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The Fritillaria imperialis is an ornamental flower that can be found in various parts of

the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this

plant as traditional remedy is widely known. This study aims to unveil the anti-cancer

potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis

in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene

expression analysis via cDNA microarray and protein array were performed. Based on

the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and

promoted cell survival. The execution of apoptosis was apparent based on the flow

cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the

regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione

and superoxide dismutase- related genes. Moreover, the treatment also induced the

activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic

Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro

survival pathways.

Keywords: HeLa, isopimara-7, 15-dien-19-oic acid, Fritillaria imperialis, antioxidant

INTRODUCTION

Cancer is a complex disease that is not fully understood yet. Cervical cancer is among the most
diagnosed type of cancer in women today. Statistically, around 1 out of 154 will be diagnosed for
cervical cancer (Siegel et al., 2014). The mechanism of cell death and cell survival often intertwines
and involves a lot of variables. There is a delicate balance that plays a major role in cell sustenance
and the tilt can lean either way, especially in reacting to external substances (Fulda et al., 2010).
Unfortunately, a viable treatment for treating cervical cancer is yet to be found. Natural-derived
molecules have become a promising target in finding the cure for major diseases including diabetes,
cancer, and Alzheimer.

Fritillaria imperialis or commonly known as “crown imperial” is a species of flower
from the Liliaceae family (Khare, 2007). This species can be found in various parts
of the world specifically Iran, Turkey, Afghanistan, and some parts of the Himalaya
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FIGURE 1 | The chemical structure of DIA isolated from the bulbs of

Fritillaria imperialis.

(Khare, 2007; Badfar-Chaleshtori et al., 2012). This plant is
considered an ornamental plant due to its large and attractive
flowers. It is also known to have several medicinal properties
such as becoming a diuretic, treating hypotensive, cardiotonic,
and spasmolytic (Khare, 2007). There are several interesting
molecules that can be extracted from this plant especially
steroidal alkaloids (Atta-ur-Rahman et al., 2002; Akhtar et al.,
2003; Khare, 2007). Additionally, another class of molecules that
can also be extracted from the F. imperialis is sesquiterpenes
(Atta-ur-Rahman et al., 2005). Sesquiterpenes are a class of
natural products possessing various biological activities such
as antimycobacterial (Abourashed et al., 2011), antifungal (Al-
Ja’fari et al., 2013), anti-inflammatory, apoptosis-inducing, and
immunosuppressant activities (Qi et al., 2015). Most of the
sesquiterpene lactones impart a wide-range of pharmacological
effects, including anti-cancer and immunomodulatory action (Lu
et al., 2009; Choi et al., 2011; Ivanescu et al., 2015), antimicrobial,
antioxidant, anti-inflammatory, and antinociceptive activities
(Sulaiman et al., 2010; Dahham et al., 2015).

Diterpene Isopimara-7,15-dien-19-oic acid can be isolated
from the bulbs of F. imperialis plant. The only known
activity this molecule has is the prolyl endopeptidase inhibition
(Atta-ur-Rahman et al., 2005). Other biological or chemical
properties of this molecule are yet to be discovered. Thus,
the aim of this study is to understand the molecular
mechanism of HeLa cells, the most used cervical cancer cell
line, upon induction with isopimara-7,15-dien-19-oic acid in
vitro.

MATERIALS AND METHODS

Plant Material and Purification of
Compounds
Isopimara-7,15-dien-19-oic acid (Figure 1) was purified from
a hexane fraction of Turkish plant F. imperialis. The hexane
fraction was obtained as thick oil and subjected to column
chromatography over silica gel by using acetone/petroleum
ether as the solvent system. Isopimara-7,15-dien-19-oic acid
was obtained as colorless prismatic crystals with melting point
159–160◦C. The detailed extraction procedure and identification
of isopimara-7,15-dien-19-oic acid were already published in our
previous publication (Atta-ur-Rahman et al., 2005).

Cell Culture
HeLa cells were obtained from the ATCC Collection (ATCC,
USA) and were maintained in RPMI-1640 (Sigma, USA)
supplemented with 10% fetal bovine serum and 1% penicillin-
streptomycin (Gibco, USA). The cells were incubated at 37◦C
equipped with 5% CO2.

