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The exponential growth of the Internet of Things and the global popularity and
remarkable decline in cost of the mobile phone is driving the digital transformation of
medical practice. The rapidly maturing digital, non-medical world of mobile (wireless)
devices, cloud computing and social networking is coalescing with the emerging
digital medical world of omics data, biosensors and advanced imaging which offers
the increasingly realistic prospect of personalized medicine. Described as a potential
“seismic” shift from the current “healthcare” model to a “wellness” paradigm that
is predictive, preventative, personalized and participatory, this change is based
on the development of increasingly sophisticated biosensors which can track and
measure key biochemical variables in people. Additional key drivers in this shift are
metabolomic and proteomic signatures, which are increasingly being reported as pre-
symptomatic, diagnostic and prognostic of toxicity and disease. These advancements
also have profound implications for toxicological evaluation and safety assessment of
pharmaceuticals and environmental chemicals. An approach based primarily on human
in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This
would transform current chemical safety assessment practice which operates in a
human “data poor” to a human “data rich” environment. This could also lead to a seismic
shift from the current animal-based to an animal-free chemical safety assessment
paradigm.
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INTRODUCTION

In a paper titled “The feasibility of replacing animal testing for assessing consumer safety: a
suggested future direction” Fentem et al. (2004) discussed how the new “omics” technologies;
genomics, transcriptomics, proteomics and metabonomics could be used in the future to replace
animal-based data in human chemical safety assessment. At that time, a major impediment to
progress was that much of these data were generated in a clinical setting and not in abundance
in the public domain. They recommended that making these data and information generally
accessible in an ethical and legal way, could lead to the translation of experimental non-animal
data that could be used in safety assessment (Fentem et al., 2004).

Much has changed in the research landscape since then. The expansions of the internet,
allowing greater connectivity of devices and sensors, computational speed, cloud computing and
multi-disciplinary collaborations, are the main developments that characterize these changes.
For example, in recent years the speed of supercomputers has increased by several orders of
magnitude, boasting processing speeds of 1015 floating-point operations per second which will
soon reach 1018 floating-point operations per second (Witze, 2014). Without such computational
power the production of approximately 1.8 zettabytes (1021) of genomic, epigenomic,
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transcriptomic, proteomic and metabolomic data generated each
year, roughly doubling the world’s information resource every
two years, would not be possible (Dearry, 2013). Indeed, more
than 50,000 omics papers are published each year (Cote et al.,
2014). Movements such as, Open Access in publishing (Bains,
2009), Open Source Initiative in software development1, Open
Source engineered human tissue models (De Wever et al., 2015),
the Open Phacts Foundation (Williams et al., 2012) and the need
for multi-disciplinary approaches to the access, integration and
analysis of big data sets (Schumacher et al., 2014; Alyass et al.,
2015) has led to a burgeoning of collaborative research2 . This in
turn has led to the proliferation of publicly available databases
that include omics data for human disease, as well as survey
and clinical assay data on human exposure and health outcomes
(Zhu et al., 2008; Sakurai et al., 2011; Kim et al., 2012; Kotera
et al., 2012; Kamburov et al., 2013; Wachter and Beissbarth, 2015).
This new environment is leading to significant paradigm shifts in
medicine and toxicology. Indeed, medicine is being transformed
into a data science (Topol, 2010; Hood et al., 2015; Topol et al.,
2015).

These changes could lead to the transformation of human
chemical safety assessment from a “human data poor” to
a “human data rich” arena with the consequent elimination
of animal-based toxicology studies that currently underpin
chemical safety assessment. In this review the components that
could bring about an animal-free chemical safety assessment
paradigm are discussed.

SYSTEMS BIOLOGY

Contemporary methods for the diagnosis of human disease
originated in the late 19th century, and are based on simple
observational correlations between clinical syndromes and
pathological analysis (Loscalzo et al., 2007; Loscalzo and Barabasi,
2011). Over the same period, research followed the reductionist
approach that attempts to explain complex phenomena by
defining the functional properties of the individual components
that make up a system (Sobradillo et al., 2011). Consequently, the
research focus progressed from the whole organism (anatomy)
to the organs (physiology), cells (cell biology) and ultimately
to subcellular molecular interactions (genes, proteins, lipids and
metabolites; molecular biology) (Figure 1). This reductionist
strategy is based on the assumption that many of the functions
of the whole organism can be understood by knowing the
properties of the component parts (Sobradillo et al., 2011). Both
the approach to the diagnosis of disease and the reductionist
strategy to research have made major contributions to our
understanding of health and disease, however, they have inherent
significant limitations. Current methods for diagnosing disease
lack sensitivity for identifying preclinical disease (i.e., identifying
precursor events that support early detection and treatment),
and specificity in unequivocally defining disease (Loscalzo

1http://opensource.org/history (Accessed on 20 May 2016)
2http://www.scienceeurope.org/uploads/PublicDocumentsAndSpeeches/SCs
PublicDocs/Workshop_Report_MED_Big_Data_web.pdf (Accessed on 20 May
2016)

et al., 2007). The reductionist approach does not account for
phenomena that emerge from the interactions of parts, and that
appear as ‘coordinated’ functions of the individual components at
higher levels of system organization (Sobradillo et al., 2011).

An alternative to the reductionist mind-set is the ‘systems
biology’ perspective that integrates events at various levels of
‘system’ organization, and accounts for interactions of individual
components and emerging properties that cannot be deduced
from information on the single elements alone (Sobradillo et al.,
2011).

Systems biology and systems medicine are characterized by
the application of computational and mathematical modeling
techniques that aim to unravel and understand the complexity of
normal and diseased biological systems (Galas and Hood, 2009;
Loscalzo and Barabasi, 2011; Chen and Snyder, 2012; Jack et al.,
2013). They are biology-based, inter-disciplinary studies that
deploy engineering approaches to discover emergent properties
of cells, tissues and organs functioning as a system from
the interactions between genetic, metabolic and cell signaling
responses (Galas and Hood, 2009; Loscalzo and Barabasi, 2011;
Chen and Snyder, 2012; Jack et al., 2013).

