
PERSPECTIVE
published: 04 August 2016

doi: 10.3389/fphar.2016.00237

Frontiers in Pharmacology | www.frontiersin.org 1 August 2016 | Volume 7 | Article 237

Edited by:

Vita Dolzan,

University of Ljubljana, Slovenia

Reviewed by:

Collet Dandara,

University of Cape Town, South Africa

Ann M. Moyer,

Mayo Clinic, USA

Emanuela Corsini,

University of Milan, Italy

*Correspondence:

Dolores Pérez-Sala

dperezsala@cib.csic.es

Specialty section:

This article was submitted to

Pharmacogenetics and

Pharmacogenomics,

a section of the journal

Frontiers in Pharmacology

Received: 26 April 2016

Accepted: 21 July 2016

Published: 04 August 2016

Citation:

Sánchez-Gómez FJ, Díez-Dacal B,

García-Martín E, Agúndez JAG,

Pajares MA and Pérez-Sala D (2016)

Detoxifying Enzymes at the

Cross-Roads of Inflammation,

Oxidative Stress, and Drug

Hypersensitivity: Role of Glutathione

Transferase P1-1 and Aldose

Reductase. Front. Pharmacol. 7:237.

doi: 10.3389/fphar.2016.00237

Detoxifying Enzymes at the
Cross-Roads of Inflammation,
Oxidative Stress, and Drug
Hypersensitivity: Role of Glutathione
Transferase P1-1 and Aldose
Reductase
Francisco J. Sánchez-Gómez 1, Beatriz Díez-Dacal 1, Elena García-Martín 2,

José A. G. Agúndez 2, María A. Pajares 3 and Dolores Pérez-Sala 1*

1Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones

Científicas, Madrid, Spain, 2Department of Pharmacology, University of Extremadura, Cáceres, Spain, 3 Instituto de

Investigaciones Biomédicas Alberto Sols (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de

Madrid), and Grupo de Hepatología Molecular, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ),

Madrid, Spain

Phase I and II enzymes are involved in the metabolism of endogenous reactive

compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies

have established several drug metabolizing enzymes as markers for risk of drug

hypersensitivity. However, other candidates are emerging that are involved in drug

metabolism but also in the generation of danger or costimulatory signals. Enzymes

such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize

prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs

and/or their reactive metabolites. In addition, their metabolic activity can have important

consequences for the cellular redox status, and impacts the inflammatory response

as well as the balance of inflammatory mediators, which can modulate epigenetic

factors and cooperate or interfere with drug-adduct formation. These enzymes are, in

turn, targets for covalent modification and regulation by oxidative stress, inflammatory

mediators, and drugs. Therefore, they constitute a platform for a complex set

of interactions involving drug metabolism, protein haptenation, modulation of the

inflammatory response, and/or generation of danger signals with implications in drug

hypersensitivity reactions. Moreover, increasing evidence supports their involvement in

allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and

provide a perspective for their involvement in drug hypersensitivity.

Keywords: glutathione transferase, aldose reductase, inflammation, oxidative stress, detoxification, allergy, drug

adduct, drug hypersensitivity

INTRODUCTION

Drug hypersensitivity reactions pose an important clinical problem. They reduce the therapeutic
armamentarium and may entail great severity, being life threatening in some cases. These reactions
are mediated by the activation of the immune system by drugs or their metabolites. This can
occur through the direct interaction of the drug/metabolite with receptors from immune cells or
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by covalent attachment of the drug to endogenous proteins, in a
process known as haptenation. It is often considered that drugs
are too small structures to activate the immune system on their
own, whereas haptenated proteins or peptides can fulfill this role
and be processed and presented by antigen presenting cells. In
addition, factors leading to the exacerbation of the inflammatory
response, the generation of danger signals or oxidative stress,
contribute to the development of hypersensitivity reactions
through mechanisms not completely understood.

Detoxifying and metabolic enzymes play multiple roles in
cell homeostasis and may participate in drug hypersensitivity
through various mechanisms. Metabolites produced by drug
transformation carried out by these enzymes could activate the
immune system. In addition, detoxifying enzymes play important
roles in the control of inflammation, cellular redox status, and
cytotoxicity.