MTT
The MTT analysis was performed as a preliminary cytotoxic
study for DIA against HeLa cells. Cells were seeded in a 96 well
plate at a density of 0.8 × 105 cells/ml overnight. Afterwards,
the cells were treated with seven different doses of DIA ranging
from 30 to 0.64µg/mL and were left to incubate for 72 h. Upon
reaching the allocated incubation time, 20µl of 5mg/mL ofMTT
(Sigma, USA) was added to each of the wells for 4 h at 37◦C.
Next, the media as well as the MTT were removed and 100µl of
DMSO was added to solubilize the resulting formazon crystals.
Subsequently, the reading of the plate was obtained using a
microplate reader (Bio-Tek Instruments, USA) at 570 nm.

Cell Cycle Flow Cytometry Analysis
HeLa cells were seeded in 6 well plates at a density of 2.4 ×

105 cells/well overnight. The next day, 15µg/mL of DIA was
added into the designated wells and was left to incubate for 72 h
in a humidified 37◦C CO2 incubator. Afterwards, the cells were
harvested, fixed in 500µl of ice cold 80% ethanol and were stored
in −20◦C for 1 week. On the day of the analysis, the pellet was
washed with 1ml of PBS twice and was permeabilized and stained
using 500µl of RNAse-Propidium Iodide-PBS-Triton X100 for
15min at room temperature. Next, the cells were analyzed using a
FACS Calibur Flow Cytometry machine immediately (BD, USA).

Annexin V-FITC Flow Cytometry Analysis
This assay was performed according to the protocol set by the
Annexin V/FITC kit by BD, USA. Similar to the cell cycle
analysis, HeLa cells were seeded in 6 well plates at a density
of 2.4 × 105 cells/well overnight. The next day, 15µg/mL
of DIA was added into the designated wells and was left to
incubate for 72 h in a humidified 37◦C CO2 incubator. After
the incubation time, the cells were harvested and washed twice
with PBS. The cells were later stained with Annexin V-FITC and
Propidium Iodide in 100µl of 1X Binding Buffer. Then, the cells
were analyzed using a FACS Calibur Flow Cytometry machine
immediately (BD, USA).

JC-1 Flow Cytometry Analysis
The JC-1 analysis was done using the BD Mitoscreen Kit (BD,
USA). Similar to the cell cycle analysis, HeLa cells were seeded
in 6 well plates at a density of 2.4 × 105 cells/well overnight.
The next day, 15µg/mL of DIA was added into the designated
wells and was left to incubate for 72 h in a humidified 37◦C CO2

incubator. After the incubation time, the cells were harvested
and washed twice with PBS. Afterwards, the cells were stained
and incubated with the JC-1 dye for 15min at 37◦C. Then the
cells were washed twice with the provided washing buffer. The
cells were later analyzed using a FACS Calibur Flow Cytometry
machine immediately (BD, USA).
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cDNA Microarray
Three sets of biological replicates of untreated HeLa and DIA-
treated HeLa were prepared. HeLa cells were seeded in 6 well
plates at a density of 2.4 × 105 cells/well overnight. After
24 h, 15µg/mL of DIA was added into the designated wells
and was left to incubate for 48 h in a humidified 37◦C CO2

incubator. After the incubation time, the cells were harvested
and RNA was extracted using the QiagenRneasy Mini Kit
(Qiagen, Germany). The quality of the RNA extracted was
measured using the 2100 Bioanalyzer using a RNA Pico chip
(Agilent, USA). In order to proceed to microarray, the RIN
(RNA Integrity Number) should be more than eight. After
all of the samples have passed the minimum requirement for
microarray analysis the samples were then used for microarray.
All of the samples were subjected to the SurePrint G3
Human Gene Expression 8x60K v2 microarray kit (Agilent
Technologies, USA) according to manufacturer protocol, and
scanned with Agilent DNA microarray scanner. The results
from the microarray study has already been uploaded on
the Gene Expression Omnibus with the accession number
GSE72974.

Differential Expression Analysis for
Microarray
The results from the microarray analysis were analyzed using
the Genespring GX Software Version 13.1 (Agilent, USA).
The differential expression comparison was made between the
untreated HeLa cells and the DIA-treated HeLa cells. Final results
were analyzed based on gene ontology with expression level
having p < 0.05.

Quantitative Real-Time PCR
To validate the results obtained from the microarray study,
real-time PCR was performed on the same samples using
different sets of primers. Around 1µg of RNA from each of the
samples were converted to cDNA using the Quantitect Reverse
Transcription Kit according to the manufacturer’s protocol
(Qiagen, Germany). Then, real-time PCR was conducted using
the SYBR Select Master Mix (Invitrogen, USA) on the iCycler
IQ5 (Bio-rad, USA). Table 1 illustrates the name of the gene,
accession number, and sequence of the primers used in this assay
(http://pga.mgh.harvard.edu/primerbank/).