In systems biology, the implications of altered molecular
and cellular components that result from exposure to chemical
and non-chemical stressors, are studied and integrated across
multiple levels of biological organization. That is, from genes
to gene expression products, to alterations in biochemical
pathways and networks and the propagation of effects from
cells to tissues to organs and the whole body (Andersen et al.,
2005; Zhang et al., 2010). Disease arises as a consequence of
disease-perturbed networks in the diseased organ that propagate
from one or a few disease-perturbed networks to many as the
disease progresses. These initial disease perturbations may be
due to genetic changes (e.g., mutations) and/or from exposure
to stressors in the environment (e.g., infectious organisms, or
chemicals). These perturbations alter the information expressed
in these networks dynamically – and these altered dynamics of
information flow explain the pathophysiology of the disease and
suggest new approaches to diagnosis and therapy (Hood et al.,
2012). By treating disease as a consequence of genetic and/or
environmental perturbations of biological networks the systems
approach also considers social and environmental influences that
may impact health. The cross-talk of all networks is integrated
in order to understand their functioning in the context of the
individual (Hood and Friend, 2011; Hood et al., 2012, 2013, 2015;
Smarr, 2012). Importantly, there is a growing body of evidence
that these perturbations conform to biological patterns or
‘signatures’ that are associated with specific diseases (Nicholson
and Holmes, 2006; Holmes and Nicholson, 2007; Holmes et al.,
2008; Nicholson et al., 2008; Bouhifd et al., 2013).

THE INTERNET OF THINGS, THE
MOBILE PHONE AND PERSONALIZED
MEDICINE

“Medicine is undergoing a revolution that will transform
the practice of healthcare in virtually every way” (Hood
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FIGURE 1 | The reductionist approach to the study of biology.

et al., 2013). The systems approach to disease is beginning
to change healthcare by deploying technologies that permit
the rapid sequencing of an individual human genome and
the quantification of “units of biological information” such as
single genes, single molecules, single cells and single organs to
provide disease relevant information on health or disease for
the individual. This is resulting in an explosion of patient data
that is transforming “traditional biology and medicine” into
an information science (Hood and Friend, 2011; Hood et al.,
2012, 2013, 2015; Smarr, 2012). By harnessing the capabilities
of computational analysis of “big data” the digital revolution
is transforming healthcare just as it has already transformed
communications, finance, retail and information technology
(Hood and Friend, 2011; Hood et al., 2012, 2013, 2015). The
digital revolution is making the management and analysis of
extremely large biological and environmental datasets tractable
and it is driving the invention of personal monitoring devices that
can digitize biological information, thus enabling, the individual
assessment of wellness and disease commonly described as
personalized medicine (Hood and Friend, 2011; Hood et al., 2012,
2013, 2015; Smarr, 2012).

Personalized Medicine, Stratified Medicine, Precision
Medicine3,4 and P4 Medicine are interchangeable terms for
systems medicine approaches to individualized healthcare
(Topol, 2010; Hood et al., 2012, 2013; Smarr, 2012; Collins and
Varmus, 2015; Topol et al., 2015). Personalized Medicine is a
medical model that separates patients into different groups -
with medical decisions, practices, interventions and products
being tailored to the individual patient based on their predicted
response or risk of disease. It is emerging from the convergence
of systems medicine, the healthcare-focussed derivative of
systems biology and the digital revolution (Hood et al., 2013). It’s
proponents ascribe this revolution to the digital transformation
of medical practice as being due to the “coalescence of the
rapidly maturing digital, non-medical world of mobile (wireless)
devices, cloud computing and social networking with the
emerging digital medical world of genomics, biosensors and
advancing imaging” (Topol, 2012). Described as the “greatest

3http://www.acmedsci.ac.uk/more/events/stratified-personalised-or-p4-medicine
-a-new-direction/ (Accessed on 20 May 2016)
4https://www.nih.gov/precision-medicine-initiative-cohort-program (Accessed
on 20 May 2016)
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convergence in our history,” this revolution has become
possible because of the exponential growth of the Internet
of Things (IoT) and the global popularity and remarkable
decline in cost of the mobile phone5 (Topol, 2010, 2012; Mak,
2015).

The IoT has been defined as a “global infrastructure
for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication
technologies”6. Fundamentally, the IoT comprises sensors, which
are increasingly being embedded into smartphones and wearable
devices interconnected via the internet. The ability to pack 19
million transistors into integrated circuits that occupy a 16 nm
space explains how there are more than 2 billion transistors
in some current smartphones (Topol et al., 2015). Current
devices are already able to “digitize the biology of a human
being” with the use of wearable sensors to quantify physiological
metrics such as vital signs or relevant features of an individual’s
environment, provide high definition images of the anatomy,
and elucidate an individual’s biology by sequencing their DNA,
RNA, microbiome and epigenome (Topol, 2014). In the next
5 years, individuals with hypertension and diabetes could have
their blood pressure and glucose levels continuously monitored,
most routine laboratory tests may be obtainable with smartphone
kits and time series measurements of key biochemical variables
should be feasible (Smarr, 2012; Topol et al., 2015). Billions of
data points from each individual will be uploaded to a virtual
cloud where sophisticated algorithms will decipher ‘signal’ from
noise generated by the complexities of health and disease (Hood
and Friend, 2011; Hood et al., 2012, 2013, 2015; Smarr, 2012).
Unsurprisingly, this would constitute a seismic shift from the
current “healthcare” model to a “wellness” paradigm that is
predictive, preventative, personalized and participatory (Hood
and Friend, 2011; Hood et al., 2012, 2013, 2015; Smarr, 2012).

