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Interest is increasing in the development of non-animal methods for toxicological

evaluations. These methods are however, particularly challenging for complex

toxicological endpoints such as repeated dose toxicity. European Legislation, e.g., the

European Union’s Cosmetic Directive and REACH, demands the use of alternative

methods. Frameworks, such as the Read-across Assessment Framework or the Adverse

Outcome Pathway Knowledge Base, support the development of these methods. The

aim of the project presented in this publication was to develop substance categories

for a read-across with complex endpoints of toxicity based on existing databases. The

basic conceptual approach was to combine structural similarity with shared mechanisms

of action. Substances with similar chemical structure and toxicological profile form

candidate categories suitable for read-across. We combined two databases on repeated

dose toxicity, RepDose database, and ELINCS database to form a common database

for the identification of categories. The resulting database contained physicochemical,

structural, and toxicological data, which were refined and curated for cluster analyses.

We applied the Predictive Clustering Tree (PCT) approach for clustering chemicals

based on structural and on toxicological information to detect groups of chemicals with

similar toxic profiles and pathways/mechanisms of toxicity. As many of the experimental

toxicity values were not available, this data was imputed by predicting them with a

multi-label classification method, prior to clustering. The clustering results were evaluated

by assessing chemical and toxicological similarities with the aim of identifying clusters

with a concordance between structural information and toxicity profiles/mechanisms.

From these chosen clusters, seven were selected for a quantitative read-across, based

on a small ratio of NOAEL of the members with the highest and the lowest NOAEL in

the cluster (<5). We discuss the limitations of the approach. Based on this analysis we

propose improvements for a follow-up approach, such as incorporation of metabolic
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information and more detailed mechanistic information. The software enables the user

to allocate a substance in a cluster and to use this information for a possible read-

across. The clustering tool is provided as a free web service, accessible at http://mlc-

reach.informatik.uni-mainz.de.

Keywords: non-animal methods, QSAR, read across, Predictive Clustering Tree (PCT) method, toxicological and

structural similarity

INTRODUCTION

At present, there is increasing interest in developing alternative
methods for toxicological evaluations that do not require
the testing of animals. In addition, particularly in Europe,
several legislative imperatives drive an assessment of chemicals
and products based on animal-free toxicological methods. For
example, animal testing is banned in the cosmetic legislation
and non-animal testing methods have to be used to fulfill the
legal request for safe products (7th amendment to the European
Union’s Cosmetics Directive 76/768/EE).

Hence, both legislations underscore the need for non-animal
tools and methods predicting the inherent toxic properties of
chemical substances.

In REACH (Registration, Evaluation, Authorization, and
Restriction of Chemicals), (Regulation (EC) No. 1907/2006),
chemical risk assessment requires providing information on
chemicals, the extent of which depends on the yearly production
volume of the chemical. Whereas, the information required is
clearly defined, the tools by which the information is gathered
remain open and the legislative text [Annex XI of Regulation
(EC) No. 1907/2006] stipulates only that animal experiments
should be avoided whenever possible. Promising approaches,
like grouping of substances and read-across (ECHA, 2014) are
described under Section 1.5 of the above-mentioned Annex XI of
Regulation (EC) No. 1907/2006. In this legislative text, similarity
is defined based on a common functional group, common
precursor or degradation product or a constant pattern in the
potency of properties across the category.

Several guidance documents and their discussion (OECD,
2007a; ECHA, 2008, 2012, 2015; NAFTA TWG, 2012; Patlewicz,
2014) describe the principles but also the challenges of
read-across approaches in detail. A quantitative read-across
encompasses three steps (i) a definition on which similarity the
search for analogs is based (physicochemical properties, chemical
structure, shared mechanism, or a combination) (ii) a search
for analogs with experimental data for the endpoint of interest
(iii) a selection of the most similar substances out of step 1 and
derivation of the missing point of departure for risk assessment.

In the context of defining a shared mechanism, the concept
of adverse outcome pathways (AOPs)1 is becoming increasingly

1In this paper we use the expression generic target organ to indicate that there

is the target organ known (i.e., liver), however no specific effect (e.g., liver

weight increase) was observed. The expression “specific target-organ effect” is

used when a specific effect is described (e.g., liver necrosis). MOA means mode

of action which indicates a description of the route by which the adverse effect

is mediated, whereby however several intermediate steps are not known. The

expression fingerprint is used to indicate a chemical or chemical group specific

toxicological pattern with toxicological effects in several organs/tissues.

important (OECD, 2011). This concept has been developed as
a structured approach to portray the linkage between initiating
molecular events and the relevant adverse outcome at organism
level (National Resarch Council/Committee on Toxicity
Testing Assessment of Environmental Agents, 2007). AOPs
assemble existing information into a concept, which includes
knowledge on molecular interactions, cellular metabolism, and
consequences of disturbances at check points.

Recently, after the Guidance Document on Developing and
Assessing AOPs (OECD, 2013), OECD established an AOP
knowledge base in September 2014. Furthermore, this approach
has already been used to categorize nitrobenzene for their toxicity
endpoint (Sakuratani et al., 2013b).

The combination of chemical structural similarity with shared
mechanism of action was the basic conceptual approach of
the project, which we will present in this publication. The
aim of the project was to establish substance categories for
complex endpoints of toxicity after repeated dosing.We explored
several innovative strategies for setting up categories that would
enable an estimate of repeated-dose toxicity supporting a read-
across approach. Two databases were established containing
physicochemical data including structure and molecular weight
as well as toxicity data from repeated-dose testing. We adapted
methods for clustering chemicals based on structural and on
toxicological information by detecting groups of chemicals with
similar toxic profiles and pathways/mechanisms of toxicity. We
have evaluated the chemical clustering results, by assessing their
chemical and toxicological similarities with the aim of identifying
clusters with a concordance between structural information and
toxicity profiles/mechanisms. The resulting clusters are discussed
in detail in this publication and can be used for (quantitative)
read-across. The overall tool is provided as a free web service2.

MATERIALS AND METHODS

Databases
Within this project the clustering is performed on a dataset
consisting of data coming from a database on repeated dose
testing of industrial chemicals (ELINCS) and the RepDose
database3.

Data From ELINCS
The sources of the data are the regulatory documents from
ELINCS (European List of Notified Chemical Substances),
which is the new substance notification of the Chemicals Act
(European Commission, 2009). The repository comprises new
industrial chemicals registered in Europe between 1982 and 2008,

2accessible at http://mlc-reach.informatik.uni-mainz.de
3http://www.fraunhofer-repdose.de
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which have been tested in subacute and/or subchronic studies.
Practically, data on the substances were stored in the archive
of the Federal Institute for Risk Assessment (BfR). The data
comprise physicochemical and toxicological information. Access
to the data from this source was restricted and regulated by a
contract of confidentiality (Kalkhof et al., 2012).

This contract allowed the use of the data on the premise
that the structures and chemical identity are held confidentially.
The analysis of the confidential data was performed therefore
only by the authorized authors. The data are of high quality
because they have been obtained under defined internationally
accepted experimental OECD-standards (OECD, 1998a,b and
former versions). In addition, as a rule, regulatory scientists of
an EU member state reviewed the studies and their results and
assigned reliabilities. The full ELINCS repository is available to
all European Competent Authorities for chemical assessment.

To enable the analysis of the ELINCS data, the studies were
stored in a database format in accordance to the RepDose
database. Only studies performed with chemical substances with
a purity ≥90% were entered in this final database. The purity of
90% was also applied as prerequisite for further study selection in
this analysis. Studies with dermal or inhalation route of exposure
were not available in the digital version of ELINCS data.