Proteome Profiler Array TM

The proteome profiler antibody array was employed to determine
the effects of DIA on the activation of several cell stress-related
proteins. This assay was done according to the manufacturer’s
protocol. The cell lysates were incubated with the designated
membranes overnight at 4◦C. The following day, the membranes
were washed three times and were then incubated with the freshly
prepared antibody cocktail for 2 h. Afterwards, the membranes
were washed for three times again, before being incubated
with the streptavidin-horseradish-peroxidase for 30min at room
temperature. Then, the membranes were developed under
chemiluminescence conditions using the ChemiDOC XRS (Bio-
rad, USA).

TABLE 1 | Accession number and the sequence of the primers used to

validate the microarray results.

Gene name Accession number Sequence

HMOX1 NM_002133.2 F: 5-AAGACTGCGTTCCTGCTCAAC-3

R: 5-AAAGCCCTACAGCAACTGTCG-3

DDIT3 NM_001195057.1 F: 5-GAACGGCTCAAGCAGGAAATC-3

R: 5-TTCACCATTCGGTCAATCAGAG-3

GPX3 NM_002084.3 F: 5-AGAGCCGGGGACAAGAGAA-3

R: 5-ATTTGCCAGCATACTGCTTGA-3

GADD45A NM_001924.3 F: 5-GAGAGCAGAAGACCGAAAGGA-3

R: 5-CAGTGATCGTGCGCTGACT-3

ACTB NM_001101.3 F: 5-AGAGCTACGAGCTGCCTGAC-3

R: 5-AGCACTGTGTTGGCGTACAG-3

GAPDH NM_002046.4 F: 5- GGATTTGGTCGTATTGGGC-3

R: 5- TGGAAGATGGTGATGGGATT-3

18S RRNA HQ387008.1 F: 5- GTAACCCGTTGAACCCCATT-3

R: 5- CCATCCAATCGGTAGTAGCG -3

Superoxide Dismutase (SOD) and
Glutathione (GSH) Quantification
Total proteins were extracted from the untreated HeLa
and DIA-treated HeLa and were measured using the
Bradford assay (Sigma, USA). For SOD, 100µL of extracted
protein was mixed with 200µL of working solution
(0.1mol/L phosphate buffer, 0.15mg/mL sodium cyanide
in 0.1mol/L ethylenediaminetetraacetic acid, 1.5mmol/L
nitrobluetetrazolium and 0.12mmol/L riboflavin). On the other
hand, GSH was quantified using Glutathione assay kit (Sigma,
USA), where 10µL of protein was added with 150µL of working
solution (1.5mg/mL DTNB, 6U/mL glutathione reductase, and
1× assay buffer). After 5min of incubation, 50µL of NADPH
solution (0.16mg/mL) was added to the mixture. The absorbance
for SOD and GSH were measured using ELISA plate reader
(Bio-Tek Insturments, USA) at respective wavelengths of 560
and 420 nm.

Statistical Analysis
All experiments were done in three biological replicates and
expressed as mean ± standard deviation. Results with statistical
significant (p < 0.05) was assayed by student t-test comparing to
the untreated control.

RESULTS

DIA Inhibited the Proliferation of HeLa
Cells and Induced Apoptosis In vitro
Based on the MTT results, DIA only showed HeLa cells
viability (Figure 1) in a dose-dependent manner but not on
breast cancer (MCF-7 and MDA-MB231), colon cancer (HT-29),
and hepatoblastoma (HepG2) cell lines (results not shown) at
concentration up to 30µg/mL. As in Figure 2, the half-maximal
inhibitory concentration (IC50) of DIA against HeLa cells after
48 h was 15µg/mL. Moreover, as in Figure 3A, the effects of
DIA on HeLa cells was apparent as it induces an increase in the
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FIGURE 2 | MTT analysis of HeLa cells after being treated with DIA for

48h at 30µg/mL followed by seven 2-serial dilutions.

FIGURE 3 | Flow cytometry analysis of (A) Cell cycle analysis by

staining the DNA using propidium iodide, (B) Annexin V analysis for the

detection of externalization of phosphatidylserine (LL, viable; LR, Early

apoptosis; UR, Late apoptosis), and (C) JC-1 analysis for the detecting

the change of mitochondrial membrane potential in HeLa cells (Red:

Aggregates; Green: Monomers) after 48h of treatment with 15µg/mL

of DIA.

FIGURE 4 | Representative image of the proteome profiler analysis for

cell stress-related images as well as the quantification values for HeLa

cells; both control (untreated) and DIA-treated cells (15 ug/mL) for 48h.