Inflammation and oxidative stress cooperate in the
pathogenesis of allergic diseases. A situation of oxidative stress
may concur with sensitization and favor Th2 responses (Utsch
et al., 2015). Moreover, oxidative stress induction is common
to chemical allergens, including those that induce type IV
hypersensitivity (Corsini et al., 2013). Indeed, numerous drugs,
including doxorubicin, dapsone, cisplatin, sulfamethoxazole,
and many others, elicit oxidative stress through multiple
mechanisms (Bhaiya et al., 2006; Deavall et al., 2012; Hargreaves
et al., 2016), increasing the generation of danger signals that
act as coactivators for the allergic reaction (Sanderson et al.,
2006). In turn, oxidative stress can increase the formation of
drug-protein adducts by favoring the generation of reactive
metabolites of drugs, thus facilitating protein haptenation and
subsequent activation of the immune system or other toxic
effects. Furthermore, oxidized proteins may be more susceptible
to the addition of certain drugs or drug metabolites (Lavergne
et al., 2009). Oxidative stress can also alter the ratio between
reduced and oxidized glutathione species by depletion of the
reduced form (GSH), thus favoring protein glutathionylation
and/or reducing the possibility of drug detoxification through
GSH conjugation. Conversely, it has been reported that
antioxidants such as N-acetylcysteine, ebselen, and pyrrolidine
dithiocarbamate can ameliorate immune and allergic responses
in several models (Matsue et al., 2003; Monick et al., 2003;
Galbiati et al., 2011). Importantly, a reduced antioxidant or
cytoprotective capacity has been evidenced in allergy and asthma
(Lutter et al., 2015), and sensitization to certain allergens is
associated with inadequate antioxidant responses. Consequently,
it has been proposed that exploring the master regulator of
antioxidant responses Nuclear factor erythroid 2-related factor
2 (Nrf-2), may provide novel biomarkers for determining the
sensitization potential of several chemicals (Natsch and Emter,
2008; Ade et al., 2009).

Recently, we have studied two types of detoxifying enzymes,
GST and AKR (Sánchez-Gómez et al., 2007, 2010; Díez-Dacal
et al., 2016), which interact with several drugs and are important
players in the regulation of inflammation and redox status.
Indeed, genetic variations in these enzymes have been associated
with an increased risk of suffering diseases with an important
allergic component such as atopy or asthma. Nevertheless,

whereas the role of other drug metabolizing enzymes, such
as cytochromes, in drug hypersensitivity has been frequently
explored (Gueant et al., 2008; Bhattacharyya et al., 2014), those
of GST and AKR remain poorly understood. Here, we provide
a perspective on the interactions of GSTP1-1 and AKR1B1 with
both drugs and factors contributing to allergic reactions, and
suggest avenues to assess their potential as drug hypersensitivity
biomarkers.

GSTP1-1

Glutathione-S-transferases are phase II enzymes that detoxify
numerous endogenous and exogenous compounds by
conjugation with GSH (Hayes et al., 2005). GSH-conjugates
can then be exported from cells by the multidrug transporter
system (Díez-Dacal and Pérez-Sala, 2012). Numerous genetic
variations in GST enzymes have been identified and their
functional consequences have been the subject of previous
review (Board and Menon, 2013). Regarding GSTP1-1, the
polymorphisms described have been mostly studied in the
context of cancer and drug metabolism. However, in addition
to its metabolic function, GSTP1-1 modulates stress response
cascades by mechanisms involving protein-protein interactions
with signaling proteins, like c-Jun terminal Kinase (JNK)
and other mitogen activated protein kinases, Peroxiredoxin 6
(Prdx6), and Tumor necrosis factor (TNF)-associated factor 2
(TRAF2; Adler et al., 1999; Wu et al., 2006). Moreover, GSTP1-1
facilitates protein glutathionylation, thus regulating protein
activity (Tew, 2007). Therefore, a complex landscape appears
in which GSTP1-1 integrates cellular responses to redox stress
by catalytic, protein-protein interaction and posttranslational
mechanisms (Figure 1).