Central to personalized medicine is biomarker tracking,
specifically, the monitoring of time series measurements of key
biochemical variables in an individual. Soon it may be possible to
use integrated microfluidic chip technology to rapidly measure
a panel of plasma proteins from a finger prick volume of whole
blood. This could provide inexpensive, point-of-care, informative
clinical diagnosis (Fan et al., 2008; Hood and Friend, 2011; Smarr,
2012; Hood et al., 2013, 2015). This technology could lead to
the identification of organ-specific blood protein “fingerprints”
that distinguish normal functioning from disease-perturbed
biological networks (Hood et al., 2012, 2013). Such fingerprints
or “signatures” are not confined to proteins. In fact, the field of
metabolomics has tremendous potential for the identification of
pre-symptomatic, diagnostic and prognostic metabolic signatures
of disease, toxicity and exposure to environmental pollutants
(Nicholson and Holmes, 2006; Holmes and Nicholson, 2007;
Holmes et al., 2008; Nicholson et al., 2008; Bouhifd et al.,
2013).

5http://www.economist.com/news/business/21600134-smartphones-reach-mass
es-host-vendors-are-eager-serve-them-rise-cheap (Accessed on 20 May 2016)
6http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060 (Accessed on
20 May 2016)

The wellness paradigm may be characterized by the
longitudinal monitoring of integrative personal omics profiles
(iPOP) which combine genomics, transcriptomics, proteomics,
metabolomics and autoantibody profiles (Stanberry et al., 2013).
In this approach, changes in metabolite expression levels reflect
differential expression of biological pathways and are associated
with disease (Stanberry et al., 2013; Guo et al., 2015).

METABOLOMICS

Genetics alone cannot fully explain differences in disease
predisposition, (Nicholson, 2006). Only about 5–10% of total
human genetic variance occurs across populations and ethnic
groups, although disease distributions and drug toxicity may
vary greatly. Broadly speaking, genomics does not account for
differences in phenotype (Holmes et al., 2008). Although a gene
may be expressed and a protein may be synthesized, this protein
may not be in the proper form to induce a metabolic change
and therefore induce a phenotypic effect. The epigenome, which
consists of non-sequence-based modifications, such as DNA
methylation, is heritable and may affect normal phenotypes and
predisposition to disease (Feinberg, 2010; Feinberg et al., 2010).
Indeed, epigenetic changes have been shown to have a strong
relationship with cancer and other common diseases (Feinberg
et al., 2010).

Critical illness is characteristically the loss of metabolic
homeostasis (Serkova et al., 2011; Mastrangelo et al., 2014).
Monitoring the fluctuations of endogenous, low-molecular
weight molecules in blood (plasma and serum) and urine is an
important way to detect various human pathologies such as,
cancer, cardiovascular disease, diabetes and drug and chemical
toxicity (Serkova et al., 2011). Thus, metabolomics, or metabolic
profiling, is the study of the quantitative description of all low-
molecular-weight (<1 kDa) components in a biological sample.
These may consist of metabolites solely under endogenous
control and may also involve those originating from exogenous
sources (microbiome, diet, drugs, and environmental pollutants).

The combination of genes and environment contribute to
the effects observed in the metabolome as do factors such
as gender, age, diet, exposure to xenobiotics and products of
the gut microbiota (Mastrangelo et al., 2014). In addition,
metabolomics involves the quantification of metabolites to track
the developing response to a stimulus, has the advantage of being
high-throughput and currently provides the best approach to
delineating and understanding a biological mechanism preceding
an effect (Kosmides et al., 2013; Mastrangelo et al., 2014).

The advantage of metabolomics is that it allows the evaluation
of changes at a higher level of organization, that is, closer to
the phenotype which therefore, should provide a more reliable
indication on the state of health of the individual (Figure 2).
This is possible because endogenous small molecules are at the
top of the systems biology continuum and reflect and magnify
(several thousands of times) perturbations that occur at the
genomic, transcriptomic and proteomic level (Raamsdonk et al.,
2001; Wishart, 2012). Indeed, metabolomics data are needed to
construct powerful top–down systems biology tools that link
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FIGURE 2 | Metabolic profiling reflects the collective effects of lower levels of organization.

the omics disciplines (Coen et al., 2008). In this respect, the
ability to link the information provided by the different omics
data and build a pathway of toxicity (PoT) linking an external
stressor induced perturbation to a disease endpoint is analogous
to the development of chemically agnostic adverse outcome
pathways (AOPs) proposed for use in chemical safety assessment
(Ankley et al., 2010; Bouhifd et al., 2013; Burden et al., 2015;
Athersuch, 2016; Edwards et al., 2016). It could provide novel
information on phenotypic characteristics and therefore the
potential to investigate the output of complex, interconnected
networks (Kosmides et al., 2013).

Metabolomics is very sensitive, currently capable of detecting
femtomolar to attomolar (10−15 to 10−18) changes in metabolite
concentrations (Veenstra, 2012). Small dietary changes, increased
physical activity, elevated stress or even variations in seasons can
significantly alter metabolic profiles (Monte et al., 2014). Another
advantage of metabolomics is that experimental and analytical
variation in commonly used methods of metabolite measurement
are several orders of magnitudes smaller than biological variation
which confers robustness to metabolomic signatures (Keun et al.,
2002; Maher et al., 2007).

TARGETED AND NON-TARGETED
METABOLOMICS

There are two main strategies used in metabolomic studies:
targeted or untargeted (Fiehn, 2001; Mastrangelo et al., 2014;
Guo et al., 2015). Targeted approaches are generally used in
the identification of potential direct or surrogate biomarkers
of health, disease and mechanistic pathways and non-targeted
approaches for the detection of broad classes of biochemical
to provide a comprehensive functional phenotype integrating
clinical phenotypes with genetic and non-genetic factors (Jones
et al., 2012; Guo et al., 2015). Non-targeted studies require the
application of bioinformatics and computational tools to analyze
and interpret large and complex data (Jones et al., 2012).