Sub G0/G1 phase. The percentage of cell population in the Sub
G0/G1 phase for the untreated HeLa cells was 8.2%, while for
the DIA-treated cells was 29.77%. Additionally, as evidenced by
the Annexin V assay, DIA-treated HeLa cells had an increase
in the early apoptosis and late apoptosis populations, coupled
with a decrease in the viable cell population, comparing to the
untreated cells. As shown in Figure 3B, the percentage of viable
cells for the untreated cells was 97.97%, this was followed by a
decrease to 33.19% after 48 h of treatment with DIA. For the
early apoptosis population, the percentage in the untreated cells
was 0.05%, while in the DIA-treated cells, the percentage of the
population increased to 34.11%. A similar pattern can also be
observed in the late apoptosis population, from 0.02% in the
untreated cells to 26.17% in the DIA-treated cells. Furthermore,
based on the JC-1 assay, the percentage of monomers in the DIA-
treated cells (47.52%) was higher than the untreated cells (5.25%)
as displayed in Figure 3C.

DIA Regulated Cellular Stress-Related
Proteins in HeLa Cells
Figure 4 illustrates the proteome profiler analysis for cell-stress
related proteins as well as the quantification values. DIA-treated
cells managed to increase the regulation of several heat shock
proteins including hsp27 and hsp70. Moreover, the expression
of cytochrome C, SOD2, thioredoxin, carbonic anhydrase IX,
p38, and HIF-1a were also increased upon induction with
DIA in comparison with the control. The validation of both

Frontiers in Pharmacology | www.frontiersin.org 4 March 2016 | Volume 7 | Article 89

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Abu et al. Anti-Cancer Activity of Isopimara-7,15-Dien-19-Oic Acid

FIGURE 5 | Validation of the proteome profiler results by comparing the expression of proteins to the respective genes in microarray (p-value for the

microarray results are p < 0.05).

the microarray and proteome results is presented in Figure 5.
Similar pattern of expression could be seen for all of the proteins
in the proteome to the same genes in the microarray differential
analysis.

DIA Regulated the Expression of
Apoptosis, Oxidative Stress, and
Chaperone-Related Genes
cDNA microarray study was done to determine the effects of
DIA on the mRNA expression of HeLa cells. Based on Table 2,
DIA managed to regulate a large number of genes related to
apoptosis, oxidative stress, and heat shock proteins. DIA affected
the expression of 96 genes that are involved in either cell death or
cell survival.

Validation of Microarray Results with
Quantitative Real-Time PCR
To validate the results of differentially regulated genes from the
microarray analysis, a set of genes were selected and analyzed
using qPCR. All of the validated genes in qPCR had a similar
pattern of expression in the microarray results, as presented in
Figure 6.

DIA-Treated Cells Have a Higher Amount of
SOD and GSH
Based on Figure 7, the production of both SOD and GSH were
elevated in DIA-treated cells comparing to the untreated cells
(control). DIA-treated cells have a 1 fold and 1.57 fold change
difference respectively from the control cells.

DISCUSSION

Cellular stress plays an important role in response to
chemotherapeutic agents, and this has been one of the major
concerns in finding the perfect treatment for cancer, even for
cervical cancer (Portt et al., 2011; Kim et al., 2014). F. Imperialis
has been long known to possess medicinal properties. The
extracts of this plant have not been extensively studied on yet

especially on the diterpene group. There are several notable
diterpenes that possess promising anti-cancer activities such
as carnosol, crispene e, and taxol (Stahlhut et al., 1999; Chun
et al., 2014; Mantaj et al., 2015). To the best of our knowledge,
the anti-cancer effects of DIA extracted from the bulbs of
F. Imperialis on HeLa cells has not been reported yet.