Interaction of GSTP1-1 with Oxidative
Stress
GSTP1-1 is a key factor for cellular adaptation to oxidative stress
at multiple levels. GSTP1-1 expression is strongly induced by
oxidative stress as a defense mechanism through the binding of
transcription factors, like Nrf-2 and activator protein (AP)-1, to
the antioxidant response elements in its promoter (Kawamoto
et al., 2000; Hayes et al., 2005). In turn, oxidative stress
can reversibly inactivate GSTP1-1 by intramolecular disulfide
formation or oligomerization (Shen et al., 1993; Sánchez-
Gómez et al., 2010). Moreover, several electrophilic agents,
including endogenous reactive mediators and drugs, induce an
irreversible crosslinking of the enzyme (Sánchez-Gómez et al.,
2013). The main residues involved in these modifications are
the most reactive cysteines in GSTP1-1, namely, Cys47, and/or
Cys101. Both, GSTP1-1 oligomerization and crosslinking affect
its interactions with signaling proteins and stress cascades, as
mentioned above.

GSTP1-1 can promote the reversible incorporation of GSH
(S-glutathionylation) into low pKa cysteine residues of proteins.
This modification modulates protein function, but also protects
cysteine residues from further irreversible oxidations (Tew,
2007; Townsend et al., 2009), allowing the reduced form to
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FIGURE 1 | Interactions of GSTP1-1 with the cyPG 15d-PGJ2 as a model of an electrophilic compound that can act both as a substrate and an

inhibitor of the enzyme. (A) GSTP1-1 (depicted as “GST” in the scheme) can detoxify electrophilic mediators, like 15d-PGJ2, and drugs, by conjugating them with

GSH or through its ligandin role. In turn, GSTP1-1 can be covalently modified and/or cross linked by these compounds. Crosslinking or oligomerization secondary to

drug-induced oxidative stress can impact stress signaling cascades. In addition, electrophilic drugs or mediators can induce GSTP1-1 expression in a cell-type

dependent manner. (B) The ability of GSTP1-1 to detoxify and reduce the effects of 15d-PGJ2 is illustrated: GSTP1-1 overexpression blocks the activity of a PPAR

promoter reporter element (PPRE) in cells. Rat mesangial cells were transfected with PPRE as previously described (Zorrilla et al., 2010), and with a GSTP1-1

expression vector where indicated. Then cells were treated in the absence (Ct) or presence of 15d-PGJ2 (15d) and the promoter activity measured by luminescence.

The overexpression of GSTP1-1 was sufficient to block PPAR activation induced by the prostaglandin. *p > 0.05 vs. Ct, #p < 0.05 vs. 15d-PGJ2. Values represent

mean ± SEM from three different experiments.

be regenerated. Proteins S-glutathionylated by GSTP1-1 include
Prdx6 (Manevich and Fisher, 2005), AKR1B1, and GSTP1-1 itself
(Townsend et al., 2009; Wetzelberger et al., 2010).

Altogether, this evidence illustrates the complex redox
regulation of GSTP1-1. Under mild oxidative stress, induction
of GSTP1-1 expression and its redox “recycling” function afford
cellular protection. However, pharmacological treatments or
acute inflammation can inactivate GSTP1-1 either by direct
oxidation and/or chemical inhibition. In both cases, allelic
variants of GSTP1-1, namely, wild type GSTP1-1 (Ile105, Ala114)
and variants: GSTP1-1(Ile105Val, Ala114), GSTP1-1(Ile105Val,
Ala114Val), and GSTP1-1(Ile105, Ala114Val), differentially exert
protective functions on protein activity and lipid peroxidation,
which may influence susceptibility to oxidative stress of subjects
carrying the various forms (Manevich et al., 2013).

Interaction of GSTP1-1 with Drugs
GSTP1-1 displays multiple interactions with drugs, either
catalyzing their detoxification by GSH conjugation or being
inactivated by them. These interactions are crucial for cancer
therapy. GSTP1-1 overexpression is an important factor involved
in tumor chemoresistance (Díez-Dacal and Pérez-Sala, 2012),
and therefore, an important drug target, for which structurally
diverse inhibitors, including ethacrynic acid, glutathione analogs,
GSTP1-1 activatable drugs, and natural compounds have been
considered (Singh, 2015). The mechanism of action of these
compounds frequently involves binding to cysteine residues
and/or GSTP1-1 oligomerization, as it occurs with electrophilic
prostaglandins (PGs) or chlorambucil (Sánchez-Gómez et al.,
2013). Interestingly, the pattern of GSTP1-1 crosslinking

and/or chemical modifications depends on the presence of
both substrates and inhibitors, for which this enzyme can be
considered a converging platform for the effects of drugs and
danger signals arising from oxidative stress or inflammation
(Sánchez-Gómez et al., 2013).