There are three specific applications of metabolomics,
non-targeted metabolic fingerprinting and metabolic profiling
and targeted metabolic profiling (Kraly et al., 2009). Non-
targeted metabolic fingerprinting seeks to measure a global
profile of metabolites with identification of specific profiles
based on pattern recognition. A major weakness of metabolic
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fingerprinting is the inability to identify specific biomarkers
for a disease state or therapeutic endpoint. Metabolic profiling
is the measurement of the full complement of low-molecular-
weight metabolites and their intermediates, such as amino acids,
carbohydrates and lipids, that reflects the dynamic response
to genetic modification and physiological, pathophysiological
and/or developmental stimuli (Clarke and Haselden, 2008). In
targeted metabolic profiling one or two analytes are tracked with
time and because of this is often excluded from the discussion of
metabolomics. However, it is a very useful tool for understanding
biological systems (Kraly et al., 2009).

METABOLOMICS AND THE
MICROBIOME

Metabolic profiling can also include the contribution from gut
microorganisms, the microbiome. The microbiome comprises
more than 100 trillion microorganisms belonging to 300–500
different species that live inside and on every human being
(Guarner and Malagelada, 2003). The number of microorganisms
in a healthy human adult are estimated to outnumber human
cells by a ratio of ten to one7 and make up 1–3% of body mass8

(0.75–2.25 kg in a 75 kg person) and represents a confounding
factor when interpreting genomic, proteomic or metabolomic
response data (Nicholson et al., 2004; Nicholson, 2006; Kinross
et al., 2008; Nicholson and Lindon, 2008). An Individual’s
microbiome is unique and may share as little as 1% of the
same type of bacteria with other people (Kinross et al., 2008)
and may change with age, diet, drugs, disease and medical or
surgical intervention (Kinross et al., 2008). The gut microbiome
interacts with the other systems in the body and has metabolic,
trophic and protective functions (Guarner and Malagelada, 2003;
Kinross et al., 2009). It influences the levels of cytochrome
P450 enzymes (Nicholson et al., 2004), has a significant role
in obesity (Turnbaugh et al., 2006; Kinross et al., 2008; Li
et al., 2008; Calvani et al., 2010) sepsis (MacFie et al., 1999;
Shimizu et al., 2006), inflammatory bowel disease, irritable bowel
syndrome and colon cancer (Guarner and Malagelada, 2003).
The gut microbiome contributes to interindividual variability
in drug toxicities and may contribute to the bioactivation of
carcinogens that would not have been metabolized by the human
cells (Nicholson et al., 2005). Metabolites arising from the gut
microbiome merge with endogenous chemicals thereby altering
the metabolome without having influenced gene and protein
expression.

METABOLITE SIGNATURES

In toxicology, extensive efforts are underway to identify
signatures of toxicity which are patterns of metabolite changes
predictive of the manifestation of toxicity and disease.

7https://www.bcm.edu/departments/molecular-virology-and-microbiology/rese
arch/the-human-microbiome-project (Accessed on 20 May 2016)
8http://www.nih.gov/news-events/news-releases/nih-human-microbiome-proje
ct-defines-normal-bacterial-makeup-body (Accessed on 20 May 2016)

These patterns are more commonly known as metabolite
signatures (Bouhifd et al., 2013, 2014, 2015). Similarly, in
clinical applications the prediction of xenobiotic toxicity
or drug effects in an individual based on a mathematical
model of pre-intervention metabolite signatures is known as
pharmacometabolomics (Clayton et al., 2006). The identification
of signatures associated with toxicity, drug effects and disease
endpoints in a range of media, including; serum, plasma, urine,
mucosa, exhaled breath, saliva, hair, tissue and cultured cells
shows steady growth and could provide human data that may
be used in chemical safety assessment (Bouhifd et al., 2013;
Zhang et al., 2013a,b; Armitage and Barbas, 2014; Sulek et al.,
2014). With the application of powerful bioinformatics and
statistics, metabolite signatures can be used to identify a PoT
which connects the molecular initiating event (MIE) of a toxicant
with an adverse outcome (Ankley et al., 2010; Bouhifd et al.,
2013; Vinken, 2013; Athersuch, 2016). The development of an
underpinning mechanistic toxicology in the form of a perturbed
PoT is a key concept for the implementation of the much vaunted
Toxicity Testing for the 21st Century (NRC, 2007).

The following are just a few examples illustrating how the
identification of in vivo metabolic signatures in pharmaceutical
applications, environmental and occupational toxicology and in
in vitro systems is a rapidly growing area that could provide
actionable data for human chemical safety assessment.

In clinical applications metabolite signatures have been
identified in a range of biological fluids that; can distinguish
between patients with various cancers including; colorectal,
pancreatic, gastric, liver, breast, ovarian, kidney, bladder,
prostate, oesophageal, lung and oral and healthy controls
(Armitage and Barbas, 2014), are consistent with early
indications of diabetes, liver dysfunction and disruption of
gut microbiome homeostasis in healthy volunteers (Guo et al.,
2015), can distinguish between race and genotype in response to
the antihypertensive drug atenolol (Wikoff et al., 2013), and were
able to discriminate hepatitis B virus (HBV) infected subjects
from healthy controls (Zhang et al., 2013a).

In environmental toxicology, metabolic profiling of
urinary metabolites has been shown; to detect early effects
of environmental and lifestyle exposure to cadmium in a human
population (Ellis et al., 2012), to distinguish controls and alcohol
consumers, but not smokers exposed to a complex mixture such
as welding fumes (Kuo et al., 2012), to identify intermediate
biomarkers of response to environmental/occupational
concentrations of lead, cadmium and arsenic, in smelter
workers (Dudka et al., 2014), to indicate oxidative stress-related
effects in humans exposed to environmental concentrations of
polycyclic aromatic hydrocarbons (PAHs) (Wang et al., 2015),
and associate male infertility with arsenic exposure caused by a
PoT involving oxidative stress and sexual hormone disruption
(Shen et al., 2013).