There are various phytochemicals that possess anti-cancer
properties by modulating the cellular stress pathway (Kim
et al., 2014). Additionally, there are also several agents used
for cancer therapy that cause cellular ROS stress including
cisplatin, ascorbic acid, and emodin (Pelicano et al., 2004). The
cellular stress mechanism is diverged into multiple responses
and one of the responses that could be initiated is cell death,
including apoptosis (Martindale and Holbrook, 2002; Fulda
et al., 2010; Portt et al., 2011). Cell death can be measured
through various parameters such as DNA damage through cell
cycle analysis, cellular membrane changes, and mitochondrial
potential changes (Schmitt et al., 2007; Branzei and Foiani, 2008).
At the molecular level, based on Table 2, the activation of pro-
apoptotic genes is prevalent. The expression of the FADD and
FAS gene in DIA-treated cells increased comparing to the control
cells. The activation of FADD and FAS triggered a downstream
of execution of apoptosis-related proteins such as caspase 8,
caspase 3, BID, and JNK (Gupta et al., 2004; Clarke and Tyler,
2009), which subsequently regulate the BCL2-family proteins.
The BCL-2 family is crucial in a cellular response mechanism
as it can contribute to the switch of cell death vs. cell survival
(Gross et al., 1999; Cory et al., 2003; Schmitt et al., 2007). Pro-
apoptotic BCL-2 family genes such as BAX, BAD, and BAK
were increased in DIA-treated cells. These proteins can cause
mitochondrial dysfunction, which in turns affect the permeability
transition pore, increased in radical oxygen species (ROS) and
the release of cytochrome C (Gross et al., 1999; Cory et al.,
2003). Cytochrome C is a pro-apoptotic protein that recruits
the activation of apaf-1 and caspase 9 (Gross et al., 1999; Cory
et al., 2003). As evidenced by the increase in gene regulation
of cytochrome c, apaf-1, and caspase 9, as well as the changes
in the mitochondrial membrane potential in the JC-1 assay,

DIA treatment induced apoptosis through the mitochondrial
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TABLE 2 | Differentially regulated genes related to oxidative stress and MAPK pathway in HeLa cells after 48h of treatment with 15µg/mL DIA with p <

0.05.

Accession number Gene symbol Gene name Log fold change Regulation

NM_002501 NFIX Nuclear factor I/X (CCAAT-binding transcription factor) 2.64 Survival

NM_000499 CYP1A1 Cytochrome P450, family 1, subfamily A, polypeptide 1 2.38 Survival

NM_145791 MGST1 Microsomal glutathione S-transferase 1 7.61 Survival

NM_003998 NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 4.23 Survival

NM_201397 GPX1 Glutathione peroxidase 1 3.51 Survival

NM_000854 GSTT2 Glutathione S-transferase theta 2 5.67 Survival

NM_001752 CAT Catalase 3.01 Survival

NM_002133 HMOX1 Hemeoxygenase (decycling) 1 2.44 Survival

NM_001261445 TXNRD1 Thioredoxinreductase 1 4.88 Survival

NM_001270458 MAOA Monoamine oxidase A 1.56 Survival

NM_000101 CYBA Cytochrome b-245, alpha polypeptide 6.63 Survival

NM_002084 GPX3 Glutathione peroxidase 3 (plasma) –2.59* Survival

NM_006440 TXNRD2 Thioredoxin reductase 2 2.04 Survival

NM_138980 MAPK10 Mitogen-activated protein kinase 10 –3.62* Survival

NM_000379 XDH Xanthine dehydrogenase –1.48* Survival

NM_016931 NOX4 NADPH oxidase 4 1.60 Survival

NM_000454 SOD1 Superoxide dismutase 1, soluble 9.92 Survival

NM_201397 GPX1 Glutathione peroxidase 1 10.58 Survival

NM_012473 TXN2 Thioredoxin 2 2.37 Survival

NM_002229 JUNB Jun B proto-oncogene 1.05 Survival

NM_000637 GSR Glutathionereductase 1.99 Survival

NM_005952 MT1X Metallothionein 1X 5.07 Survival

NM_001024465 SOD2 Superoxide dismutase 2, mitochondrial 2.63 Survival

NM_006164 NFE2L2 Nuclear factor, erythroid 2-like 2 –3.82* Survival

NM_001072 UGT1A6 UDP glucuronosyltransferase 1 family, polypeptide A6 2.39 Survival

NM_001025366 VEGFA Vascular endothelial growth factor A –5.57* Survival

NM_001216 CA9 Carbonic anhydrase IX 1.67 Survival

NM_004380 CREBBP CREB binding protein 3.67 Survival

NM_181054 HIF1A Hypoxia inducible factor 1, alpha subunit 2.67 Survival

NM_005345 HSPA1A Heat shock 70 kDa protein 1A 7.92 Survival

NM_001540 HSPB1 Heat shock 27 kDa protein 1 10.71 Survival

NM_000043 FAS Fas cell surface death receptor 1.7873325 Death

NM_001226 CASP6 Caspase 6, apoptosis-related cysteine peptidase 2.8654807 Death

NM_003810 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 –1.0368137*

NM_021975 RELA v-rel avian reticuloendotheliosis viral oncogene homolog A 1.0848213

NM_213566 DFFA DNA fragmentation factor, 45kDa, alpha polypeptide 1.9827862 Death