GSTP1-1 also keeps important direct or indirect interactions
with the mechanism of action of drugs such as acetaminophen
(McGarry et al., 2015), acetylsalycilic acid (Baranczyk-Kuzma
and Sawicki, 1997), and other non-steroidal anti-inflammatory
drugs (Orhan and Sahin, 2001). In fact, GSTP1-1 deficiency
correlates with higher acetaminophen toxicity in mice (McGarry
et al., 2015). Also, a “ligandin” role of GSTP1-1 should be taken
into account, since this abundant cytosolic enzyme can sequester
drugs, thus reducing their effective concentrations (Oakley et al.,
1999; Lu and Atkins, 2004).

Interaction of GSTP1-1 with Inflammatory
Mediators
GSTP1-1 also displays multiple interactions with inflammation:
it is induced by proinflammatory stimuli, but this could
exert a negative feedback on the inflammatory response.
GSTP1-1 ameliorates the inflammatory response in several
experimental models of tissue damage or inflammation (Xue
et al., 2005; Luo et al., 2009). Interestingly, several GST, including
GSTP1-1, attenuate the action of the inflammatory mediator
15-deoxy-112,14-PGJ2 (15d-PGJ2; Paumi et al., 2004). Evidence
from our laboratory indicates that overexpression of GSTP1-
1 in rat mesangial cells reduces the capacity of 15d-PGJ2
to activate Peroxisome proliferator activated receptor (PPAR)
transcription factor(s) (Figure 1). Moreover, a reduction in the
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basal PPAR activity is also observed, suggesting the inactivation
of endogenous PPAR agonists or the participation of additional
mechanisms in GSTP1-1 regulation of inflammation.

In turn, electrophilic mediators like 15d-PGJ2 can inhibit
GST activity in several cell types through various mechanisms
(Sánchez-Gómez et al., 2007). Interestingly, cyclopentenone
prostaglandins (cyPG) with dienone structure induce an
extensive intermolecular crosslinking of GSTP1-1 monomers,
involvingmainly Cys47 and Cys101 (Sánchez-Gómez et al., 2013)
that is blocked by GSH or non-metabolizable GSH analogs,
indicating that cyPG-GSTP1-1 interaction is impaired in the
GSH-bound enzyme.

Therefore, the interaction of GSTP1-1 with inflammatory
mediators like cyPG is a two-way process strongly dependent on
GSH availability (Gayarre et al., 2005; Díez-Dacal and Pérez-Sala,
2010), since the enzyme can conjugate electrophilic mediators
with GSH, whereas cyPG can induce the expression and/or
inhibit GST activity in a cell type-dependent manner (Sánchez-
Gómez et al., 2007). Some of these interactions have also been
evidenced for other GST isoforms (Gilot et al., 2002; Kudoh et al.,
2014). These observations illustrate the intricate implications of
GST in inflammation, with the net outcome depending on the
delicate balance of all these factors.