Distinguishable metabolic signatures have been observed in
in vitro cultured human fibroblast cells infected by herpes simplex
virus type-1 (HSV-1) and human cytomegalovirus (HCMV)
(Rabinowitz et al., 2011). In vitro metabolic signatures leading
to hepatotoxicity in HepG2/C3a cells in microfluidic culture
conditions which appeared consistent with literature reports
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of in vivo hepatotoxicity were identified (Choucha Snouber
et al., 2013), and different in vitro hepatic metabolic signatures
and pathways for ammonia, dimethylsulfoxide and paracetamol
toxicity were identified in liver and kidney co-cultures (Shintu
et al., 2012).

DOSE-DEPENDENT METABOLITE
SIGNATURES

To ensure public safety and environmental quality, regulatory
agencies are required by law to undertake science-based
safety and risk assessments of potential hazards (Burgoon
and Zacharewski, 2008). These agencies use dose-response
modeling to identify a Reference Point (RP), also known as
a point-of-departure (PoD), which is the point of transition
on the dose-effect curve, to derive a health-based guidance
value (Sand et al., 2006, 2012; Burgoon and Zacharewski,
2008). Therefore, the identification of dose-dependent changes
in metabolite signatures would permit the use of such data
in the current safety assessment paradigm (European Food
Safety Authority, 2014). Encouraging developments in dose-
dependent changes in metabolic biomarkers in both in vivo
and in vitro studies are increasingly reported. For example,
dose-dependent changes were observed in urinary metabolite
biomarkers of male infertility in Han Chinese men following
environmental exposure to arsenic, and in cadmium-induced
renal toxicity in Chinese women (Gao et al., 2014). In addition,
the metabolomic changes observed in the latter study were
sufficiently distinct to allow the differentiation of cadmium-
induced renal toxicity from subjects with chronic kidney disease
(Gao et al., 2014). In male Sprague Dawley rats treated with
0.5 or 2 mg/kg HgCl2 [mercury(II) chloride] maximal and
marked kidney tubule necrosis was observed by 48 h post
exposure at the high dose and modest injury at the low
dose (Griffin and Bollard, 2004). In vitro, organ-specific, dose-
dependent, predictive, compound-specific metabolite signatures
for ammonia and paracetamol toxicity were observed in
microfluidic liver and kidney co-cultures (Shintu et al.,
2012).

The use of metabolite signatures in the safety assessment
process could be possible if signatures observed in vivo can
be reproduced in appropriate in vitro systems in which dose-
response relationships could be more easily observed and
measured (European Food Safety Authority, 2014). There are
encouraging developments in the area.

MICROFLUIDICS AND BIOCHIPS

Common laboratory practice is to use two-dimensional (2D)
cell culture techniques, that is, to grow cells on a flat substrate
such as a petri dish or microtiter plate (van Duinen et al.,
2015). In three-dimensional (3D) cell culture techniques cells
are permitted to grow or interact with their surroundings in all
three dimensions and have been shown to be an improvement

on 2D cultures (van Duinen et al., 2015). For example, apical-
basal polarization (Schoenenberger et al., 1994), lumen formation
(Debnath et al., 2003), reduced proliferation and increased
differentiation (Weaver et al., 1997) and numerous changes in
RNA and protein expression (Lin and Bissell, 1993).

Yet existing 2D and 3D cell culture models do not fully
recapitulate subtle organ-specific variations in the in vivo
microenvironment (Huh et al., 2012). In situ, cells experience
organ-specific dynamic variations in spatiotemporal chemical
gradients and mechanical forces (e.g., cyclic strain, compression,
fluid shear stresses) in their local tissue microenvironment that
are crucial governors of their survival, growth and function. Thus,
many fundamental aspects of cell behavior are mechanosensitive,
including adhesion, spreading, migration, gene expression and
cell–cell interactions (Jansen et al., 2015). Integrin-mediated
mechanosensing feeds into cell fate decisions by activating
various downstream signaling cascades connected to gene
expression (Jansen et al., 2015).

Microfluidic techniques are based on micrometer-sized,
hollow channels lined with living cells arranged to recreate tissue-
and organ-level physiology which are continuously perfused with
nutrient medium (Huh et al., 2010, 2012, 2013; Tseng et al.,
2014; van Duinen et al., 2015). These technologies, also known
as biochips and are about the size of a computer memory stick,
further increase the physiological relevance of 3D cell culture by
enabling spatially controlled co-cultures e.g., liver and kidney,
perfusion flow and spatial control over signaling gradients (Smith
et al., 2013; Tseng et al., 2014; van Duinen et al., 2015). The
detection of a metabolomic signature in a co-cultured biochip
should, in theory, be similar to an in vivo blood or urine
metabolomic signature as they are all aggregate responses to a
chemical stressor.