Overall, the full database includes 540 substance entries.
All studies are compliant with the OECD guidelines 407 and
408 (OECD, 1998a,b and former versions). ELINCS tabulates
substances by the registration number with the standard format:
xx-xx-xxxx. The first digits represent the year of notification,
followed by two digits representing the country of notification.
The last four digits allow sequential numbering of individual
dossiers (Barabair et al., 2009).

Data From the RepDose Database
The RepDose database is a relational database on toxicological
animal testing after repeated administration. Information
from publically available peer-reviewed reports and original
publications on existing organic chemicals with defined
structures (no polymers, no mixtures) is collected in the
RepDose database. Chemicals were selected if evaluations exist
e.g., by German MAK committee, in EU Risk Assessments on
existing chemicals, in OECD Existing Chemicals Screening
Information Data Sets (SIDS), or in the eChem-Portal (REACH).
In addition, projects like the development and evaluation of
TTC concepts with a special focus on inhalation application
contributed information to the database. Originally, the database
was funded by a CEFIC LRI project with the basic idea of
providing a user-friendly tool for setting up structure-activity
relationships as well as other supporting methods for a simplified
and scientifically sound risk assessment (Bitsch et al., 2006). The
data within the RepDose database are organized by information
types: physicochemical properties of the test chemical, study
design including guideline compliance, purity and scope of
examination, observed effects at the related doses [effect Lowest
Observed Effect Level (LOELs)] based on glossaries for organs
and related effects. Overall, the RepDose database contains
about 850 chemicals with 2900 related studies of which about
400 studies were selected as being guideline-conform to oral

or inhalation subacute or subchronic studies with rats. The
guideline compliance is coded in the RepDose database analog
to Klimisch Codes with A—guideline conform—and B—minor
deviations from guidelines—being considered for this project.

Dataset
As mentioned above, the following selection criteria were applied
to compile a consistent dataset out of the two sources:

– duration is subchronic (84–99 days) or subacute (28–32 days),
route of application is oral or inhalation.

– studied species is rat.
– studies are highly reliable as conducted in conformity to
(current) guidelines.

– purity of the substances is at least 90%.

The organization of toxicological data in both databases follows
the same basic structure; the data are organized by an organ
toxicity split into subgroups according to similarities at the
phenotypic and the mechanistic level. All target organs and
effects are named according to a thorough chosen and curated
glossary.

The final dataset comprises 1022 studies (64 both, 557
subacute, 278 subchronic) for 899 organic industrial chemicals.
The toxicological information of a chemical is taken from all
studies available.

Curation and Refinement of the Dataset
We developed a common glossary for all endpoints, which were
applied to the toxicological findings.

In developing the common glossary, it became obvious that
there was a conflict between the level of granularity and the
density of data in the matrix and a compromise had to be found.
The following procedure was followed:

At the beginning, LOELs for up to 460 different organ-effect-
combinations were extracted from the databases. The results were
characterized by a very sparse matrix with many missing LOELs,
where there were different reasons for missing LOELs such as no
finding, not investigated and no information available. To reduce
the number of missing values we introduced first a cut-off of
5% only organ effect combinations that occur at least for ≥5%
of all substances that were included in the dataset. In a second,
related step, organ-effect combinations were merged according
to their toxicological relationship and based on toxicological
expert knowledge. For illustration liver-degeneration, liver-
hypertrophy, liver-inflammation-regeneration, and remaining
liver effects were aggregated to liver effects and effects on
erythrocytes, hematocrit, and hemoglobin were collected as rbc
effects. Thereby, a plausible compromise between specific but not
too sparse information was obtained. In the final dataset, every
substance is characterized by 28 endpoint/organ combinations.

In case ofmultiple LOELs for one study due to different organs
affected the lowest LOEL was taken and was declared the study
LOEL.

Discretization of Data
In addition to the toxicological profile, we decided to include
the toxicological potency using LOEL values. In a further step,
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these LOEL values were categorized into high-potency and low-
potency as described in this section.

One of the challenges of modeling in vivo data is the
high uncertainty of experimentally derived endpoint values.
Moreover, aggregating the dataset from numerous studies
introduces more noise. Hence, to simplify modeling, we
converted the numeric data (LOELs) to binary nominal data
with class values for high-potency and for low-potency for each
endpoint (organ-effect combination). As toxicological effects are
related to the number of moles present at the site of actions,
the doses were converted to moles of chemicals/kg bw/day
taking into consideration the molecular weight of the chemicals.
We developed a clustering-based discretization method that
automatically detects a threshold specifically for each endpoint:
Compounds with a LOEL lower or equal to this threshold
are categorized as high-potency compounds; compounds above
this threshold are categorized as low-potency compounds. An
example is given for red blood cells in Figures 1A,B. The main
idea of our approach is to adjust the threshold to the existing data
distribution.

Our technique produces a balanced ratio of high-potency and
low-potency class values, which is often preferable for modeling
(Japkowicz and Stephen, 2002). Therefore, we manually limit
the threshold to a fixed range of 1.5–2.0 µmol (for subacute
studies). Subsequently, our clustering method determines a
threshold dynamically within this range, in contrast to the rigid
threshold that is applied by, e.g., Equal Frequency Discretization
(Dougherty et al., 1995). This method yields a mean ratio of 49%
high-potency compounds in the overall dataset. The distributions
of LOELs for effects on red blood cells are shown as example in
Figures 1A,B.

The dataset used in this publication is composed of subacute
studies with study durations of 28–32 days and subchronic
studies with 84–99 days. Overall the distribution of our data
supports the assessment factors proposed by ECHA (2012)
showing a factor two between subchronic and subacute effects.
The analysis of effects on red blood cell is given as example
(Figures 1A,B). Hence, in the further processing of the data we
have adjusted the threshold for subchronic studies according
to ECHA guidelines to take the increased study duration into
account (ECHA, 2012).

Handling of Missing Values
As described above, the dataset has been compiled from various
studies for a multitude of chemicals. This implies that not all
endpoints were affected and/or tested for every chemical. In total,
82% of the compound endpoint pairs are “missing,” which means
that information on these endpoints was not available (Figure 2).
To make the most of the available information and to enable
clustering in the first place, we are using a method for so-called
imputation (Schafer, 1997), i.e., a method substituting missing
values by “best guesses.” The imputed values are chosen, taking
advantage of known variable correlations. One approach for
imputation is employing machine learning models, i.e., learning
a classifier to predict the missing values, which has been shown
to yield good results (e.g., Jerez et al., 2010). As our dataset
has multiple nominal endpoint values for each compound,

a Multi-Label-Classification (MLC) algorithm is required that
predicts multiple endpoint values simultaneously (Tsoumakas
and Katakis, 2007). We have selected Ensemble of Classifier
Chains (Read et al., 2011) as MLC model to predict the missing
values in our dataset. The imputed values are exclusively used
as input for the clustering algorithm (i.e., the PCT algorithm is
applied to a “filled up” version of the dataset without missing
values). The analysis of the resulting clusters is restricted to the
non-imputed data including missing values.