GSTP1-1 in Allergic Reactions
Although GST have been mostly studied in the fields of
oxidative stress and chemoresistance, an interesting role in
allergic reactions is emerging. Endogenous GSTP1-1 is an
important target for haptenation, which has been related to the
induction of certain drug hypersensitivity reactions (Meng et al.,
2014). In addition, genetic variants of several GST isoforms
have been found to associate with allergic processes including
asthma (Tamer et al., 2004), drug eruptions (Ates et al., 2004),
sensitization to thimerosal (Westphal et al., 2000), or allergic
rhinitis (Iorio et al., 2014). In the case of GSTP1-1, both down-
and up-regulations of GSTP1-1 levels have been reported in
association with asthma (Schroer et al., 2011): whereas low
levels could contribute to asthma, oxidative stress associated
with the allergic response could induce GSTP1-1 expression.
These changes in expression may in turn be modulated by
the occurrence of polymorphisms, like Ile105Val (rs 1695;
Dragovic et al., 2014), since this variant has been reported
to display a reduced ability to conjugate several electrophilic
drugs and reactive metabolites to GSH, and may associate with
certain allergic diseases, including atopy and asthma (Hoskins
et al., 2013). Polymorphic forms of GSTP1-1 correlate with
the aggravation of asthma symptoms induced by air pollution
(Su et al., 2013), and increased risk of asthma associated with
acetaminophen (Kang et al., 2013) and exercise (Islam et al.,
2009). In addition, the Ile105 wild type enzyme associates with
enhancement of certain nasal allergic responses (Gilliland et al.,
2004), whereas, according to another study, the Ala114 wild
type enzyme associates with increased risk of atopy (Schultz
et al., 2010). Nevertheless, lack of association of GSTP1-1
polymorphisms with allergic diseases or drug hypersensitivity has
been reported in other studies, potentially due to differences in
the genetic backgrounds of the patient cohorts studied.

Altogether, these findings support the role of GSTP1-1 as a
risk factor in hypersensitivity responses by multiple mechanisms,
given its multifunctional involvement in drug metabolism and
inflammation. Moreover, GSTP1-1 emerges as a key factor to
be considered in future genomic studies related with allergy
development and drug hypersensitivity reactions.

AKR1B1

AKR1B1 (or aldose reductase) is a member of the AKR
superfamily, which comprises multiple enzymes involved in
oxidoreduction of endogenous and exogenous compounds,
including aliphatic and aromatic aldehydes, monosaccharides,
steroids, aromatic hydrocarbons (PAHs), or isoflavonoids, using
NADH or NADPH as cofactors. Structurally, this phase I
metabolizing enzyme (Penning and Drury, 2007) is folded into a
(α/β)8-barrel motif that is highly conserved among the members
of this family and harbors the active site at its C-terminal end (Jez
et al., 1997).

AKR1B1 primary role is to afford constitutive and inducible
protection against toxic aldehydes generated under oxidative
stress (Jin and Penning, 2007; Lyon et al., 2013). AKR1B1 reduces
highly reactive lipid peroxidation products like 4-hydroxy-2-
nonenal (HNE), acrolein, and methylglyoxal, as well as GSH-
conjugates of these aldehydes such as glutathionyl-4-hydroxy-2-
nonenal (GS-HNE) and GS-acrolein (Kolb et al., 1994; Srivastava
et al., 1998; Vander Jagt et al., 2001). For instance, AKR1B1
activation played a cardioprotective role in rat myocardial
ischemia by decreasing the accumulation of lipid peroxidation
products in the ischemic heart (Kaiserova et al., 2008). Similarly,
induction of AKR1B1 expression in response to oxidative stress
plays a role in the antioxidant response (Wang et al., 2012).
AKR1B1 also participates in steroid hormones catabolism and
plays an important role in the regulation of steroid function in
several tissues (Barski et al., 2008).

Nevertheless, AKR1B1 also has a negative side since it
can promote tumor chemoresistance and contribute to the
perpetuation of inflammation and to the development of
secondary diabetic complications (Figure 2).

Interactions of AKR1B1 with Oxidative
Stress
AKR1B1 activity is regulated by oxidative posttranslational
modifications. The highly nucleophilic Cys298, located near
the active site, can be modified by different reactive species
like nitric oxide (NO), HNE, or oxidized glutathione. These
modifications may reduce or increase AKR1B1 catalytic activity,
depending on the modifying moiety, and reduce its susceptibility
to pharmacological inhibitors. Interestingly, NADPH protects
Cys298 from modification by these agents (Chandra et al., 1997;
Del Corso et al., 1998; Petrash, 2004).