When coupled to metabolomics and intracellular gene and
protein levels, biochips have the potential to provide a functional
cell response. They can behave as “biosensor” systems when
combined with metabolomic studies of organ culture media that
may be useful in a high-throughput small-molecule screening
approach (Prot et al., 2012). Indeed, biochips are being developed
for high-throughput assay development (Prot and Leclerc,
2012; Prot et al., 2012; Trietsch et al., 2013). In addition,
advances in real-time quantification of changes in intracellular
metabolic activities have the potential to vastly improve the
prediction of current and future cellular phenotypes based on
metabolomic signatures (Heinemann et al., 2014). A proof-of-
principle microfluidic-based inline small molecule extraction
system which allows for continuous metabolomics analysis
of living systems has been developed. This technology could
detect cyclic patterns and forecastable metabolic trajectories.
Metabolic oscillations and predictable transitions in both growth
and stress related changes in E. coli and ovine whole blood
could be observed and measured (Heinemann et al., 2014). The
combination of recent advances in stem cell biology, such as
induced pluripotent stem cells (Moreno et al., 2015) and organoid
technology (Astashkina et al., 2012), with microfluidic 3D cell
culture will lead to the implementation of personalized medicine
and companion diagnostics in the next 5 years (van Duinen et al.,
2015).
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However, specific metabolite signatures have been observed
that are a cellular response to the culture mode and cellular
environment in biochips (Choucha Snouber et al., 2013; Sturla
et al., 2014). For example, a cytoprotective cell response
was induced in HepG2/C3a cells by the microfluidic biochip
conditions (Prot et al., 2011). Also, there are differences in
response between biochips and conventional plate cultures
(Prot et al., 2012). The latter may occur due to differences in
mechanosensing (Huh et al., 2012; Jansen et al., 2015). These
must be distinguished from specific signatures that are consistent
with those observed in vivo (Prot et al., 2012). Nonetheless,
transcriptomic and proteomic signatures of acetaminophen
toxicity observed in cultured HepG2/C3A cells in a microfluidic
biochip study have been shown to be similar to those reported
in vivo (Prot et al., 2011). Many more examples like that of
acetaminophen, encompassing a representative chemical space,
are required in order to provide the evidence base to replace
animal-based toxicity testing.

VALIDATION OF BIOCHIP DATA

Validation is the independent assessment of the scientific
basis, the reproducibility, and the predictive capacity of a test.
Currently, the validation of in vitro models is a significant
challenge in drug candidate and toxicity screening. High
percentages of new chemicals and biological entities still fail
late-stage human drug testing, or receive regulatory “black box”
warnings, or are removed from the market for safety reasons
after regulatory approval (van Duinen et al., 2015). There are
a number of reasons for the perception that in vitro cell-
based assays and subsequent preclinical in vivo studies do
not yet provide sufficient pharmacological and toxicity data or
reliable predictive capacity for understanding drug candidate and
environmental chemical performance in vivo (Adler et al., 2011;
Astashkina et al., 2012; Piersma et al., 2014). The discussion of
the regulatory acceptance of in vitro data for safety assessment
is beyond the scope of this review. However, the reader may
find the reviews of Adler et al. (2011) and Piersma et al. (2014)
useful.

A key problem for the novel technologies is the absence of a
point of reference, i.e., a “traditional test” or “gold standard.” In
the absence of reference data, “scientific validation” needs to be
stressed. This would involve a systematic review of the extent
to which a given test reflects current scientific understanding.
In the case of toxicity, this would require review of established
modes of action (MOA), PoT and AOPs. This is in contrast
to traditional validation, which largely considers the test system
as a black box and compares the results obtained therein with
those of another black box, the animal model(s) (Pamies et al.,
2014). However, because of their origin human-derived 3D cell
culture models are expected to be better predictors of clinical
and toxic outcome than animal models (van Duinen et al., 2015).
Retrospective validation based on clinical results for success or
failure of compounds with regards to toxicology should be used
as RPs for validation (van Duinen et al., 2015). Nonetheless,
more human toxicity data and high-quality in vivo data are

critical in assessing the true predictive power of in vitro data-
based models of in vivo toxicity (Huang et al., 2016). Although
historically these data, in many cases are not publicly available,
particularly for drugs, there are increasingly numerous new freely
available databases that may provide such data, e.g., the Human
Metabolome Database (Wishart et al., 2013) and Consensus
Path Database (ConsensusPathDB-human) (Kamburov et al.,
2013). Therefore, an alternative validation strategy would be to
compare biochemical changes between an in vitro model system
and in vivo human interaction networks such as gene, protein,
signaling, metabolic and drug-target interactions as well as
gene regulation and biochemical pathway perturbations (Dumas,
2012; Kamburov et al., 2013; European Food Safety Authority,
2014).

CHARACTERISATION OF HUMAN
EXPOSURE

The estimation of human exposure is of fundamental importance
in the evaluation of the relevance and interpretation of dose-
response data for toxicity in the assessment of health risks
(Thomas et al., 2013). Therefore, a PoD determined in an in vitro
system must be extrapolated to an in vivo PoD, which in turn
must be related to an administered dose or tissue dose arising
from human exposure (Thomas et al., 2013; Wetmore et al.,
2015).

Human exposure may be estimated from the measurement
of parent chemical concentrations in the blood or urinary
metabolite concentrations from which exposure concentrations
can be inferred using reverse dosimetry (Tan et al., 2006; Lyons
et al., 2008; McNally et al., 2012, 2014). This approach could
be appropriate in the case of blood parent chemical or urinary
metabolite concentrations of known environmental pollutants
measured as part of a metabolic profile.

For chemicals without biological monitoring data, as would
be the case with a PoD derived from biochips, high-throughput
human exposure models are being developed which combine
environmental fate and transport models with indoor or
consumer exposure models (Arnot et al., 2010, 2012; Wambaugh
et al., 2013, 2014, 2015; Wetmore et al., 2015). Comparison
of the administered dose or tissue dose with human exposure
predictions could provide a margin of exposure (MOE) approach
that can help the shift from a hazard based- toward a more
risk-based- methodology (Thomas et al., 2013; Wetmore et al.,
2015).

BIOINFORMATICS: PATHWAY AND
NETWORK ANALYSIS

Omics data must distinguish changes and pathways associated
with impending pathology versus benign adaptive changes
that are responsive to the chemical but are not associated
with toxicity (Harrill and Rusyn, 2008). More and more
powerful data analytics required to distinguish biological signals
from noise are increasingly available (Braun, 2014). Once
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identified metabolomic signatures provide relevance beyond
clinical biomarkers as they represent a powerful means of
identifying mechanisms of toxicity and disease (Wikoff et al.,
2013; Zhang et al., 2013a).