NM_138578 BCL2L1 BCL2-like 1 1.5335723 Death

NM_033306 CASP4 Caspase 4, apoptosis-related cysteine peptidase 1.2512972 Death

NM_001012271 BIRC5 Baculoviral IAP repeat containing 5 7.95958

NM_019887 DIABLO Diablo, IAP-binding mitochondrial protein 5.7222176

NM_004346 CASP3 Caspase 3, apoptosis-related cysteine peptidase 5.705864 Death

NM_002467 MYC v-myc avian myelocytomatosis viral oncogene homolog 3.997664

NM_138764 BAX BCL2-associated X protein 1.3814521 Death

NM_138621 BCL2L11 BCL2-like 11 (apoptosis facilitator) 1.6899183

NM_020529 NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 5.042662

NM_058197 CDKN2A Cyclin-dependent kinase inhibitor 2A 7.5630064

NM_032977 CASP10 Caspase 10, apoptosis-related cysteine peptidase 3.1102889 Death

NM_000639 FASLG Fas ligand (TNF superfamily, member 6) –2.4349697* Death

NM_033355 CASP8 Caspase 8, apoptosis-related cysteine peptidase 2.0166228 Death

NM_001127184 CFLAR CASP8 and FADD-like apoptosis regulator 4.176869 Death

NM_002392 MDM2 MDM2 proto-oncogene, E3 ubiquitin protein ligase 2.3782425 Survival

(Continued)
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TABLE 2 | Continued

Accession number Gene symbol Gene name Log fold change Regulation

NM_000546 TP53 Tumor protein p53 1.6474063 Death

NM_021138 TRAF2 TNF receptor-associated factor 2 7.908759 Death

NM_018947 CYCS Cytochrome c, somatic 6.6717825 Death

AK094730 HRK Harakiri, BCL2 interacting protein 1.1366951

NM_207002 BCL2L11 BCL2-like 11 (apoptosis facilitator) 1.0382731 Death

NM_004346 CASP3 Caspase 3, apoptosis-related cysteine peptidase 1.0135665 Death

NM_003639 IKBKG Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma 5.08775

NM_003824 FADD Fas (TNFRSF6)-associated via death domain 7.09289 Death

NM_181523 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 1.7552358

NM_000043 FAS Fas cell surface death receptor 1.2629685 Death

NM_004322 BAD BCL2-associated agonist of cell death 6.317196 Death

NM_021138 TRAF2 TNF receptor-associated factor 2 2.5242937 Death

NM_014452 TNFRSF21 Tumor necrosis factor receptor superfamily, member 21 1.2962595

NM_003804 RIPK1 Receptor (TNFRSF)-interacting serine-threonine kinase 1 1.8435402

NM_000612 IGF2 Insulin-like growth factor 2 –1.0878063* Survival

NM_001188 BAK1 BCL2-antagonist/killer 1 3.254304

NM_000875 IGF1R insulin-like growth factor 1 receptor 2.7272189

NM_145725 TRAF3 TNF receptor-associated factor 3 –5.650675* Death

NM_000657 BCL2 B-cell CLL/lymphoma 2 –2.1980934* Death

AK309150 BAD BCL2-associated agonist of cell death 2.1382089 Death

NM_197966 BID BH3 interacting domain death agonist 3.6607141 Death

NM_002228 JUN Jun proto-oncogene 1.9206382 Survival

NM_001289072 HELLS Helicase, lymphoid-specific 2.2962887

NM_033292 CASP1 Caspase 1, apoptosis-related cysteine peptidase 3.3557472 Death

NM_003842 TNFRSF10B Tumor necrosis factor receptor superfamily, member 10b 4.5481834 Death

NM_207002 BCL2L11 BCL2-like 11 (apoptosis facilitator) –1.1714572* Death

NM_003789 TRADD TNFRSF1A-associated via death domain 5.638668

NM_004131 GZMB Granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) –4.478533*

NM_001229 CASP9 Caspase 9, apoptosis-related cysteine peptidase 4.309328 Death

NM_003805 CRADD CASP2 and RIPK1 domain containing adaptor with death domain 4.569709 Death

NM_002392 MDM2 MDM2 proto-oncogene, E3 ubiquitin protein ligase –1.910822* Death

NM_004031 IRF7 Interferon regulatory factor 7 4.7208776

NM_033338 CASP7 Caspase 7, apoptosis-related cysteine peptidase 4.725479 Death

NM_001556 IKBKB Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 3.2848263

NM_005658 TRAF1 TNF receptor-associated factor 1 –1.2607836* Death

NM_001278 CHUK Conserved helix-loop-helix ubiquitous kinase 4.082881

NM_003810 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 –1.1297648*

NM_181861 APAF1 Apoptotic peptidase activating factor 1 1.063245 Death

NM_001282669 DFFB DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase) 1.0859745 Death

