pathways
revealed that bile acid metabolism and excretion, inflammation
and amino acid, metabolism and energy metabolism were
generally regulated by rhubarb treatment (Figure 7). Notably,
UDCA also had a considerable impact on the above-mentioned
pathways. By analyzing the trends in the variation of the
biomarkers, we could see that UDCA at a 60 mg/kg dose
regulated bile acid metabolism and excretion more evidently
than rhubarb; moreover, the taurine, taurochenodeoxycholate
and taurocholic acid levels were more significantly affected
by UDCA than rhubarb (Figures 5A–D). In contrast, rhubarb
showed a better effect on the regulation of pathways related
to inflammation and amino acid metabolism and energy
metabolism. Compared with UDCA, the leukotriene D4,
15(S)-HETE, phytosphingosine, and indoleacetaldehyde

levels were more significantly perturbed by rhubarb
(Figures 5E–I).

DISCUSSION

Cholestasis is characterized by the intrahepatic accumulation of
potentially toxic bile acids as a consequence of hepatocellular
dysfunction or the obstruction of bile ducts (Modica et al., 2012).
The complications and severity of the pathological implications
make cholestasis an intractable disease (Hegade and Jones, 2015).
In the present study, UDCA at a 60 mg/kg dose showed an
anti-cholestasis effect on the ANIT-induced cholestasis model to
a certain degree. Rhubarb at a 6.6 g/kg dose (measured as the
quantity of crude material) displayed a remarkable therapeutic
effect, and rhubarb showed an obvious dose-dependent effect on
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FIGURE 6 | (A) The score plot of the PCA model. The normalized peak areas

of the nine significantly altered potential biomarkers were used as the

corresponding variables. All groups were highlighted by a surrounding circle in

a corresponding color. The arrow in the figure shows the metabolic changes

with the increasing dose of rhubarb. (B) The dose-response curve is provided

for the effect indicator (scores of the first principal component) and rhubarb at

different doses.

cholestasis. With the increase in the dose, the anti-cholestasis
effect gradually increased. However, a larger dose did not mean
better efficacy; the 6.60 g/kg dose might be the optimal dose for
rats because the dose higher than 6.60 g/kg used in this study
(21.0 g/kg) exhibited a drop in efficacy and might lead to side
effects. Furthermore, the established dose-response curve showed
that 0.42–6.61 g/kg (corresponding to 4.00–62.95 g in the clinic)
was in the EC20–EC80 range for cholestasis treatment. However,
the regular dose of rhubarb in Chinese Pharmacopoeia was 3–
15 g, which could not achieve a very good therapeutic effect on
cholestasis. Our previous study demonstrated that a large dose
of rhubarb over a short period of time did not cause obvious
toxicity (Wang et al., 2011a), thus a broader dosage range was
recommended for the Chinese Pharmacopoeia.

In the evaluation of control group and model group for
seeking the biomarker of ANIT-induced cholestasis (Table 1),
12 metabolites (except sulfuric acid) were significantly (p <

0.05) alerted. The significantly alerted metabolites illustrating
rats with cholestasis induced explicit metabolic change compared
with the healthy controls. The changed concentrations of
potential biomarkers suggested that the disturbed pathways in
cholestasis rats, such as primary bile acid biosynthesis, taurine,
and hypotaurine metabolism, arachidonic acid metabolism, and
arginine and proline metabolism, were most affected by the
administration of ANIT. As noted in two previous reports (Chen

et al., 2016; Ma et al., 2016), primary bile acid biosynthesis,
taurine and hypotaurine metabolism and the pathways related to
inflammation and amino acid metabolism were also disturbed in
cholestasis rats.

Because bile acids are closely related to the occurrence and
development of cholestasis, special attention has been paid
to the bile acid level related to the treatment of cholestasis
(Thomas et al., 2008). To evaluate the protective effect of
rhubarb against ANIT-induced liver injury, a previous study
based on the targeted metabolic profiles of 8 bile acids partially
clarified the mechanisms of cholestasis and the therapeutic
effect of rhubarb (Yang et al., 2012). In this study, the
importance of bile acids was also observed. Five identified
biomarkers (taurine, taurochenodeoxycholate, taurocholic acid,
glycocholic acid, and sulfuric acid) were involved in primary
bile acid biosynthesis or taurine and hypotaurine metabolism
(Figure 7).

Taurochenodeoxycholate, taurocholic acid and glycocholic
acid are common primary bile acids synthetized from cholesterol
and conjugated with taurine or glycine in hepatocytes. The
enhancement of taurochenodeoxycholate, taurocholic acid,
and glycocholic acid together with the reduced level of taurine
are commonly present in cholestasis patients (Trottier et al.,
2012; Woolbright et al., 2015). Further analysis showed that
the higher level of taurine together with the lower level of
taurochenodeoxycholate, taurocholic acid, and glycocholic acid
in the Rhu4 group compared with the model groupmight suggest
that the therapeutic mechanism of action of rhubarb occurs
via bile acid synthesis and secretion. Interestingly, the taurine,
taurochenodeoxycholate, and taurocholic acid levels exhibited
an obvious dose-dependent change after rhubarb treatment,
indicating that primary bile acid biosynthesis, and taurine and
hypotaurine metabolism were affected in a dose-dependent
manner.