The rapid proliferation of metabolomics studies has led to
difficulties in the identification of compounds, their physiological
role or toxicity or disease-specific pathway (Collins, 2004). The
Human Metabolome Database or HMDB is a resource designed
to address these issues. It is an open access database with
up-to-date referential information about metabolites, metabolic
pathways, biomarkers and reference NMR, MS/MS (tandem
mass spectrometry), and GC-MS (gas chromatography mass
spectrometry) spectra for compound identification (Wishart,
2007; Wishart et al., 2009, 2013, 2016). At the time of writing
the HMDB contains 41,993 metabolite entries, more than 5000
normal and abnormal metabolite concentrations and nearly 800
metabolic and disease-associated pathways and dozens of cancer
biomarkers (Wishart et al., 2016). However, currently only a
fraction of the known human metabolome is linked to pathways
and secondary processes such as gut microbiome-generated
effects and lipid metabolism (Wikoff et al., 2009, 2013). Even
with the growing number of knowledge-based metabolic pathway
databases that can be used to reveal the higher-order systemic
operation of cells, organs and whole organisms (Stobbe et al.,
2014; Zhukova and Sherman, 2014) more comprehensive tools
and databases specifically designed for network and pathway
analysis using metabolomics data are required (Xia and Wishart,
2010a,b; Kankainen et al., 2011; Wikoff et al., 2013). For example,
perturbed metabolic pathways have been identified by mapping
transcriptomic, proteomic and metabolomics data signatures
using freely available resources such as the KEGG database and
Ingenuity canonical pathways (Prot et al., 2012; Posma et al.,
2014). However, few network mapping programs consider that
the typical mammal has metabolic contributions from symbiotic
gut microbiota and even parasitic organisms (Gill et al., 2006;
Nicholson et al., 2012). MetaboNetworks, a freely available tool
for the identification of complex metabolic reaction networks,
combines metabolic reactions from different organisms and
allows the delineation and combination of reaction networks
from selected and combined organisms (Posma et al., 2014).

Another promising web-based tool is the ConsensusPathDB-
human where human in vivo signatures may be identified by
interrogating 32 freely accessible databases accessed via a single
portal (Kamburov et al., 2013). The ConsensusPathDB-human
integrates interaction networks in humans including binary
and complex protein–protein, genetic, metabolic, signaling, gene
regulatory and drug-target interactions, as well as biochemical
pathways (Kamburov et al., 2013).

However, confidence in the quality and reliability of omics
data must be improved. Specifically, significant improvements
are necessary in the sensitivity, accuracy and reproducibility
of these data (Leung et al., 2013). Biological variation and
differences in “time of capture” of samples and inter-laboratory
variation can lead to a lack of reproducibility (Leung et al., 2013).

There are efforts under way that combine high quality
omics and phenome data in the same database that are
already demonstrating an impressive level of sophistication and

predictive capability. Currently there is restricted access to the
data but they do demonstrate what is possible. For example,
the Clinical Genome Resource, which was set up by the US
National Human Genome Research Institute, is a database of
disease-related variants, and contains information that could
guide medical responses to these variants as well as the evidence
supporting those associations (Rehm et al., 2015). Genomics
England, which runs the 100,000 Genomes Project, aims to
bolster progress in this area by establishing ‘clinical interpretation
partnerships’: doctors and researchers will collaborate to establish
robust models of diseases that can potentially be mapped
to specific genetic alterations (Eisenstein, 2015). This will be
achieved by building a database of clinical data with matching
rich phenotype data from patient records9. Data will remain in
a secure environment within which researchers will work (Siva,
2015)10,11. The 100,000 Genomes Project provides a monthly
update of the number whole human genomes sequenced. As of
first February 2016, 6,597 genomes have been sequenced12.

The Health Nucleus offered by Human Longevity Inc.13 uses
whole genome sequence analysis, advanced clinical imaging and
innovative machine learning – combined with a comprehensive
curation of personal health history – to deliver the most complete
picture of individual health. Currently, the database contains
20,000 genomes with matching phenomes with the view of
expanding to over one million. The larger the database the more
effective the correlations because the 6.5 billion bases in each
individual’s DNA differs from another individual by just 3%. The
phenome data is generated using the most advanced techniques
to measure unique body structures and metabolomics profiles.
Machine learning techniques are used to uncover associations.
They claim a level of sophistication where genomes can be
matched to photographs and voice recordings matched to sex,
age, and height and face shape. In the “Face Project” they claim
to have matched 100 photographs to 100 genomes14,15 .

As with all new developments a global initiative involving
industry, regulatory agencies and academic institutions is
required to standardize ‘omics’ methods and reach a consensus
on the reliability and interpretation of endpoints (Leung et al.,
2013).

IN VITRO TO IN VIVO EXTRAPOLATION

Whilst differentially expressed genes, proteins and metabolites
provide a powerful means of understanding mechanisms (specific
regulatory or signaling networks altered by treatments) that
connect molecular and cellular changes at the tissue level, they are
nonetheless “static” lists and therefore cannot provide a complete

9http://www.genomicsengland.co.uk/the-100000-genomes-project/ (Accessed on
20 May 2016)
10http://www.genomicsengland.co.uk/ (Accessed on 20 May 2016)
11https://youtu.be/gW6CUCYw7Vs (Accessed on 20 May 2016)
12http://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers/
(Accessed on 20 May 2016)
13http://tinyurl.com/nehe3e4 (Accessed on 20 May 2016)
14https://youtu.be/D_JwU UTD-hk (at 7 min 50 s) (Accessed on 20 May 2016)
15https://youtu.be/4ywjThNbfYk (Accessed on 20 May 2016)
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understanding of physiological processes or of toxicity. In order
to replace in vivo animal testing and provide a quantitative,
dynamic, mechanistic and predictive toxicology, concentration-
response relationships observed and measured in biochips must
be extrapolated to in vivo. This can be done with physiologically-
based pharmacokinetic (PBPK) models (Loizou and Hogg, 2011;
McNally et al., 2011, 2012; Prot and Leclerc, 2012; Coecke et al.,
2013; Bessems et al., 2014; Sturla et al., 2014).