NM_002198 IRF1 Interferon regulatory factor 1 2.7887836

NM_002503 NFKBIB Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta 2.073728

NM_197966 BID BH3 interacting domain death agonist 6.265839

NM_004324 BAX BCL2-associated X protein 1.0556245

NM_032515 BOK BCL2-related ovarian killer 4.000063

NM_001202519 CFLAR CASP8 and FADD-like apoptosis regulator 2.3586068 Death

*Negative values represent down-regulated genes upon treatment.

pathway. Based on the cell cycle analysis, DIA increased the
percentage of population in SubG0/GI which suggests that the
treatment may induce DNA fragmentation in the execution of
apoptosis. The regulation of the AIF gene and caspase 3 may
be involved in the DNA fragmentation process. All these results

suggest that DIA induced apoptosis in HeLa cells through DNA
fragmentation and mitochondrial membrane potential changes.

Besides cell death, cellular stress response may also trigger
the cell survival motion within the cancer cells (Martindale
and Holbrook, 2002; Fulda et al., 2010). Both the protein and
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gene expression of HSP27 and HSP70 were elevated in HeLa
cells upon treatment with DIA, which suggests that the cells
were attempting at recovering from the damage induced by
regulating these chaperones. The heat shock protein response
is a classic retaliation to stress (Feder and Hofmann, 1999;
Fulda et al., 2010; Seigneuric et al., 2011; Calderwood et al.,
2012). Heat shock proteins are a highly conserved set of protein
chaperones that promote cell survival in stressful conditions
(Calderwood et al., 2006; Seigneuric et al., 2011). These proteins
are known to be overexpressed in cancer especially HSP27,
HSP70, and HSP90 (Calderwood et al., 2006, 2012; Seigneuric
et al., 2011). Hence, there has been development of cancer
biomarkers and vaccine for these proteins for the treatment of
cancer (Calderwood et al., 2006, 2012; Seigneuric et al., 2011).
HSP27 and HSP70 were thought to interact in the anti-cell death
process as it can inhibit cytochrome c, caspase 9 and eventually
the whole apoptotic cascade (Calderwood et al., 2006; Fulda et al.,
2010).

Another reaction to cell stress is the response to oxidative
stress (Martindale and Holbrook, 2002; Fulda et al., 2010; Reuter
et al., 2010; Portt et al., 2011). Based on the microarray and
proteome results, DIA managed to induce oxidative stress in
HeLa cells upon treatment. The introduction of anti-cancer
agents can trigger the production of ROS substantially (Reuter
et al., 2010; Fiaschi and Chiarugi, 2012). The production of
ROS is a normal metabolic process in a given cellular system,
nevertheless, the balance between ROS and anti-oxidants play
a pivotal role in the progression of cancer (Reuter et al., 2010;
Fiaschi and Chiarugi, 2012; Ma, 2013). Moreover, the hypoxic
conditions of the microenvironment could also contribute to
the sustain release of ROS. One of the hallmark of cancer is
that cancer cells thrive under hypoxic conditions (Bartrons and
Caro, 2007). This will usually lead to the activation of HIF1
protein which in turns will affect the accumulation of ROS
(Bartrons and Caro, 2007; Reuter et al., 2010). Additionally,
the activation of HIF1 could also affect the activation of
carbonic anhydrase IX and VEGFA, which both proteins are
inclined to participate in the progression of tumorigenesis (Hui
et al., 2002; Jubb et al., 2004; Dungwa et al., 2011). The
presence of ROS could affect both the cell death and cell
survival mode. One of the pathways that is activated in an
oxidative stress state is the KEAP1/NRF-2 stress pathway (Reuter
et al., 2010; Gorrini et al., 2013; Ma, 2013). Moreover, the
sustained production of ROS will also activate several other
signaling pathways such as JNK, MAPK, and ERK pathways.
The MAPK pathway could also contribute to the activation
of the NRF2 pathway adding to the ROS-mediated initiation
of NRF2.

