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Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for

microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens.

PLGA has excellent biodegradability and biocompatibility and is generally recognized

as safe by international regulatory agencies including the United States Food and Drug

Administration and the European Medicines Agency. The physicochemical properties

of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic

acid. This in turn alters the release rate of microencapsulated therapeutic molecules

from PLGA microparticle formulations. The obstacles hindering more widespread use

of PLGA for producing sustained-release formulations for clinical use include low drug

loading, particularly of hydrophilic small molecules, high initial burst release and/or poor

formulation stability. In this review, we address strategies aimed at overcoming these

challenges. These include use of low-temperature double-emulsion methods to increase

drug-loading by producing PLGA particles with a small volume for the inner water phase

and a suitable pH of the external phase. Newer strategies for producing PLGA particles

with high drug loading and the desired sustained-release profiles include fabrication of

multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates,

as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods.

Another recent strategy with promise for producing particles with well-controlled and

reproducible sustained-release profiles involves complexation of PLGA with additives

such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic

acid, and silicon dioxide.

Keywords: PLGA microparticles, drug delivery system, hydrophilic molecule, biodegradation mechanisms,

tuneable release, microfluidics, supercritical carbon dioxide, hydrogel template
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INTRODUCTION

Drug delivery systems with high efficiency and tuneable release
characteristics continue to be sought. This is despite recent
advances in the field of nanobiotechnology that have produced
a range of new materials for improving control over drug
delivery rates (Hillery et al., 2005). The strategies used to produce
these sustained-release dosage forms involve drug loading of
biodegradable polymeric microspheres and have the potential to
provide a more facile route to adjust release rates (Kapoor et al.,
2015).

Poly(lactic-co-glycolic acid) (PLGA), is a widely used
biodegradable material use for encapsulation of a broad
range of therapeutic agents including hydrophilic and
hydrophobic small molecule drugs, DNA, proteins, and
the like (Zheng, 2009; Malavia et al., 2015), due to its
excellent biocompatibility (Barrow, 2004; Kapoor et al., 2015).
Complete release of encapsulated molecules is achieved via
degradation and erosion of the polymer matrix (Anderson and
Shive, 1997, 2012; Fredenberg et al., 2011). Importantly,
PLGA is generally recognized as safe by international
regulatory agencies such as the United States Food and
Drug Administration (FDA) and the European Medicines
Agency (EMA) for use in pharmaceutical products administered
to humans via conventional oral and parenteral routes (Yun-
Seok et al., 2010) as well as suspension formulations for
implantation without surgical procedures (Freiberg and Zhu,
2004).

However, factors limiting more widespread use of PLGA
in pharmaceutical products include relatively low drug loading
efficiency, difficulties in controlling encapsulated drug release
rates and/or formulation instability (Varde and Pack, 2004;
Freitas et al., 2005; Yun-Seok et al., 2010; Ansari et al., 2012;
Danhier et al., 2012; Reinhold and Schwendeman, 2013). In the
following sections, we review strategies and new technologies
with promise for addressing these issues.

CHALLENGES IN IMPROVING DRUG
LOADING OF MICROPARTICLES WITH
ACCEPTABLE CONTROL OVER RELEASE
RATE PROFILES

Physicochemical Properties of the
Incorporated Drug(s)
Achieving the desired loading of low molecular weight (Mr),
hydrophilic molecules in polymeric particles is more difficult
than for hydrophobic small molecules, despite the large number
of micro-encapsulation methods described in peer-reviewed
publications and patents (Ito et al., 2011; Ansari et al., 2012).
Manipulation of the physicochemical properties is often the
most effective means for optimizing drug loading into PLGA
microspheres (Curley et al., 1996; Govender et al., 1999). For
example, small molecules that are hydrophilic in their salt form
can be converted to the corresponding free acid or free base forms
that are more hydrophobic, subsequently leading to higher drug
loading (Han et al., 2015). The physicochemical properties of the

incorporated drug(s) also significantly affect release rate profiles
(Hillery et al., 2005).