Features
Features were selected according to their toxicological relevance
in an iterative process during cluster evaluation. The features
employed by the PCT serve as description for the resulting
clusters. Hence, we chose a combination of structural features
with the two intuitive physicochemical (PC) descriptors
molecular weight and log P (computed with Open Babel
O’Boyle et al., 2011). A range of additional PC descriptors were
tested, but they were finally deselected by expert judgment to
retain interpretability. We decided to use lists of pre-defined
structural features instead of computing all or a subset of relevant
substructures in a given dataset of structures. The predefined
structural feature lists include functional groups and other
known structural alerts and have further the advantage that a
short description is provided for each structural feature. We have
composed three lists that are included in Open Babel to create
fingerprints. The lists include 166 (MACCS keys; Durant et al.,
2002), 55 (FP3; Haider, 2010), and 307 (FP4) structural features
each. The fact that some structural features occur in more than
one list does not affect the building of the PCT model.

Clustering
On the basis of this final dataset, we determine chemical
categories by applying the method of Predictive Clustering Trees
(PCTs; Blockeel and De Raedt, 1998). This method splits up the
dataset into clusters of similar compounds, while at the same
time it can also provide a prediction model that assigns untested
compounds to the detected clusters.

PCTs are part of a general framework, called predictive
clustering, that unifies clustering and prediction. As in clustering,
predictive clustering seeks clusters of examples that are similar
to each other and dissimilar to the examples in other clusters.
In addition, a predictive model is associated to each cluster,
which can be used to assign new compounds to clusters and
to provide predictions for them. PCTs can be considered as a
generalization of standard decision trees and yield a hierarchical
clustering tree, each tree node corresponding to a cluster. The
root node of the tree corresponds to a cluster that contains the
entire dataset, and is recursively partitioned into smaller clusters
while moving down the tree. The leaves represent the clusters at
the lowest level of the hierarchy and each leaf is labeled with its
cluster’s prediction. In each node, a test is applied that divides
the compounds of the current cluster into two sub-clusters. For
example, it could be tested whether a chlorine atom occurs in the
chemical. Thus, a test in a node not only represents a decision
criterion, but also a description of the sub-clusters formed in

Frontiers in Pharmacology | www.frontiersin.org 4 September 2016 | Volume 7 | Article 321

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Batke et al. Chemical Categories

FIGURE 1 | Histogram of compounds according to subacute (A) and subchronic (B) LOEL values for the endpoint “red blood cells.” For this example, the

discretization approach yielded a threshold of 1.57 mmol (A) and 0.78 mmol (B, half of the subacute threshold).

this node. PCTs are induced by a standard procedure for the
top-down induction of decision trees (Breiman et al., 1984).

The PCT approach takes as input a set of instances consisting
of (i) the descriptive attributes, which are to be used in the
cluster description, i.e., the tests that appear in the PCTs’ node
and (ii) the target attributes which are to be predicted from the
descriptive attributes. In our case, the instances represent the
chemicals, the descriptive attributes denote structural properties
and the target attributes the discretized toxicological properties
(low or high potency).

The approach, which included several iterations, can be
described as follows. The main loop searches for the best
acceptable test, i.e., the best structural attribute value that can
be put in a node of the tree. To select the best test, the method
scores the tests according to the reduction in variance they induce
on the instances associated to the node. PCTs compute cluster
variance as the sum of the squared pairwise distances between
the toxicological values of (sub-)clusters. At each node of the

tree, the test that maximizes the variance reduction is selected.
This is expected to maximize cluster homogeneity with respect
to the target attributes and improve the predictive performance
of the tree. If the best test is acceptable with respect to a stopping
criterion, the algorithm creates a new internal node and calls itself
recursively to construct a sub-tree for each cluster in the partition
induced by the instances. If no acceptable test can be found, the
algorithm creates a leaf. The stopping criterion used in this work
is inspired by that of standard decision tree learners: the minimal
number of compounds in a leaf is set to three, and a statistical
F-test checks whether the reduction of variance of the toxicity
values obtained with a split is significant at a (quite tolerant)
significance level of 0.125. Both parameter values have been set
by expert judgment. To produce a PCT model with a single
clustering tree, we have disabled ensemble settings that would
create multiple trees (bagging or random forests). Moreover,
we have prevented the algorithm from truncating the tree after
model building by disabling post-pruning.
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FIGURE 2 | Compound histogram for each endpoint in the dataset. Eighty-two percent of the LOEL values are missing. The discretization approach produced a

balanced class distribution (49% high-potency compounds).

The resulting PCT represents a clustering that is homogenous
with respect to the target attributes and the nodes of the tree
provide a symbolic description of the clusters (Figure 3). The
model can be applied to unseen compounds on a freely available
web page4.

Visual Presentation and Analytics
The 3D viewer CheS-Mapper (Gütlein et al., 2012) was applied
and extended for inspection of the clustering results (Figure 4).
It is a freely available application that embeds a dataset of
chemical compounds into 3D space, so that compounds with
similar feature values are located close to each other (http://
ches-mapper.org). CheS-Mapper is normally used to calculate its
own features and clusters. However, in this case, we explored
the dataset with precomputed features and cluster assignments.
The tool was employed to inspect the structural similarity
of cluster compounds. Moreover, dedicated highlighting and
filtering functions allow analyzing how the rat toxicity values are
distributed within the dataset and/or single clusters.

We have further extended CheS-Mapper with a plugin that
supports hierarchically clustered data. An interactive tree view

4http://mlc-reach.informatik.uni-mainz.de

(Figure 3) is provided alongside the 3D viewer. The selection of
the current compounds or clusters is dynamically synchronized
in both views.

Calculation of the “Toxic Value”
In order to obtain a unidimensional characterization of the
substance toxicity, we aimed at condensing all the information
on a substance to derive a single value. To this end, grades
were assigned to each of the toxicological endpoints, whereby
0 characterized a, for whatever reason, missing toxicity, 1 a
low potency of toxicity, and 2 a high potency of toxicity (as
described above). By adding up the grades we obtained a
single value named “toxic value.” At the end, every substance
had its “toxic value.” We used this value to investigate
the relationship between molecular weight, log P and the
toxicity.

Assessment of Clustering Results with
Respect to Toxicological Plausibility
The assessment of the clustering results has been done in
a two-dimensional approach. First, the homogeneity of the
chemical structures was considered, using chemical expertise.
The structural similarity in a cluster can be expressed in
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FIGURE 3 | Excerpt from the PCT clustering result, visualized with the

tree view implemented in the CheS-Mapper tool (Gütlein et al., 2012).

One structural feature is used at each level of the tree to divide chemicals into

sub-groups with high toxicological similarity.

percent of chemicals having a common structural feature
and the toxicological similarity can be assessed based on the
number of chemicals in the cluster with one or more common
toxicology endpoints or target organs for toxicity. The similarity
in structure compared to the lead structure in the cluster,
was expressed as a percentage. Secondly, we looked at the
toxicological similarity, driven by toxicological expertise. The
similarity in toxicity compared to the lead toxicity in the cluster
was expressed as a percentage. We categorized the clusters in
the following way. Clusters were Category 1 when a common
endpoint (100% toxicological similarity) and well-defined related
structural features (100% structural similarity) were present
including knowledge about the mode of action. Category 2
are clusters with well-defined related structural features (100%
structural similarity) and a common toxicological profile (of
75 and up to 99%) and Category 3 are clusters with well-
defined related structural features (100% structural similarity)
and a less well expressed common toxicological profile (up
to 74%). In addition, an assessment of substances with high
toxicological similarity but low structural similarity has been
performed.

RESULTS

General Description of the Dataset
The database contains 899 chemicals with a wide range
of physicochemical properties and a broad spectrum of
toxicological endpoints. The molecular weight of substances
ranges from 32 to 1297 g/mol with a median value of 215 (25th

percentile of 147; 75th percentile 315); the log P from −17.4
to 12.8 with a median value of 2.4 (25th percentile 1.5; 75th
percentile 3.9).