The expression of NRF2-related genes in DIA-induced HeLa
cells is significant and this may give way to the underlying
mechanism of DIA. The NRF2 is the key player to several
antioxidant pathways including the iron sequestration pathway,
quinone detoxification, GSH production, and thioredoxin
production (Nguyen et al., 2009; Gorrini et al., 2013; Ma,
2013). Once the NRF2 is stimulated it will further activate
phase II detoxification enzymes (Kwak and Kensler, 2010).
The thioredoxin (trx) and glutathione pathway are among the

FIGURE 6 | Validation of the microarray results using quantitative

real-time PCR with selected genes in total RNA samples extracted

from the control cells and 15µg/mL DIA-treated cells (p-value for the

microarray results are p < 0.05).

FIGURE 7 | Bar chart analysis of the SOD units/mg of protein and

µmolGSH/mg of protein in control cells and DIA-treated HeLa cells

after 48h of treatment with 15µg/mL of DIA.

antioxidants pathway that can cross-talk with multiple other
pathways and with each other (Brigelius-Flohé et al., 2012;
Isaac Harris et al., 2014; Lu and Holmgren, 2014; Vriend and
Reiter, 2015). Both systems are dependent on NADPH and
are involved in the antioxidant defensive mechanism, redox
regulation and cell growth (Arnér and Holmgren, 2006; Peng
et al., 2012, 2014). There are various ways as to how the
thioredoxin system contributes toward the progression of cancer
(Arnér and Holmgren, 2006). There are two trx systems in the
mammalian cells; the cytosolic trx and mitochondrial trx (Lu
and Holmgren, 2014). Both the cytosolic and mitochondrial trx
systems are dependent on peroxidases and eventually involved
in the redox regulation (Lu and Holmgren, 2014). Thioredoxin
reductase 1 is known to be overexpressed in most malignant
cancer cells (Miyazaki et al., 1998; Yoo et al., 2006; Karlenius and
Tonissen, 2010). In fact, besides being involved in the defensive
mechanism of cells, thioredoxin peroxidase (TRx) has been
reported to inhibit apoptosis by interfering with p53 and p21
(Zhang et al., 1997; Ueno et al., 1999; Brigelius-Flohé et al., 2012).
Targeting players of the thioredoxin pathway such as thioredoxin
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FIGURE 8 | Proposed schematic of the mechanism of action of DIA in HeLa cells by regulating both the anti- and pro-survival pathways.

reductase, peroxidase or thioredoxin has been an interest for
cancer therapy (Arnér and Holmgren, 2006; Lu et al., 2007;
Karlenius and Tonissen, 2010; Penney and Roy, 2013). Moreover,
inmost cancer cells, the level of GSH is often upregulated and can
contribute to the drug-resistance mechanism (Balendiran et al.,
2004; Traverso et al., 2013). GSH is a non-protein molecule that
has several important physiological properties (Balendiran et al.,
2004). Moreover, it is known that GSH can contribute toward
the initiation of cancer. In phase II detoxification process, GST
plays an important role as it assists in the conjugation of GSH
with different cancer-promoting electrophiles (Balendiran et al.,
2004). The high levels of GSH and GST has become one of the
important properties in various types of cancer (Balendiran et al.,
2004). Besides GSH, the level of SOD was also increased in DIA-
treated cells. SOD is known to be higher in cancer cells than
normal cells (Oberley and Buettner, 1979). The role of SOD as
an antioxidant is by converting the radical O2 to the less radical
H2O2 (Matés, 2000; Kowald and Klipp, 2004; Valko et al., 2006).
Catalase, another antioxidant enzyme will later on convert the
produced H2O2 to water and oxygen (Matés, 2000; Kowald and
Klipp, 2004; Valko et al., 2006;). Additionally, the GPx enzyme
will also convert H2O2 to water and GSSG (Matés, 2000; Valko
et al., 2006). Another important phase II detoxification enzyme
is the pro-survival HMOX-1, which is heavily involved in the

inactivation of the pro-oxidant heme to ferrous iron, carbon
monoxide and bilirubin (Lau et al., 2008; Yim et al., 2011).

Activation of heat shock protein and antioxidant mechanism
by this diterpene may protect the cancer cell and thus reduce
the killing efficacy of DIA. Overall, Figure 8 summarizes the
proposed schematic of mechanism of action of DIA in HeLa
cells.

CONCLUSION

Overall, DIA managed to induce cellular stress in HeLa cells
as evidenced by the results above. DIA induced cellular death
via the apoptosis pathway by regulating the FAS and BCL-2
family genes. On the other hand, DIA also activated several
pro-survival pathways including the heat shock protein response
and anti-oxidant pathways. The dual regulation of DIA in HeLa
cells could further benefit the understanding to the molecular
mechanism of DIA. Future work using this compound can be
applied in an in vivo setting to promote a deeper understanding
of the function of DIA as an anti-cancer agent.
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