For PLGA microparticles, release of the encapsulated drug
occurs via diffusion and/or homogeneous bulk erosion of the
biopolymer (Siegel et al., 2006; Kamaly et al., 2016) with the
diffusion rate dependent upon drug diffusivity and partition
coefficient (Hillery et al., 2005). These parameters are influenced
by the physicochemical properties of the drug, such as molecular
size, hydrophilicity, and charge (Hillery et al., 2005). A relatively
high content of a water-soluble drug facilitates water penetration
into particles and formation of a highly porous polymer network
upon drug leaching (Feng et al., 2015). By contrast, hydrophobic
drugs can hinder water diffusion into microparticulate systems
and reduce the rate of polymer degradation (Klose et al.,
2008). This is illustrated by observations that for six drugs
with diverse chemical structures, viz. thiothixene, haloperidol,
hydrochlorothiozide, corticosterone, ibuprofen and aspirin, there
were significant between-molecule differences in release rate
from PLGA (50:50) pellets, despite their similar drug loading
at 20% by weight (Siegel et al., 2006). Hence, the design of
biodegradable polymeric carriers with high drug loading must
take into consideration the effects of the encapsulated drug itself
on the mechanisms underpinning biopolymer degradation that
influence release rate (Siegel et al., 2006).

Particle Size
Key factors in the design of microparticle drug delivery
systems include microsphere size and morphology (Langer
et al., 1986; Shah et al., 1992; Mahboubian et al., 2010) as
these parameters potentially affect encapsulation efficiency (EE),
product injectability, in vivo biodistribution, and encapsulated
drug release rate (Nijsen et al., 2002; Barrow, 2004), efficacy and
side-effect profiles (Liggins et al., 2004). Typically, optimal release
profiles are achieved by using microspheres with diameters in
the range, 10–200 µm (Anderson and Shive, 1997). For particle
diameters <10 µm, there is a risk that microspheres will be
phagocytosed by immune cells (Dawes et al., 2009). On the other
hand, microspheres >200 µm may cause an immune response
and inflammation (Dawes et al., 2009).

For large diameter particles, the small surface area per unit
volume leads to a reduced rate of water permeation and matrix
degradation relative to smaller particles and so the maximum
possible rate of encapsulated drug release is reduced (Dawes et al.,
2009). For drugs microencapsulated in larger microparticles,
duration of action is potentially longer due to higher total
drug loading and a longer particle degradation time (Klose
et al., 2006). Hence, a good understanding of the relationship
between biopolymer composition, microparticle morphology
and size is essential for tailored production of particulate
materials with pre-determined drug release profiles (Cai et al.,
2009). However, based upon the diversity of encapsulated
drug release profiles produced by PLGA microspheres of
varying sizes to date (Table 1), release rates do not necessarily
conform to predicted behavior and it is only possible to
quantitatively predict the effect of microparticle size on drug
release kinetics for certain well-defined formulations (Siepmann
et al., 2004).
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TABLE 1 | Influence of particle size, polymer physicochemical properties as well as PLGA composition on drug loading and release profiles.

(1) Particle size

Drug loading and release rates from PLGA particles do not necessarily conform to predicted behavior as the effect of microparticle size on drug release kinetics

quantitatively can only be predicted for certain well-defined formulations.

Encapsulated drug Particle size (µm) Drug loading

or EE

Drug release profile References

Lidocaine Increase from 20 to 50 to 120 N/A Release rate ↓ as particle size ↑ Klose et al., 2006

Huperzine A Increase from 125–200 to 200–400 to

400–700

EE ↑ Release rate ↓ as particle size ↑ Fu et al., 2005

Dexamethasone 1.0 11% Slow-release particles but with initial burst release Dawes et al., 2009

20 1% Sustained release over a 550 h period

5-fluorouracil 70–120 35% ∼90% release in 7 days Siepmann et al., 2004

20 20% 90% release over 21days

Drug-free <50, <20 and <1 (each size prepared by

a different process)

N/A At pH 7.4 and 37◦C, ↑ polymer degradation rate

for larger microspheres

Dunne et al., 2000

(2) Physicochemical properties of the biopolymer

The hydrophilicity or hydrophobicity of PLGA end-groups affect hydration during the pore diffusion phase thereby influencing the rate of drug release from the

polymeric matrix. PLGA composition-dependent changes to microparticle morphology may also affect encapsulated drug release profiles.