In general, the main target organs for toxicity are liver (with
toxicological results in 51% of the chemicals), kidney (14%),
and CNS (11%). The toxicological profile of single clusters is
defined by a combination of organs and endpoints representing
the characteristic toxicological fingerprint of the cluster. The
analysis of the most common target organs per cluster revealed
that over 50% of the clusters have liver as major common
target organ. Thus, most of the chemicals in these clusters
have effects on liver histopathology, liver weight and/or clinical
chemistry related to liver toxicity. The common toxicological
fingerprint might be more specific due to additional specific
effects.

The toxic values ranged from zero to 32 points. Among
the substances in the upper quartile of toxic values are
9,10-anthraquinone, acrolein, p-chlorobenzotrichloride,
N,N′-diphenylguanidine, 2-mercaptobenzimidazole,
trinitrofluorenone, tetrahydro-2-furanmethanol and 2,2′-
dimethyl-4,4′-methylenebis(cyclohexylamine). These substances
are obviously not structurally related.

Relationship between Physicochemical
Data and Toxicity
In evaluating the impact of physicochemical data on toxicity,
we analyzed the relationship between molecular weight, log P
and toxic values. As it can be seen from the three-dimensional
graphical analysis in Figure 5, only few substances with high
molecular weight (above 500 g/mol) had a toxic value above the
mean (<5%). All highly toxic substances (defined as a toxic
value above the upper quartile of 24 points), with only one
exception, have a molecular weight below 400 g/mol. Thus,
molecular weight is a predictor to discriminate between toxic and
less toxic substances. When analyzing the log P it evolved that it
has a lower discriminatory power. However, it can be said that
in this database highly toxic substances have a log P between
0 and 5. The log P values were estimated as measured values
(same validated method resulting in the same systematic error)
were not available for all substances. Thus, for the correlation
analysis it was judged more acceptable to use estimated
values.

Clustering Results and Toxicological
Similarity
Clustering assigned the 899 chemicals to 119 clusters. The mean
cluster size is 6 chemicals per cluster, ranging from 3 to 24
chemicals per cluster. To assess the outcome of the clustering,
the members of a cluster were categorized according to their
chemical structural similarity and toxicological similarity.

From the 119 clusters, 29 clusters (24.4%) contain chemicals
with a structural similarity of 100%. Among these, chemicals
of 8 clusters have a toxicological similarity of 100% (category
1), in an additional 9 clusters the toxicological similarity is
75% and above (category 2), and finally 12 clusters have a
less well-expressed common toxicological profile (up to 74%,
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FIGURE 4 | Screenshot of CheS-Mapper showing cluster 32 that includes eight compounds (nitrotoluenes and dimethylnitrobenzenes). In the upper left

corner, all clusters are listed and the members of the selected cluster 32 are shown. On the right side of the application screen, the user can select features for which

the frequencies are depicted, in this example the frequencies of the discretized organ-effect combinations (0, low potency; 1, high potency, missing) are displayed. In

the lower left corner of the screen, features are given to change and adopt the molecular visualization.

FIGURE 5 | 3D (A) and 2D (B) scatterplots to visualize the relationship between physicochemical properties (molecular weight and log P) and toxicity.

The 3D plot has an additional axis to separate compounds with identical physicochemical values according to their toxicity. There are few highly toxic compounds with

high molecular weight. There is no monotonic correlation between log P and toxicity, but the scatterplot shows that highly hydrophilic substances (log P below 0) and

highly lipophilic substances (log P above 5) exhibit a low toxicity.

category 3; Supplementary Table 1). Thus, overall, the clustering
process resulted in toxicological meaningful clusters in 60% of
the clusters with a structural similarity of the cluster members of
100%.

Selection of Clusters for Qualitative and for

Quantitative Read-Across
Among the clusters with 100% structural similarity, 8 clusters
are assessed as having 100% toxicological similarity (category 1).
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TABLE 1 | Proposed clusters for quantitative read-across with a ratio of geometric mean/lower end of the range ≤5.

Number of Structural Common LOEL geometric LOEL Ratio (geometric mean

cluster feature target mean [mmol] range [mmol] /lower end of the range)

61 Azoles Kidney 0.52 0.49–0.59 1.1

13 Methylphenols CNS 0.58 0.32–1.39 1.8

107 Alcohols kidney weight, liver weight 0.03 0.01–0.09 3

53 Nitroaromates CNS 0.77 0.24–2.01 3.2

16 Aromatic phenols without other substituents Liver 0.87 0.23–13.50 3.8

76 Nitrophenols and -anilines Liver 0.21 0.05–0.66 4.2

44 Carboxylether Liver 1 0.22–3.85 4.5

75 Glycolether Liver, kidney 0.75 0.14–2.84 5

These 8 clusters of category 1 can be seen as candidates for a
qualitative read-across. Furthermore, in addition, 9 clusters of
category 2 and further 11 clusters of category 3 (100% structural
similarity/less than 75% toxicological similarity) were evaluated
with respect to the range of LOELs observed in the cluster.

When analyzing the LOELs, the ratio between the upper
and the lower end of the range varied between 1.2 and 63,875,
indicating that a quantitative read-across is not justified even for
each cluster of category 1. On the other hand, there are clusters of
category 2 and even category 3 (chemical similarity/ toxicological
similarity below 75%) with a ratio of below 15 between the upper
and the lower end of the range (Supplementary Table 1). In
Table 1we have listed the clusters with a low ratio (<15) between
the upper and the lower end of the range of LOELs which we
would like to propose as candidates for a quantitative read-across.

So far, the clustering results were evaluated on the
general cluster descriptions (similarity and quality) and
their distribution. However, it should be considered that
substances with one common structural feature (e.g., reactive
group) but different additional structural features (e.g.,
hydrophobic/hydrophilic side chains) could exhibit different
toxic effects. Therefore, in an additional analysis, it was evaluated
if and how the clustering algorithm separated such compounds
according to their differences in toxicity. We performed this
analysis for two substance groups, nitro compounds and alcohol
dehydrogenase substrates such as ethylene glycols and alcohols.

Clusters Identified for Specific Structural
Features
Nitro-Group Containing Compounds
Within the dataset, 64 compounds contain a nitro-group. Two
structures are aliphatic nitro-compounds clustering separately
and are not discussed in the following. Further three structures
contain a nitro-group bound to other heteroatoms and also
cluster separately (Cluster 42). The remaining 59 structures
cluster according to the clustering tree depicted in Figure 6.

The clustering tree assigns the 59 structures into eight clusters
based on their structural properties and their differences in
toxic effects. The PCT algorithm selects a discriminant structural
feature at each possible node of the tree, but separates the
substances only into two groups if their toxicity profile is

FIGURE 6 | Decisions to be taken for clustering of nitro-group

containing compounds [defined by the SMART-Code ON(O)C]. At each

node the feature (structural feature, molecular weight, or log P) with the

highest discriminative power is selected and the subsequent clusters are

formed if their toxicity profiles are significantly different (p = 0.125). If no

selective feature resulting in a significantly different toxic cluster can be

identified, the clustering terminates by a final cluster, e.g., Cluster 49. The

following structural features as defined in the OB FP4 list (O’Boyle et al., 2011)

are used in this clustering tree: HBD, hydrogen bond donors; OC(N)C,

Aliphatic O joined by any bond to C with joined with N and C; C-O, C-O single

bond; 5M ring, any five-membered rings (the explanations for the SMARTS

codes of the branches can be taken from the Supplementary Material).

significantly different. Otherwise the possible node will form a
leaf of the tree, in other words, it becomes a final cluster.