AKR1B1 is a target gene of Nrf-2, the master transcription
factor regulating the antioxidant response. Therefore, it is
induced by numerous oxidative stimuli and participates in the
antioxidant response (Kang et al., 2007; Wang et al., 2012).
In consequence, AKR1B1 expression is increased in tissues
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FIGURE 2 | Involvement of AKR1B1 in pathophysiology. AKR1B1 catalyzes the first step in the polyol pathway transforming glucose into sorbitol using NADPH

as cofactor. Under hyperglycemic conditions increased sorbitol and NADPH consumption lead to osmotic and oxidative stress, respectively, that can contribute to

diabetic complications. AKR1B1 metabolizes drugs leading to inactivation and chemoresistance and/or to the generation of toxic metabolites. In addition, AKR1B1

can metabolize PGH2 yielding PGF2α, which may regulate PGE2 production. Transformation of reactive aldehydes or their GSH-conjugates by AKR1B1 can generate

species that perpetuate inflammation and may be involved in allergic responses. The interactions of AKR1B1 with drug metabolism, oxidative stress, inflammation an

allergic reactions support its consideration in studies of drug hypersensitivity.

with elevated oxidative stress, e.g., in alcoholic liver disease or
vascular inflammation (Srivastava et al., 2005), where in some
cases affords a protective role (Kang et al., 2014). Nevertheless,
excessive AKR1B1 activity can lead to NADPH depletion and
oxidative stress.

This occurs in diabetes, where AKR1B1 metabolizes excess
glucose through the polyol pathway. An increased flux through
this pathway can lead to osmotic stress due to the increased
formation of sorbitol, as well as to a redox imbalance by the
elevated consumption of NADPH (Petrash, 2004; Figure 2).
NADPH is a substrate/cofactor for several enzymes involved in
the cellular antioxidant defense, including glutathione reductase
(GSH regeneration), peroxiredoxins and thioredoxin, as well as
for several detoxifying systems (Pollak et al., 2007a). Therefore,
depletion of NADPH changes the NADPH/NADP+ ratio
contributing to oxidative stress and reducing the cellular ability
to recover after an oxidative insult (Pollak et al., 2007b; Ying,
2008).

Interaction of AKR1B1 with Drugs
AKR1B1 is an important drug target due to its implication
in the development of diabetic complications. Therefore, the
search for inhibitors from both synthetic and natural sources
has yielded a wide array of compounds that bind and/or

inhibit the enzyme, with structural information on their binding
arising from molecular modeling or crystallographic studies.
AKR enzymes are involved in chemoresistance because they
metabolize carbonyl-containing drugs, including naloxone and
ketotifen (Endo et al., 2014). The anthracycline antibiotics
doxorubicin and daunorubicin pose an important case, since they
are among the most effective chemotherapic drugs. However,
the reduction of their carbonyl group to their corresponding
alcohol, yielding doxorubicinol and daunorubicinol, respectively,
reduces their efficacy (Veitch et al., 2009). Overexpression
of AKR1B1 inactivates these drugs and leads to resistance
of various tumor cells (Plebuch et al., 2007; Heibein et al.,
2012). Conversely, AKR1B1 inhibition increases the cytotoxic
effects of the anticancer agents doxorubicin and cisplatin in
HeLa cervical carcinoma cells (Lee et al., 2002), and the AKR
inhibitors PGA1 and AD-5467 improve the effectiveness of
doxorubicin in lung cancer cells (Díez-Dacal et al., 2011; Díez-
Dacal and Pérez-Sala, 2012). Natural variants of certain AKR
enzymes have been identified that present a reduced capacity to
metabolize daunorubicin and doxorubicin in vitro (Bains et al.,
2008, 2010). There is little information on the involvement of
AKR1B1 metabolites in hypersensitivity reactions. Nevertheless,
daunorubicinol has toxic effects per se because it induces
cardiomyopathy (Minotti et al., 2004).
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Interaction of AKR1B1 with Inflammatory
Mediators
AKR1B1 plays an important role in different inflammatory
diseases such as atherosclerosis, sepsis, asthma, uveitis, and colon
cancer. AKR1B1 can be induced by proinflammatory stimuli
(Bresson et al., 2012). Transcription factors Nuclear factor (NF)-
κB and AP-1 activate the AKR1B1 promoter through binding to
the osmotic response element (ORE; Iwata et al., 1997; Lee et al.,
2005) and the phorbol ester response or AP-1 sites, respectively
(Penning and Drury, 2007).