Encapsulated

drug

PLGA Composition Effect on particle size, drug loading and release

profile

References

FITC-dextran PLGA (50:50) with a carboxylic acid-end group, viz

RG503H (Mr 24000-38000)

Sustained release achieved by ↑ porosity, pore size, and

loading

Cai et al., 2009

PLGA (50:50) with an ester-end group, viz RG502 (Mr

7000–17000)

Porosity and pore size had a minimal effect on release

profile beyond initial release

Huperzine A PLGA (75:25) of varying Mr , viz 15, 20, and 30 kDa Drug loadings of 3.53, 1.03, and 0.41% respectively;

inversely correlated with Mr

Fu et al., 2005; Ansari et al.,

2012

Cephalexin ↑ Concentration of PLGA in the organic solvent

(chloroform) from 25 to 33.3 mg/ml

Higher drug loading and larger particle size Wasana et al., 2009

(3) Recent advances with promise for improving PLGA delivery systems

Methods Encapsulated drug Particle size

(µm)

Drug loading or EE Drug release profile References

Hydrogel template OHR1031 60 ± 10 57% w/w, ∼100% EE Nearly zero-order for over 3

months, with no initial burst,

which was desirable

Malavia et al., 2015

Felodipine, Paclitaxel,

Progesterone and

Risperidone

10–50 50–65% Sustained release profiles Acharya et al., 2010b

scCO2 in combination with

a w/o/o/o method

Dexamethasone phosphate 70–80 90% EE Sustained release profile

without initial burst release

Thote and Gupta, 2005

scCO2 hGH ∼61 Controlled release for > 7

days

Jordan et al., 2010

Tetanus toxoid (TT) Single injection TT-loaded

PLA particles in mice

antibody titres similar to

those evoked by multiple

injections of a commercial

alum-adsorbed TT vaccine

was produced

Baxendale et al., 2011

Coaxial electrospray (CES) Levetiracetam Double-layered: release over 18-days whereas encapsulation in classical

core-shell fibers gave linear release for 4 days followed by steady-state

Viry et al., 2012

Growth factors Controlled-release: Coaxial electrospinning of biodegradable core-shell

structured microfibrous scaffolds using PLGA as the shell and hyaluronic

acid as the core

Joung et al., 2011

(Continued)
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TABLE 1 | Continued

(3) Recent advances with promise for improving PLGA delivery systems

Methods Encapsulated drug Particle size

(µm)

Drug loading or EE Drug release profile References

Multiple drugs Coaxial tri-capillary electrospray system produced monodispersed

PLGA-coated particles containing multiple drugs in one step

Lee et al., 2011

Spray drying Double-layered enzyme-triggered release in the gastrointestinal tract: Negligible loss of the core in the gastric

environment with gradual release of the core in the intestinal environment without initial burst release

Park et al., 2014

Polymer self-healing Spontaneous pore closure (or self-healing) of PLGA microparticles at temperatures greater than the polymer

glass transition temperature is used to microencapsulate biomacromolecules (proteins, peptides, and

polysaccharides) in aqueous media. This approach avoids exposure to organic solvents that would otherwise

occur during PLGA conventional encapsulation and uses mild processing conditions, that together minimize

damage to encapsulated naked DNA, proteins, etc.

Reinhold and

Schwendeman, 2013

(4) Various additives complexing with PLGA with increased drug loading and/or sustained release profiles

Additives Encapsulated

drug

Drug loading or EE Drug release profile References

POE/PLGA BSA 9–11% and EE 60–90% 95% over 30 days Shi et al., 2003

POE/PLGA Cyclosporin A 6–10% and EE 60–90% 14% over 15 days followed by

78% over the next 27 days

Shi et al., 2003

Alginate and

chitosan-PLGA double

walled

BSA EE at 75% c.f. 65% compared with

single-walled systems

5–10% in 30 min c.f. 30% for

single-walled systems

Zheng and Liang, 2010

Alginate-PLGA double

walled

Metoclopramide

HCl

EE increase from 30% to 60% c.f. single

walled system

Improved release profile Lim et al., 2013

4% w/w chitosan/PLGA Resveratrol EE 40–52% Particle size: 11 to 20 µm and

more stable

Improved controlled release Sanna et al., 2015

Caffeic acid grafted PLGA

(g-CA-PLGA)

Ovalbumin EE increased from 35 to 95% c.f. PLGA

alone (size 15–50 µm)

Unchanged Selmin et al., 2015

Mixed copolymer of PLGA

50:50 (Mr 100,000 and

14,000) 1:7

Pentamidine 23.7%, whereas only 9.8 and 13.9 %,

when prepared with either of them alone

Produced microcapsules with

desired release profiles

Graves et al., 2004

Aqueous core-PLGA shell Risedronate

sodium

2.5-fold increase: 31.6% c.f. 12.7% for

classical PLGA microspheres

Sustained release according to

diffusion-controlled Higuchi

model

Abulateefeh and

Alkilany, 2015

Porous silicon oxide

(pSiO2)-PLGA

Daunorubicin Slightly increased loading (3.1–4.6%) c.f.