In addition to the biomarkers associated with bile acid
metabolism and excretion, biomarkers related to inflammation
were also identified by the untargeted metabolomics approach.
The observations of the significantly reduced levels of 15(S)-
HETE, phytospingosine, and 5(S)-HETE lactone together with
the significantly elevated level of leukotriene D4 (LTD4) in
the model group indicated the dysfunction of arachidonic acid
metabolism. 15(S)-HETE is a hydroxyeicosatetraenoic acid that
can inhibit leukotriene B4 (LTB4) formation and LTB4-induced
erythema and edema (Samuelsson et al., 1987). Studies have
shown that 15(S)-HETE and 5(S)-HETE lactone can inhibit
lipoxygenase (Lox) activity and further inhibit the production
of LTD4 (Sekiya and Okuda, 1982; Kerdesky et al., 1987;
Dwyer et al., 2004) (Figure 7). LTD4 is a potent inflammatory
mediator that is associated with the pathogenesis of several
inflammatory disorders (Samuelsson, 1983). In addition, we
also identified phytosphingosine, which is a metabolite with
anti-inflammatory activity (Pavicic et al., 2007). The elevated
levels of phytospingosine and 5(S)-HETE together with the
reduced level of LTD4 after rhubarb treatment further defined
the anti-inflammatory effect of rhubarb. Moreover, the levels
of phytospingosine and LTD4 were dose-dependent, indicating
that arachidonic acid metabolism, which is closely related to
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FIGURE 7 | Schematic diagram of the disturbed metabolic pathway related to ANIT and rhubarb treatment. The pink and light blue boxes indicate

metabolites significantly higher and lower in the model group than in the control group, respectively. The boxes bordered in red and blue represent metabolites that are

significantly higher and lower in the Rhu4 group than in control group, respectively. Lox in the figure stands for lipoxygenase.

the inflammatory response, was also affected by rhubarb in a
dose-dependent manner.

As shown in Figure 7, amino acid metabolism was
affected in ANIT-induced cholestasis. The reduced level of
indoleacetaldehyde indicated that tryptophan metabolism
was influenced. In addition, the increased level of creatine
and reduced level of arginine indicated that a dysfunction
in arginine and proline metabolism was induced by ANIT
treatment. Previous studies demonstrated the protective effects
of arginine on cholestatic rats (Ozsoy et al., 2011). Notably,
the elevated level of creatine suggested a facilitated utilization
of creatine-phosphate to replenish the energy demand; this
phenomenon has been proposed to be a sign of liver injury,
which was consistent with the pharmacological results in the
present study (Jiang et al., 2013; Wei et al., 2015). The creatine
and indoleacetaldehyde levels in response to rhubarb treatment
showed an obvious dose-dependent trend, indicating that

the pathways related to amino acid metabolism and energy
metabolism were affected in a dose-dependent manner. Based

on the dose-dependent alterations in biomarkers and metabolic

pathways following treatment with different rhubarb doses, we
attempted to elucidate the possible mechanism underlying the
dose-response relationship and the therapeutic mechanism of
action of rhubarb for the treatment of cholestasis. The results

showed that the untargeted metabolomics approach used in this
study might efficiently provide insights into the mechanisms.

However, future metabolomic studies in human populations

with cholestasis will be needed to validate the biomarkers found
in the animal model. And further work should be performed
to confirm the alterations in the metabolic pathways using
molecular biology approaches.

CONCLUSION

The results of the serum biochemistry and histopathology
analyses demonstrated the conspicuous anti-cholestatic effects of
rhubarb. By considering the pharmacological indicators together,
we observed a clear dose-response relationship. However, a
larger dose did not indicate a better therapeutic effect because
the 6.60 g/kg dose in rats (which was a relatively large dose
corresponding to a dose of approximately 60 g per day for a
human weighing 60 kg) was the optimal dose for cholestasis
treatment, and the effect of rhubarb at the 21.0 g/kg dose was
inferior to that of the 6.60 g/kg dose.

An untargeted metabolomics approach based on UHPLC-MS
coupled with pathway analysis was developed and successfully
applied to explore the biological changes induced by different
doses of rhubarb on ANIT-induced cholestasis. Based on
the information extracted through the multivariate analysis,
differences in the metabolic changes were detected. Altogether,
13 significantly changed metabolites, including creatine, taurine,
and glycocholic acid, were identified as potential biomarkers
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of cholestasis or rhubarb treatment. A total of 9 of the 13
biomarkers were simultaneously altered with opposing trends
in variation after ANIT and rhubarb treatment. The dose-
response curve based on the PCA model of the nine important
biomarkers indicated that a dose ranging from 0.42 to 6.61 g/kg
(corresponding to 4.00–62.95 g in the clinic) was in the EC20–
EC80 range for cholestasis treatment.

Furthermore, the pathway analysis indicated that the
ANIT-induced cholestasis and rhubarb treatment were
mainly responsible for alterations in bile acid metabolism
and excretion, inflammation and amino acid metabolism, and
energy metabolism. The levels of the identified biomarkers
indicated that important pathways were perturbed in a dose-
dependent manner. Notably, rhubarb showed a poorer effect on
bile acid metabolism and excretion and a better effect on the
regulation of pathways related to inflammation and amino acid
metabolism and energy metabolism compared with UDCA at
a 60 mg/kg dose. The altered metabolites and pathways related
to bile acid metabolism and excretion, inflammation and amino
acid metabolism, and energy metabolismmay partially clarify the
therapeutic mechanism of action of rhubarb for the treatment of
cholestasis.
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