Although AKR1B1 can play a protective role by detoxifying
acrolein or HNE, it can also play a positive/amplifying role
in inflammation through various mechanisms (Figure 2). In
particular, metabolism of HNE or its glutathione conjugate
GS-HNE can result in products, such as 1, 4-dihydroxynonene
(DHN) and glutathionyl-1,4-dihydroxynonane (GS-DHN),
which are still toxic and promote activation of phospholipase
C (PLC)-NF-κB cascades perpetuating inflammation (Ramana
et al., 2006; Srivastava et al., 2011). Thus, inhibition of AKR1B1
reduced NF-κB-dependent inflammatory markers, and the
synthesis of TNF-α stimulated by hyperglycemic conditions, and
of inflammatory mediators like NO and PGE2 (Ramana and
Srivastava, 2010).

Interestingly, AKR1B1 displays PGF2α synthetizing activity
through which it can regulate PGE2 production (Bresson et al.,
2012), thus contributing to the modulation of inflammation.
In turn, AKR1B1 can bind several PG, including PGE1 and
PGE2 and their cyclopentenone products, PGA1 and PGA2,
which results in inhibition of the enzyme (Díez-Dacal et al.,
2016). However, whereas binding and inhibition by PGE
appear to be fully reversible, cyPG form a Michael adduct
that seems irreversible under certain conditions. Nevertheless,
concentrations of GSH in the cellular range (millimolar) elicit a
retro-Michael reaction, a fact that contributes to explain themore
intense modification and inhibition of some AKRs detected in
GSH-depleted cells (Díez-Dacal et al., 2011).

AKR1B1 in Allergic Reactions
Early reports linking AKR1B1 to hypersensitivity provided
fragmented pieces of evidence. The AKR1B1 inhibitor sorbinil,
not currently used in clinical practice, elicited severe adverse
effects, including hypersensitivity attributed to protein adducts
produced by sorbinil metabolites (Maggs and Park, 1988).
Interestingly, lodoxamide tromethamine, and several anti-allergy
drugs, inhibit AKR1B1 (White, 1981), providing additional
possibilities of interaction with the hypersensitivity response.

Recent studies using pharmacological or genetic depletion
establish a positive role for AKR1B1 in allergy. In mice, AKR1B1
inhibition reduced airway inflammation, hyperresponsiveness
and IgE and Th2-cytokine levels in ovalbumin and ragweed

pollen extract-induced asthma (Yadav et al., 2009, 2011a).
Furthermore, studies in AKR−/− mice also support a role
of AKR1B1 in the pathogenesis of asthma and allergic
rhinitis (Yadav et al., 2011b, 2013a). Moreover, the efficacy
of AKR1B1 inhibitors in mouse models supports their use
to treat these allergic conditions (Yadav et al., 2011b, 2013a).

In mice sensitized with ovalbumin, AKR1B1 inhibition with
fidarestat prevented the airway remodeling observed in chronic
asthma by blocking the tumor growth factor β (TGFβ),
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Protein
kinase B (PKB/AKT)/Glycogen synthase kinase-3 beta (GSK3B)
axis (Yadav et al., 2013b).

The mechanisms linking AKR1B1 with allergy are not
fully understood. Nevertheless, it could be hypothesized that
it provides coactivators of the allergic response through its
contribution to oxidative stress or to the generation of
proinflammatory mediators, like aldehyde conjugates.

In contrast to the numerous studies on GSTP1-1
polymorphisms in allergic patients, most genetic studies on
AKR1B1 have been directed to explore its association with the
development of diabetic implications (Demaine, 2003), and very
little information exists on the impact of AKR1B1 variants on
drug metabolism or hypersensitivity reactions. Nevertheless,
given the fact that an increased glucose flux through the polyol
pathway leads to redox imbalance, it would be interesting to
assess the involvement of AKR1B1 variants in oxidative stress. In
addition, the recent evidences on the involvement of AKR1B1 in
allergy grant its study in association with these processes.

In summary, AKR and GST enzymes are emerging as
important regulators of the balance of inflammatory mediators.
This, together with their association with allergic processes and
their ability to metabolize and be covalently modified by drugs
makes them attractive candidates to explore their involvement
not only in allergy in general but in drug hypersensitivity.
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