2.7% for PLGA-daunorubicin

microspheres

A 2-5 fold longer duration of

release c.f. PLGA-daunorubicin

microspheres

Nan et al., 2014

BSA, Bovine serum albumin; EE, Encapsulation efficiency; hGH, Human growth hormone; Mr , Molecular weight; OHR1031, a small molecule for the treatment of glaucoma; PLA,

poly(lactic acid); PLGA, poly(lactic-co-glycolic acid); POE, poly(ortho esters).

Biodegradation Mechanisms of
PLGA-Microparticles
The two main mechanisms that drive drug release from
PLGA microspheres are diffusion and degradation/erosion
(Kamaly et al., 2016). For PLGA (50:50) particles, drug
release occurs in two phases. In the first phase, there is
a rapid decrease in molecular weight (Mr) but little mass
loss whereas in the second phase, the opposite occurs. This
indicates that PLGA particle degradation involves heterogeneous
mechanisms and that drug release is underpinned primarily
by diffusion rather than polymer degradation (Engineer et al.,
2010).

PLGA is a typical bulk-eroding biopolymer such that water

permeates readily into the polymer matrix forming pores so that

degradation takes place throughout the microspheres (Varde and

Pack, 2004). Comparison of encapsulated drug release profiles

from surface eroding biopolymers such as poly(ortho esters)
(POE) and polyanhydrides with bulk-eroding biopolymers such

as PLGA, is lacking. Hence, future research addressing this

knowledge gap is needed to better inform design of microparticle

formulations with the desired release profiles (Engineer et al.,
2010) that may potentially include formulations comprising
mixed bulk and surface-eroding biopolymers (Feng et al.,
2015).
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Physicochemical Properties of the
Biopolymer
For drugs encapsulated in PLGA microparticles, the desired
release rates can be achieved by adjusting the ratio of lactic acid to
glycolic acid and by altering the physicochemical properties [e.g.,
Mr , end-group (ester or carboxylic) functionality] that influence
microparticle morphology (Table 1; Mao et al., 2007; Cai et al.,
2009; Gasparini et al., 2010; Nafissi-Varcheh et al., 2011). The
physical properties of PLGA particles are also dependent upon
the drug delivery device size, exposure to water (surface shape),
as well as storage temperature and humidity (Table 1) (Houchin
and Topp, 2009). These properties not only affect the ability
of the biopolymer to be formulated but also influence its
degradation rate (Table 1; Makadia and Siegel, 2011). Another
factor that contributes to encapsulated drug release from PLGA
microspheres is the concentration of polymer in the organic
solvent during formulation (Wasana et al., 2009).

Choice of Surfactant
During microparticle formulation using conventional solvent
evaporation methods, an emulsifier is required to ensure
droplet stability until the polymer concentration in the organic
solvent is sufficiently high to maintain particle conformation
(Chemmunique, 1980; Hwisa et al., 2013). The most widely used
emulsifier in the preparation of PLGA micro/nanoparticles is
poly (vinyl alcohol) (PVA) (Wang et al., 2015). It is worth noting
that D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin
E TPGS; FDA-approved as a water-soluble vitamin E nutritional
supplement) markedly improved drug loading at a concentration
an order of magnitude lower (0.3 mg/ml) than analogous systems
that used PVA (5mg/ml) (Feng et al., 2007).

Methods for Producing Microparticles for
Sustained-Release Formulations
Drugs, including many small molecules, that are soluble in the
polymer solution, can be encapsulated by simply co-dissolving
with the polymer for the most commonly used methods
(Table 2).

For the water-soluble salts of small molecule drugs,
encapsulation efficiency can be improved by their conversion
to a hydrophobic form, such as by complexation with ionic
surfactants (Cohen et al., 1991) or to the corresponding free
acid or free base form (Han et al., 2015). Alternative approaches
include suspension of solid (e.g., lyophilized) particulates in
the polymer solution; or use of a water-in-oil-in-water (w/o/w)
solvent evaporation (double-emulsion) method. When using a
w/o/w method, relatively higher drug loading and reproducible
sustain-release profiles can be achieved by formulations that
have a smaller volume for the inner water phase (Wasana et al.,
2009; Chaudhari et al., 2010), a low preparation temperature
(Yang et al., 2000; Fu et al., 2005; Chaudhari et al., 2010; Ito et al.,
2011) and a suitable pH of the external phase (Bodmeier and
Mcginity, 1988; Govender et al., 1999; Leo et al., 2004).