The resulting nitro-group containing clusters are
characterized for their differences in structure and toxicity
in Table 2. In addition to the automated clustering, cluster
32 can be split into more toxic nitrotoluenes and less toxic
dimethylnitrobenzenes (Figure 6). Overall, two relatively toxic
clusters with LOELs below 0.1mmol/kg bw/d are identified.
Another four clusters with LOELs about 0.1–1 mmol/kg bw/d
have a medium toxicity and further 3 clusters with LOELs above
1mmol/kg bw/d can be regarded as having a low toxicity. The
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TABLE 2 | Characterization of clusters containing nitro compounds: differences in structure and toxicity profile (major targets and geometric mean LOEL

values).

Cluster Number of Structure Mean molecular Major targets LOEL [mmol]

number chemicals weight of the cluster (geometric mean;

range)

Male

reproductive

Spleen Liver Hematopoiesis/ Mixed

organs anemia toxicity

2 16 Nitroanilines,

nitrobenzenes

217 ± 82 + + + 0.05 (0.0005–2.00)

111 5 Nitroaromatics

(containing 5M-ring)

302 ± 139 + + 0.06 (0.003–0.39)

49 15 Nitroaromatics

(heterogenic side

chains)

330 ± 139 + + + 0.21 (0.002–2.94)

32a 4 Nitrotoluenes 141 + 0.26 (0.10–0.40)

87 3 Nitrophenol,

nitromethylanilin,

nitrobenzeneamine

143 ± 8 + 0.40 (0.10–1.30)

56 4 Heterogenic structures 224 ± 22 + 0.41 (0.07–0.82)

79 5 Nitroaromatics (at

least two side chains)

238 ± 35 + + + 1.13 (0.50–2.80)

32b 4 Dimethylnitrobenzenes 151 + 1.61 (1.00–2.00)

53 3 Nitroaromatics 227 ± 38 + 2.35 (1.20–4.00)

+ denotes the presence of findings for this target.

toxicological profiles of these clusters differ not only in potency
but also for the affected targets, e.g., nitroanilines show a high
toxicity to male reproductive organs, spleen and hematopoiesis,
whereas nitroaromatics with a 5 molecular ring in addition
target liver, hematopoiesis and induce anemia. Nitroaromatics
with heterogenic side chains as collected in Cluster 49 do
not induce anemia but show some mixed toxicity in male
reproductive organs and spleen. From a toxicological point of
view, the resulting 9 clusters can be divided into 5 clusters with
specific toxicity to male reproductive organs, spleen, liver, and/or
hematopoiesis/anemia and other 4 clusters exhibiting a mixed
and unspecific toxicity.

In the literature for nitro-containing compounds, several
targets/modes of action are described: erythrocytes, testis, liver,
and oxidative phosphorylation. The HESS system provides
an overview on the different modes of action and describes
structural boundaries based on active chemicals collected in
the respective database. Overall, five different adverse outcome
pathways to predict the mode of action of nitrobenzenes are
contained in the HESS system (Sakuratani et al., 2013a,b):
hemolytic anemia with and without methemoglobinemia,
hepatotoxicity based on two different mechanisms, and testicular
toxicity, as well as the model on energy metabolism dysfunction
of nitrophenols/halophenols. An overview on the differentmodes
of action/targets and the key metabolites as well as targets is
given in Figure 7. Toxicity based on N-hydroxylamine formation
is observed with compounds clustered in Cluster 2 resulting
in a relative high toxicity (liver and hematology). Cluster 111
comprises highly toxic compounds as well and is characterized by
liver toxicity and hemolysis. This is not based on the formation of

methemoglobin, but intercalation of the nitro compounds itself
(Sheetz and Singer, 1976). The AOP resulting in testicular toxicity
based on nitroso metabolites is well described in literature, but
only represented by few chemicals in the HESS system. Within
the current dataset, it can be observed with substances clustered
in cluster 2, and 32a, supporting the relevance of this mechanism
in addition to the few positive compounds described in the
HESS system. Rather unspecific target organ toxicity results from
compounds acting as uncouplers of energy metabolism. The
chemicals clustered within cluster 49, 53, 56, and 32b, showing
unspecific medium to low toxicity, act via this mechanism.
Additionally these clusters comprise also other substances
like the antibiotics nitrofurazone and nitrofurantoin, also not
exhibiting specific target organ toxicity. Overall, the combination
of structural and toxicological fingerprints yields well described
and distinguished groups of nitroaromatic compounds following
different types of AOPs.

Within this in-depth analysis of the aromatic nitro
compounds, it became however evident that the clustering
strongly relies on the underlying data: if discriminant structural
features are not available within the used features or if the
toxicological data is not specific enough, then clusters cannot be
identified. For an optimal clustering result, optimal data are thus
indispensable.

Ethylene Glycols and Alcohols: A Mixed Cluster
The Cluster 11 consists of 24 members being ethylene
glycols and alcohols (Table 3). From a chemical point
of view, ethylene glycols, and alcohols are different,
however, the members have a common biological
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FIGURE 7 | Overview on modes of action and targets of nitro compounds indicating key metabolites and effects.

feature: they are substrates for alcohol dehydrogenase
(ECETOC, 1995) and share toxicological endpoints such
as kidney, liver, red blood cells, and spleen indicating
a structural grouping with toxicologically meaningful
results.

Kidney toxicity of the lower molecular weight members
occurs after repeated oral exposure. In the dataset of 18
members being glycols, ten showed effects on the kidney
including increased kidney weight. Alcohols in the dataset
did not affect the kidney with exception of weak effects of
ethanol and 2-propanol. These toxicological effects are based
on a specific mode of action. Ethylene glycol is metabolized
by the alcohol dehydrogenase to glycol aldehyde and further
to glycolic acid, which is then metabolized to glyoxylic acid
and oxalic acid (Miller et al., 1984; Viinamäki et al., 2015).
The kidney effect is mainly caused by the acidic metabolites
(Figure 8). From the structure of the glycols, all ten members
showing an effect on the kidney possess hydroxylic groups
at the end of the unbranched molecules with the exception
of chemicals 96-01-0391 and ethylene glycol monoethyl ether.
The alcohols, most of them being also substrates for alcohol
dehydrogenase, are further metabolized to smaller molecules
(Figure 8), which are not excreted by the kidney and thus have
no toxic effect on the kidneys. As the preselected lists of structural
features do not contain a possibility to distinguish alcohols
and glycols, the toxicologically distinct structures remain within
the same cluster as their structural distinction cannot be
made.

In Table 3, the chemicals are noted with their major targets,
their molecular weight and the LOEL. Whereas, the toxicological
profile is similar, the LOELs are widely spread over several orders
of magnitude.

Endpoint Specific Analyses
After a general descriptive cluster analysis and exemplary
considerations of clusters containing certain structural
features, in this part of the analysis the focus is assessing
selected toxicological endpoints. A plausible clustering
would reveal clusters having a toxicological fingerprint (in
terms of affected endpoints) and related chemical structures.
Thus, in this section we started by selected toxicological
endpoints and analyzed the related structural features. As
several different structures and related modes of action
could cause similar effects in one and the same organ, the
analysis starting from the toxicological targets may not,
due to the diversity of related structures (also not frequent
within the dataset), reveal meaningful clusters for some of the
targets.