A PBPK model is an independent, structural model,
comprising compartments that correspond directly and
realistically to the organs and tissues of the body and connected
by the cardiovascular system. They are mathematical descriptions
of biological systems, in this case the human body, which are
translated into computer code and solved computationally.
They are frameworks that can capture our understanding of
the science underlying the biological processes that lead to
disease (McNally et al., 2011). The principle application of
PBPK models is in the prediction of the appropriate form of
the target tissue dose, or dose-metric, of the parent chemical
or its reactive metabolite(s). The dose-metric must capture
the critical biochemical steps that lead to the moiety causing
the effect at the target site. Such mechanisms may take place
within any compartment, e.g., blood, organ or sub-cellular
compartment. Use of an appropriate dose-metric in chemical
safety assessment calculations provides a better basis for relating
the observed effects to the external or administered exposure
concentration of the parent chemical (Conolly and Butterworth,
1995; Barton et al., 1998; IGHRC, 1999; Johanson et al., 1999;
Andersen, 2003; Clewell and Clewell, 2008; Lipscomb and Poet,
2008).

Physiologically-based pharmacokinetic models can be used for
forward or reverse dosimetry. The former converts inhalation,
dermal exposure, oral or intravenous administration of a
chemical to a target-tissue dose; the latter can reconstruct
exposure or dose from parent chemical and/or metabolite(s)
in urine, blood or in vitro surrogates of organ or tissue
concentration (Tan et al., 2006; Clewell et al., 2008; Lyons
et al., 2008; Louisse et al., 2012; McNally et al., 2012, 2014;
Bessems et al., 2014). Therefore, PBPK models can be used to
translate a RP derived from concentration-response relationships
measured in biochips to a plausible distribution of human in vivo
concentrations. This can be achieved by linking a PBPK model
with Bayesian inference where replacing single point values for
model parameters with informative prior distributions converts a
deterministic model to a population-based model (McNally et al.,
2012, 2014).

REGULATORY ACCEPTANCE

In the USA regulatory action must be defensible in court where,
in the absence of the preferred proof that something, “is or is
not true,” the supporting arguments are based on “precedent and
expert opinion.” Regulators will change their actions when expert
scientific opinion supports the use of alternative models over
animal models, and regulatory action based on those alternative
models can be defended in court i.e., regulators take their cues

from expert scientists who provide them with legally defensible
actions, not the other way around.

In the absence of a way to measure the “accuracy” of a
new test versus existing animal test results, the default is to
prove that an alternative-to-animals test produces results that
are “similar” or “comparable” to the previous animal studies.
If the results are different, then the alternative system cannot
replace the animal studies, i.e., current practice and historical
precedent win.

The emergence of human data, such as, chemical body
burdens (i.e., full chemical and metabolite profiles) and
biomarkers of effects for health status or steps along an AOP
progression should change the current paradigm. The burden of
proof to “validate” a new test should not require comparison with
animal data, but should be which test provides the most accurate
result to best protect public health. More accurate estimates of
risk to protect public health based on human in vivo data must
be considered more relevant and less uncertain than an estimate
based on current practice which is derived from a few animal
test results, primarily in rodents, adjusted by uncertainty factors
which are scientifically poorly supported.

In Europe, the regulatory objective in not to obtain the most
accurate estimate of risk, rather it is to drive the control of
exposure to a level at which there is confidence of no significant
risk. Regulatory acceptance is based more on understanding,
transparency and robustness of new approaches and adherence
with the stipulations of the regulations. European regulatory
authorities must be confident in new technologies in order to
adopt them and would generally do so without reference to court
proceedings.

THE NEAR FORESEEABLE FUTURE

If “foreseeable” refers to a range of time for which forecasts
are possible and “forecasting” is to calculate or predict (some
future event or condition) usually as a result of study and
analysis of available pertinent data, then the next 5–10 years
should see the transformation of occupational and environmental
toxicology from a human data poor to a human data rich
discipline. This transformation will come about through the
coalescence of systems medicine and the digital revolution, the
components of which, will in turn coalesce with the high-
throughput in vitro systems- based toxicity testing paradigm
proposed in the US National Research Council vision and strategy
for future toxicity testing and safety assessment (NRC, 2007). The
generation of human data that may be used in chemical safety
assessment continues. For example, the development of a fully
integrated wrist-band sensor for in situ analysis of sweat can
provide real-time assessment of the physiological state of human
subjects and may represent a platform for the development
of a wide range of personalized diagnostic and physiological
monitoring applications (Gao et al., 2016). Human sweat is
a medium considered to be rich in physiological information
(Sonner et al., 2015). It is reasonable to predict that the
sophisticated sampling technology developed for such a device
could be used to provide sweat samples for frequent, non-invasive
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metabolic profiling. Likewise, the development of relatively low-
cost “electronic noses” for the non-invasive analysis of volatile
organic compounds (VOCs) signatures in exhaled breath for the
early detection of various cancers and other diseases must also
bode well for the near future (Konvalina and Haick, 2013; Rattray
et al., 2014; Krilaviciute et al., 2015; Gasparri et al., 2016).

Optimism for the development of an animal-free chemical
safety assessment paradigm based on the identification of pre-
symptomatic, diagnostic and prognostic metabolic signatures of
toxicity and disease using non-invasive or minimally invasive
biosensors appears to be justified.
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