Newer technologies and approaches for achieving high levels
of drug loading with suitable sustained release profiles are
reviewed in the following sections and compared in Tables 1, 2.

RECENT ADVANCES WITH PROMISE FOR
IMPROVING PLGA-BASED DRUG
DELIVERY SYSTEMS

Hydrogel Templates
Hydrogel templates enable high drug loading (∼50%) and
high incorporation efficiencies (∼100%) to be achieved and are
amenable to small molecules and biologics (Tables 1, 2) (Malavia
et al., 2015)). Any water insoluble material can be used as
the microparticle matrix to produce the desired drug release
profiles, andmicroparticles are recovered from the readily soluble
hydrogel templates. The technology allows for precise control of
the size and shape of template wells in every dimension so that
microparticles with a narrow size distribution can be produced
(Lu et al., 2014; Malavia et al., 2015). These attributes enable
sustained-release microparticles to be produced for injection
using narrow bore needles into sensitive spaces such as the
eye, with nearly zero-order drug release for over 3 months
with virtually no initial burst release (Malavia et al., 2015).
However, more research is needed to better understand the effect
of microparticle size and shape on encapsulated drug release
kinetics and in vivo performance for a broad range of molecules
with widely differing physicochemical properties.

Coaxial Electrospray
Coaxial electrospray (CES) produces double-layered
microparticles using an electric field applied to both the
outer (PLGA carrier) and the inner (drug loaded) solutions
sprayed simultaneously through two separate feeding channels
of a coaxial needle into the one nozzle (Yuan et al., 2015). At a
certain voltage threshold, a conical shape (e.g., “Taylor cone”)
forms and the jets of liquids (both inner and outer flows) are
broken into double-layered microparticles (Yuan et al., 2015).
In the CES process, a compound Taylor cone with a core-shell
structure is formed on top of the spray nozzle, and the outer
polymeric solution encapsulates the inner liquid (Yuan et al.,
2015). The bulk liquid is broken into small charged droplets by
coulombic repulsion (Yuan et al., 2015). Using this technique,
parameters such as orientation of the jets, material flow rates,
and rate of solvent extraction can be controlled to create uniform
and well-centered double-walled microspheres exhibiting a
controllable shell thickness (Makadia and Siegel, 2011). The CES
process enables effective encapsulation of proteins, drugs, and
contrast agents with high efficiency, minimal loss of biological
viability, and excellent control of core-shell architecture
(Tables 1, 2) (Zamani et al., 2014; Yuan et al., 2015).

Microfluidic Fabrication
Microfluidic devices use electrostatic forces to control the size
and shape of particles for enhanced tuning of drug release
characteristics (Zhang et al., 2013). Microfluidic systems have
been employed for fabrication of complex drug carriers with
precise size and composition leading to a predictable and
tuneable release profile (Tables 1, 2) (Leon et al., 2015; Riahi
et al., 2015). Two continuous and immiscible streams (i.e., oil
and water) are infused via two separate inlets (Xu et al., 2009).
Monodisperse droplets are generated at the junction where the
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two streams meet due to the high shear stress. The droplet sizes
are in the range 20–100 µm (Xu et al., 2009) and 100–300 nm
(Xie et al., 2012). In contrast to the classical double emulsion
methods, multiple components are easily generated by a single-
step emulsification in the microfluidic device (Xie et al., 2012). By
introducing the second stream, droplets may be re-encapsulated
which is useful for preparing core-shell structures (Nie et al.,
2006).

A novel and versatile microfluidic approach for fabrication of
PLGA/PCL Janus and microcapsule particles involves changing
the organic solvent of the dispersed phase from dimethyl
carbonate to dichloromethane (Li et al., 2015). The shell on
the microcapsule particle surface is comprised of PLGA only,
and the core is comprised of PCL in which tiny PLGA beads
are embedded (Li et al., 2015). Interestingly, the Janus and
microcapsule particles exhibited distinct degradation behaviors,
implying their potential for differential effects on drug delivery
and release profiles (Li et al., 2015).

Supercritical CO2
Supercritical CO2 (scCO2) provides a “green” alternative to
traditional microparticle formulation techniques as it avoids use
of toxic organic solvents or elevated temperatures (Tables 1, 2)
(Budisa and Schulze-Makuch, 2014). Owing to the very short
encapsulation process (5–10 min) at a relatively low temperature
andmodest pressure, and absence of organic solvents, the activity
of bioactive molecules including proteins is maintained (Howdle
et al., 2001; Koushik and Kompella, 2004; Della Porta et al., 2013).
Because the complete process is anhydrous, it can be used to
produce sustained-release formulations of multiple hydrophilic
molecules (Thote and Gupta, 2005).