Endpoint: Male Reproductive Organs
Male reproductive toxicity can be seen by different effects in
the reproductive organs: by gross pathological parameters such
as weight changes, and by histopathological parameters but
also by sperm parameters (count, motility, morphology). As
shown by Mangelsdorf et al. (2003), these parameters are inter-
correlated but show different dose-response relationships, with
organ weights and testicular histopathology being quite sensitive
and indicative for male reproductive toxicants in subacute and
subchronic studies. Within our dataset, overall 69 compounds
were identified with more than one effect on male reproduction.
These substances are spread over 41 clusters, with 18 clusters
containing more than one and only six clusters containing
more than two substances with several effects influencing male
reproduction. The substances and clusters were further analyzed
in two directions: (1) for structural features involved in toxic
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TABLE 3 | Characterization of substances in Cluster 11: Chemicals and their toxicity profile based on major targets and LOEL (low observed effect level).

Cluster number Chemical name Molecular weight Major targets LOEL [mmol] geometic mean

Kidney Liver RBC Spleen

11 Ethylene glycol 62.07 + + 4.04

Diethylene glycol 106.12 + + 2.83

Diethylene glycol monoethyl ether 134.17 + + + + 29.21

Ethylene glycol monomethyl ether 76.09 + + 0.92

Ethylene glycol monoethyl ether 90.12 + + + + 2.27

Ethylene glycol monoisopropyl ether 104.15 + + 0.56

Triethylene glycol 150.17 + + 10.14

Triethylene glycol monomethyl ether 164.2 + 2.44

Propylene glycol 76.09 2.99

2-propylene glycol-1-methyl ether 90.12 + 28.38

2-propylene glycol mono-1-ethyl ether 104.15 + 2.84

01-06-1465 110.54 ++ 0.14

93-06-0523 90.12 11.11

99-04-1207 157.17 + 6.37

96-01-0391 146.18 ++ ++ ++ 6.85

Butynediol 86.09 ++ ++ ++ ++ 0.06

Thiodiglycol 122.19 + + + 4.09

Trimethylolpropane 134.17 + + + 1.49

Methanol 32.04 + + 2.85

Ethanol 46.07 + + + 137.88

2-propanol 60.09 + 13.95

Allyl alcohol 58.08 ++ ++ 0.10

2-methyl-3-butyn-2-ol 84.12 + 1.19

Tert-butyl alcohol 74.12 1.26

Summary Geometric Mean (Min-Max-Range) 2.78 (0.06–137.88)

+, ++ denote the presence of findings for this target; ++ strong effect = low NOEL, + less strong effect = high LOEL.

FIGURE 8 | Examples for the different metabolic pathways of alcohols (ethanol) and glycols (ethylene glycol). Ethylene glycol metabolism leads to glyoxylic

acid and oxalic acid, which are nephrotoxic, whereas ethanol is metabolized to acetyl Co-A (Figure modified after Kraut and Kurtz, 2008; Schep et al., 2009).

effects to the male reproductive organs and (2) for a correlation
of effects.

In Table 4 the structural features contributing mostly
to male reproductive toxicity are listed according to their

incidence in substances with a reproductive toxicity profile.
Here only those structures were analyzed that exhibit at
least two effects in male reproductive organs. Noticeably,
nitrogen moieties and to a lesser extend also carboxylic acid
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TABLE 4 | Frequency of structural features in substances profiled by more than one male reproductive effect.

Structural feature Dataset with effects Dataset without effects p-value p-value

(taken from OB-FP4*) on male reproduction on male reproduction adjusted

Structure % Structure %

present present

Nitro 15 22 48 6 1.6 E-007 1.8E-06

Carboxylic_acid_derivative 16 23 313 38 1.5 E-002 n.s.

Amine 8 12 169 20 7.8 E-002 n.s.

Ketone 9 13 70 8 0.18 n.s.

Vinylogous_ester 9 13 159 19 0.20 n.s.

Heterocyclic 20 29 294 35 0.25 n.s.

Aromatic 39 57 514 62 0.31 n.s.

Annelated_rings 9 13 133 16 0.39 n.s.

Conjugated_double_bond 27 39 298 36 0.42 n.s.

Alcohol 7 10 99 12 0.44 n.s.

Heteroaromatic 12 17 158 19 0.47 n.s.

*SMARTs pattern for functional group classification (Open Babel; O’Boyle et al., 2011).

derivatives and amines seem to drive forward male reprotoxic
effects.

Additionally, the correlation of different effects was
investigated by a Spearman-correlation test using log-normally
distributed LOELs. Highly correlated endpoints could probably
point to specific modes of action and related structures. High
correlation indices were found for different effects within
male reproductive organs, namely testis and epididymis:
Histopathological changes in these organs were highly correlated
to sperm parameter (0.86), as well as to organ weight decrease
(0.95).

Analyzing the clusters for accumulation of male repro-toxic
effects and suitable structural features reveals finally four clusters:
2, 6, 11, and 32. A predominant structural feature of these
clusters is the nitro moiety in combination with an aromatic
structure, which has well known modes of action on male
reproductive organs and was already discussed with the nitro-
aromatic structures above. The knownmodes of action include:

• Damage of Sertoli cells resulting in impaired spermatogenesis
(Cave and Foster, 1990).

• Decrease of testosterone and androgen receptor expression
affecting endocrine regulation of the reproductive system
(Zhuang, 2008).

The correlation of histopathological, either sperm parameter
or weight changes, is evident for chemicals exhibiting this kind
of toxicity. Overall, 13 nitro aromatic substances were identified
by the correlation analysis. This exercise shows that correlation
analysis is an appropriate tool to reveal modes of action relying
on several effects described in the dataset.

Endpoint: Spleen
Effects on the spleen were seen in 23% (n = 208) of the
compounds in 85 of 119 clusters. In 15 clusters (18%) more than
50% of the cluster members were active for the endpoint spleen.
However, cluster size was limited and clusters containedmaximal

seven compounds (five active, two inactive). We conclude that
the endpoint spleen is not covered well by the clustering
algorithm. Nevertheless, it is to be noted, that some structural
properties are specific for this effect (Table 5).

Our analysis shows that three chemical features are related
to effects on the spleen. There is a statistically higher chance
compared to the remaining dataset that a chemical will affect
the spleen if the chemical structure contains a nitrogen (OB-
MACCS:N, p = 0.000066) or a nitrogen followed by a branching
of undefined atoms (OB-MACCS:NA(A)A, p = 0.000055). The
third chemical feature that is significantly related to effects on the
spleen is an ether moiety (OB-FP3: Ether, p = 0.00084). Other
molecular features which were investigated are not related to
effects on the spleen.

Endpoint: Thyroid
Another endpoint of interest selected for analysis is the thyroid
gland. Here the analysis is supported by considering the mode of
action. In our dataset, 63 substances (7%) in 45 out of 119 clusters
have effects on the thyroid gland.

The thyroid gland produces the hormones thyroxine and
triiodothyronine, which are important regulators of basic
metabolic rate. After uptake of iodine from the circulation,
thyroxine is synthesized from the amino acid tyrosine and iodine
involving thyroid peroxidase (Ekholm and Björkman, 1997) and
triiodothyronine is produced by cleavage of one iodine from
thyroxine (Figure 9).

This endpoint appeared in not more than 50% of the cluster
members. It is therefore likely that the clustering algorithm
does not cover the endpoint thyroid gland exactly. Hence, it
was decided to analyze the 63 substances using a mechanistic
approach, which is based on the biological steps and their
perturbation in the production of the hormone.