New variations to the use of scCO2 technology take advantage
of other properties of CO2 such as its capacity to extract active
pharmaceutical ingredients (APIs) from natural compounds or
to form polymers (Champeau et al., 2015). New protocols under
development hold promise for fabricating drug-eluting implants
using a scCO2 impregnation process (Champeau et al., 2015).

Spray Drying
Drug/protein/peptide loaded microspheres can be prepared by
spraying a solid-in-oil dispersion or water-in-oil emulsion in
a stream of heated air without significant losses (Makadia and
Siegel, 2011). The type of drug (hydrophobic or hydrophilic)
for encapsulation informs the choice and nature of the solvent
to be used, whereas the temperature of the solvent evaporation
step and feed rate affect microsphere morphology (Tables 1, 2)
(Makadia and Siegel, 2011). Various spray drying techniques have
been reported and are reviewed elsewhere (Wan and Yang, 2016).

Polymer Self-Healing
“Self-healing” is a phenomenon whereby polymers with damaged
structures (e.g., pores, cracks, and dents), undergo spontaneous
rearrangement of the polymer chains to produce healing
(repair) (Syrett et al., 2010). This is important because pore
closure in PLGA microparticles at physiological temperature
impedes the pore-diffusion pathway and greatly reduces initial
burst release of a micro-encapsulated peptide (Wang et al.,
2002). Similarly, porous PLGA microspheres loaded with

recombinant human growth hormone (rhGH) prepared by
the solvent evaporation technique and using the surfactant
pluronic F127 as porogen, underwent pore closure at the polymer
surface following solvent exposure (Kim et al., 2006). These
“healed” non-porous microspheres exhibited sustained drug
release profiles over an extended period (Kim et al., 2006).
The post-healing approach can be used to overcome shear-
induced microparticle degradation, solvent-associated erosion of
delicate core materials, or unexpected payload release during
emulsification (Tables 1, 2) (Na et al., 2012). Strategies for
“healing” pores in the microparticle surface include solvent
swelling, or infrared irradiation which is potentially an even
milder approach for inducing self-healing (Na et al., 2012).

Complexing PLGA with Additives
As noted in an earlier section of this review, the chemical
composition of PLGA-particulate drug delivery systems greatly
influences their physicochemical properties, and this in turn
governs the biodistribution and pharmacokinetics of the
encapsulated drug (Zhang et al., 2013). Hence, complexation of
PLGA with suitable additives (Table 1) including poly(ethylene
glycol) (PEG), POE, chitosan and/or alginate, caffeic acid,
hyaluronic acid, TPGS, and SiO2 (Shi et al., 2003; Graves et al.,
2004; Zheng and Liang, 2010; Lim et al., 2013; Navaei et al., 2014;
Abulateefeh and Alkilany, 2015; Sanna et al., 2015; Selmin et al.,
2015; Wang et al., 2015), may lead to higher drug loading and
the desired sustained release profile (Shi et al., 2003; Graves et al.,
2004; Zheng and Liang, 2010; Lim et al., 2013; Navaei et al., 2014;
Abulateefeh and Alkilany, 2015; Sanna et al., 2015; Selmin et al.,
2015).

Other strategies with promise for improving controlled-
release drug delivery systems include double walled/layered
PLGA (Navaei et al., 2014) and nanoparticles-in-microparticles
(Lee et al., 2013). Additionally, polymer-brush PLGA-based
drug delivery systems appear promising due to the versatility
and controllability of the method for controlling particle shape
(Huang et al., 2014).

CONCLUSIONS

In the past decade, considerable progress has been made on
addressing the issues of (i) low drug loading, (ii) particle
instability, and (iii) adequate control of drug release profiles
for PLGA-based microparticle drug delivery systems. Strategies
for increasing drug loading in PLGA-microspheres include
modification of the classical solvent evaporation methods,
preparation of multi-layered microparticles, and development
of novel methods for microparticle fabrication including
hydrogel templates, coaxial electrospray, microfluidics, and
scCO2. Additionally, methods involving complexation of PLGA
with additives such as PEG, POE, chitosan and/or alginate, caffeic
acid, hyaluronic acid and SiO2, appear promising. Nevertheless,
there is a great need for innovation in development of time-
efficient methods for controlling the factors that influence drug
loading and release profiles as a means to inform the design
of next-generation controlled-release drug delivery systems
(Draheim et al., 2015).
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