In this approach, the dataset was searched for structural
elements of compounds, which stimulate or inhibit thyroidal
function. The organ is stimulated by low iodide concentrations

Frontiers in Pharmacology | www.frontiersin.org 13 September 2016 | Volume 7 | Article 321

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Batke et al. Chemical Categories

TABLE 5 | Structural properties for substances occurring predominantly in clusters with effects on the spleen.

Dataset with effects on spleen Remaining dataset (without effect p-valuea p-value

(n = 208) on spleen, n = 691) adjustedb

Structure % Structure %

present present

OB-MACCS: NA(A)A 125 60.1 291 27.8 5E-06 5.5E-05

OB-MACCS: N 140 67.3 342 49.5 6E-06 6.6E-05

OB-FP3: Ether 74 35.6 152 22 7.6E-05 8.4E-04

OB-MACCS: Aromatic 142 68.3 411 59.5 0.022 n.s.c

OB-MACCS: 6M Ring 150 72.1 454 65.7 0.084 n.s.

OB-MACCS: Ring 164 78.8 509 73.7 0.131 n.s.

OB-MACCS: O > 1 122 58.7 445 64.4 0.132 n.s.

OB-MACCS: O 159 76.4 565 81.8 0.089 n.s.

OB-MACCS: X (Halogen) 64 30.8 207 30 0.823 n.s.

OB-MACCS: 6M Ring >1 55 26.4 195 28.2 0.616 n.s.

OB-MACCS: 5 M Ring 42 20.2 162 23.4 0.326 n.s.

The structural fragments origin from two lists (MACCS and FP3) as provided in Open Babel (O’Boyle et al., 2011). NA(A)A, Aliphatic N connected to any (non-hydrogen) atom, which is

in turn connected to two atoms; N, Aliphatic N; Ether, Oxygen connected to two carbons. SMARTS codes and depictions of the fragments are provided in the Supplementry Material.
aX2-test.
bBonferroni-Holm correction.
cn.s., not significant.

FIGURE 9 | Mechanisms which influence biosynthesis in the thyroid gland. MIT, Monoiodotyrosine; DIT, Diiodothyrosine; T3, Triiodothyronine; T4,

Tetraiodothyronine; –, inhibition.

whereas high concentrations block the activity. Six iodine-
containing compounds were found. Two of these substances
were alkyls (trifluoro-iodo-methane and 1,1,1,2,2,3,3,4,4,nona-
fluoro-4-iodo-butane), in two further substances iodine was
bound to a triple bond and two substances contained iodine
as a substituent to a benzene ring. Only the iodine-alkyls were
active. This finding might be explained by the assumption

that de-iodination takes place only from those structures
and iodine will be available in the systemic circulation. We
assumed that iodinated benzene rings will not be de-iodinated;
this behavior can be interfered from the metabolism of
atrazine and its chlorinated metabolites (Brzezicki et al., 2003),
where binding of chlorine to the benzene-like triazine ring is
stable.
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Perchlorates inhibit the iodide transport into the thyroid
gland (De Groef et al., 2006). There were 14 perchlorate-like
compounds in the dataset, which were all active.

Thiourea and mercaptoimidazole derivatives, which are used
therapeutically, inhibit the peroxidase in the thyroid gland
(Fumarola et al., 2010). Among the active structures acting on the
thyroid 1 thiourea structure and 4 mercaptoimidazole derivatives
were found.

Thus, for 21 out of 63 structures (41%) effects could be
linked to a mechanism (iodine concentration, iodine uptake,
inhibition of peroxidase). The mechanisms leading to an effect
on the thyroid gland differ, depending on the different chemical
structures. Hence, it is understandable that using clustering
procedures based on structural and physicochemical properties,
it is not possible to find a single cluster with all the members
influencing the thyroid gland.

DISCUSSION

Background
In the context of public awareness and regulatory demands (e.g.,
Cosmetics Directive, 7th Amendment to the European Union’s
Cosmetics Directive 76/768/EE), the need for non-animal testing
is increasing. Non-animal testing methods comprise in vitro tests
and in silico tools.

The OECD Guidelines for Testing of Chemicals contains
regulatory guidelines with worldwide acceptance. At present,
most of these tests for health effects (Section Results) are
performed in animals. Only some test guidelines describe in
vitro tests; those are restricted to tests aimed at testing local
toxicity such as skin sensitization. Further accepted in vitro test
methods are those in which genotoxicity endpoints are addressed.
Until now, no in silico methods are validated at the OECD
guideline level but the practical use of (Q)SAR approaches for
regulatory purposes is supported and facilitated by the OECD
(Q)SAR project. Herein, the principles for the validation of
(Q)SAR models (OECD, 2007b) have been developed as well
as the OECD QSAR toolbox, which is supporting grouping
and read-across approaches5. Regulatory agencies increasingly
accept in silico results on genotoxicity (Cassano et al., 2014;
Aiba nee Kaneko et al., 2015; Jolly et al., 2015).”In the absence
of toxicological data, grouping of substances and read-across
approaches are encouraged in the REACH legislation to predict
complex endpoints, as resulting from repeated dose toxicity
testing. A data analysis performed by ECHA shows that data gaps
exist for one-third (32.9%) of endpoints of the so-called phase-in
substances (substances with high production volumes of 100–
1000 tons per year). These data gaps have been bridged by using
a read-across approach especially in the case of higher tier health
effects (ECHA, 2014). It is well known that most substances with
lower production volumes have not been tested in the past by
repeated dose toxicity tests. Hence, it can be predicted that a
percentage higher than that observed for substances with high
production volumes would be without repeated toxicity testing
data, e.g., substances with a production volume between 10 and

5http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm

query from 18th of August 2016

100 t/a. These observations underscore the high need for a tool to
predict repeated dose toxicity data.

Available Tools
Predicting repeated dose toxicity still faces many challenges such
as the lack of sufficient, good quality data and a shortage of
mechanistic interpretations (Cherkasov et al., 2014). Read-across
seems a promising option among other available prediction tools
(Schilter et al., 2014). However, it relies to a high degree on expert
knowledge (Patlewicz et al., 2013).

One of the read-across tools is the HESS system, contained
in the OECD QSAR Toolbox. With this tool grouping and
read-across for about 40 categories and 20 structural alerts can
be performed for repeated toxicity endpoints in mammalians6

(Yamada et al., 2012, 2013a,b, 2014; Sakuratani et al., 2013a,b).
The further evaluation of the predictions using the HESS system
remains an open task.

Another framework that aids identifying analogs and rating
their suitability for read-across is presented by Wu et al.
(2010). The prediction framework Lazar (Lazy Structure-Activity
Relationships) resembles an automated read-across procedure
(Maunz and Helma, 2008; Maunz et al., 2013). It predicts a query
compound by performing a similarity search on the training
dataset and building a local (Q)SAR model using only similar
compounds. Low et al. (2013) present a chemical-biological read-
across (CBRA) approach that infers toxicity based on structural
similarity but also on biological similarity. Similar to Lazar, the
method uses instance-based local models with similarity warning
and present neighbors. However, this method is not a pure in
silico method, as biological responses of compounds have to be
measured in vitro in short-term assays.

Furthermore, there are commercially available tools, for
example DEREK (Lhasa Limited, UK) and TOPKAT (Accelrys
Inc., San Diego, USA; Venkatapathy et al., 2004; Rupp et al.,
2010) which may be used for read-across purposes. Whereas,
DEREK provides qualitative information on the target organ
toxicity based on similar patterns or structural alerts, TOPKAT
is performing predictions on the basis of structural similarity
and claims to be quantitative; it predicts LOAELs. Testing the
TOPKAT tool by using the same ELINCS dataset as in the current
analysis, revealed dissatisfying results showing that the use of a
refined prediction tool is highly warranted (Rupp et al., 2010).

Our Approach/Project
There is an obvious need for prediction tools. However, all the
available tools have limitations and there seems to be room for
improvement in read-across tools. In the project presented in
this paper, a clustering algorithm for repeated dose toxicity was
developed in a bi-dimensional approach, combining physical
structural properties and organ toxicity data, an idea, which has
been also discussed in the paper by Maunz et al. (2013). This was
achieved by applying PCTs, a decision-tree based clustering tool
that can handle multiple endpoints simultaneously. Applying
this tool yielded a hierarchical clustering of our dataset,
including a description of the structural properties that were
used to assign compounds into sub-clusters of compounds with

6http://www.nite.go.jp/en/chem/qsar/hess-e.html
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similar rat repeated dose toxicity profiles. To characterize the
compounds we selected lists of structural features and two simple
PC-descriptors (molecular weight and log P) as features for
constructing the PCT model with homogenous toxicological
fingerprints as criterion of the clustering process. The features,
which are employed to create nodes within the tree to divide
compounds into sub-clusters, yield a transparent description for
each cluster.

It is a distinguishing feature of this project that the
toxicological dataset used for the clustering algorithm is
a highly refined and curated dataset of high quality. In
addition, the number of chemicals is higher than in any
other curated dataset, containing data from repeated dose
toxicity testing performed according to OECD guidelines. To
prepare the common dataset, which was derived from two
sources, a common glossary has been developed and the
data have been curated to allow using the whole dataset of
899 substances. In this dataset, LOELs from 460 different
organ-effect-combinations were available. This information was
finally condensed to 28 endpoints describing organ-effect
combinations. The dose-response relationship, namely the
LOELs, was discretized per endpoint resulting into substances
with high and low potency. Missing values were filled by
imputation, predicting the missing values with a dedicated
prediction model.

Within the curation steps, several shortcomings of the data
base which would have negatively influenced the clustering
results had to be dealt with. The noise of underrepresented and/or
unspecific endpoints was reduced by restriction to 28 aggregated
organ-effect combinations. It is well-known that dose spacing
has major impact on the LOEL values causing imbalances in
the resulting LOELs of different substances. We overcame this
problem by the process of discretizing the LOELs per endpoint.
We applied imputation to limit the impact of missing values on
the clustering outcome.

As it is shown in this publication, the final results were
achieved by several rounds of iterations and optimizations.

Lessons Learned
From our study, the simplest predictors for a high probability
of low toxicity are a molecular weight above 500 and/or a log P
below 0 or above 5. It is interesting to note that in a retrospective
study on their opinions, the SCCS found a similar molecular
weight (above 500 Da) and similar log P (between below −1
and above 4) for a low or even very low dermal absorption
and hence toxicity (SCCS, 2015). Further support is provided by
several authors for the importance of log P for toxicity resulting
in screening drug candidates (Hughes et al., 2008; Greene et al.,
2010; Lu et al., 2012). Physicochemical properties are important
parameters to predict diffusion processes through biological
membranes and therefore also relevant for the prediction of
chemical uptake. In this context, our findings demonstrate the
role of internal exposure for toxicity. In order to include the
absorption properties in our cluster information, it is relevant
to implement physicochemical descriptors into the clustering
process.

The clusters derived in this clustering approach have been
analyzed from a toxicological point of view. This evaluation
showed in the 28 clusters with a structural similarity of 100%,
that in 60% of these, there was a toxicological similarity of
≥75% (Supplementary Table 1). However, considering that the
clustering procedure resulted in 119 clusters for which only 28
(14%) gave a consistent structural and toxicological similarity;
there is room for improvement in the decision hierarchy.

Several factors increase the complexity in the relationship
between structural and toxicological similarity, leading to the
consequence that in only 60% of clusters with 100% structural
similarity, there was also a similarity in the toxicological profile:

• First, as has been shown for example with the glycols,
metabolism plays an important role for the toxicity. However,
reliable tools to predict metabolic pathways, which would give
useful information, are not yet sufficiently developed to be
fit for purpose (Anger et al., 2012). The importance and the
difficulties in prediction of metabolism have also been shown
for the hepatotoxicity of allyl esters (Yamada et al., 2013b).

• Secondly, as demonstrated by the example of the effects on the
thyroid, there are several mechanisms, which may show the
same effect. Hence, several structural properties, each related
to a separate mode of action or AOP may result in the same
effect at the organ level (e.g., effects on the thyroid weight;
Yamada et al., 2013a).

From our analysis we learned about the additional value of
implementing the toxicity into the clustering procedure by the
example of compounds with nitro moiety. This example shows
that a better partitioning in clusters can be reached if toxicity
targets, potency, and mode of action have been implemented into
the clustering procedure.

Categories Suitable for Read-Across
We have identified some clusters with a high degree of
structural similarity (assessed as 100%) as also showing a high
degree of toxicological similarity. These clusters could be taken
into consideration as new categories in a qualitative read-
across (Supplementary Table 1). The structural and toxicological
similarities give a reasonable basis for further evaluation of
the linking mode of action and the complete toxicological
fingerprints taking into account the role of metabolism.
Furthermore, clusters in which the ratio between the geometric
mean of LOEL and the lower end of the LOEL range do not
exceed 5 could be used in a quantitative read-across approach
(Table 1). If the geometric mean of the cluster LOEL is taken
to predict the LOEL of a chemical substance falling in one
of the indicated clusters, the true LOEL might be higher or
lower than the (geometric) mean. From a regulatory point
of view, it would only matter, if the true LOEL were lower
than predicted. The use of an additional uncertainty factor
might be necessary to be on the safe side. As a value of 5
was chosen as cut-off criterion for the ratio in selecting the
clusters for a quantitative read across, using an additional
factor of 5 would be sufficient to take into account this
uncertainty.
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Conclusion
In conclusion, a newmethod for clustering databases on chemical
substances with accompanying toxicological information
according to their chemical properties was introduced, by
developing a decision tree that uses structural and toxicological
information to calculate the similarity of the test compound.
The procedure is intended to support a read-across approach.
In analyzing the clustering results from the toxicological point
of view, we did find out that in some of the clusters, the cluster
members have common mechanisms of action and that the
toxicological target and effects are similar. In these cases, the
clustering leads not only to structurally but also to toxicologically
meaningful results. We propose that these clusters are suited
for a read-across. These clusters encompass clusters of category
1 (100% structural similarity/100% toxicological similarity)
and category 2 (100% structural similarity/≥75% toxicological
similarity). For others, the clustering resulted in disparate toxicity
and/or chemical structures of the cluster members without a
common mechanism of action. Furthermore, some clusters were
identified in which the ratio between the geometric mean of
the cluster LOEL and the LOEL of the lower end of the range
was small (≤5). We propose that those clusters might be used
for a quantitative read-across. In risk assessment, the additional
uncertainty of this approach can be taken into consideration by
applying an additional uncertainty factor of 5.

This publication shows that structural analyses combined
with effect analyses give the advantage of identifying mechanism
related to structures and hence provide a tool for improving
the prediction of relevant structures. However, it is clear that
further improvement is needed, e.g., by incorporating data on
metabolism and bioavailability. For further development it could
also be envisaged to add additional toxicological data such as
environmental concentrations or in-vitro data if available thus
enabling comparison between LOELs and other data for special

applications. The insights provided by this project will help
research in this field by eliciting the requirements for even more
advanced tools.
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