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Cancer is the second leading cause of death in the United States with 1.7 million

new cases estimated to be diagnosed in 2016. This disease remains a formidable

clinical challenge and represents a substantial financial burden to the US health care

system. Therefore, research and development of novel therapeutics for the treatment

of cancer is of high priority. Cannabinoids and their derivatives have been utilized for

their medicinal and therapeutic properties throughout history. Cannabinoid activity is

regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid

receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown.

More recently, cannabinoids have gained special attention for their role in cancer cell

proliferation and death. However, many studies investigated these effects using in vitro

models which may not adequately mimic tumor growth and metastasis. As such, this

article aims to review study results which evaluated effects of cannabinoids from plant,

synthetic and endogenous origins on cancer development in preclinical animal models

and to examine the current standing of cannabinoids that are being tested in human

cancer patients.

Keywords: cannabinoids, cancer, in vivo, clinical studies, clinical trials, therapeutics, cancer models,

endocannabinoids

CANNABINOIDS AND CANCER

Cannabinoids are a class of hydrophobic molecules that typically bind to G-protein-coupled
cannabinoid receptors, cannabinoid receptor type 1 (CB1R) or cannabinoid receptor type 2
(CB2R). Endogenously synthesized cannabinoids (endocannabinoids), cannabinoid receptors,
and enzymes involved in cannabinoid formation and breakdown are collectively known as the
endocannabinoid system (ECS). This system has been shown to impact different neurological
and immunological processes (Zhu, 2006; Tanasescu and Constantinescu, 2010). Additionally,
numerous reports demonstrate that endocannabinoids and their putative receptors play a role
in the development of various malignancies (Velasco et al., 2016). Many studies investigating the
effects of cannabinoids on tumor progression have been carried out in cell culture. However, due
to the complexity of the tumor microenvironment, these findings do not always translate to whole
animal models. As such, the goal of this review was to compile and analyze the results of studies
which evaluated effects of cannabinoids on cancer development in animal models (Table 1) and to
examine current knowledge regarding the impact of cannabinoids on tumor growth in humans.
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IN VIVO ANIMAL TUMOR MODELS

Animal tumor models have become a mainstay in preclinical
cancer research due to their ability to produce fairly
predictable tumor growth. The first tumor model used to
study tumorigenesis was the chemical carcinogenesis model.
This model employs the use of two known carcinogens, an
initiator and promotor. Initiators are typically employed in
a single dose to cause irreversible DNA damage. A promotor
is given in repeated doses to increase cell proliferation and
induce subsequent DNA damage (Kociba and Schwetz, 1982).
Implantable or grafted tumor models are also commonly used.
The major subtypes of these models are the (1) syngeneic
(allograft) model, in which tumor cell lines of host origin
are subcutaneously injected into immune-competent animals
and (2) the xenograft model, where cells distinct from the
implantation host are subcutaneously injected or grafted into
immune-deficient animals (Teicher, 2006). A more technically
challenging type of tumor grafting is that of the orthotopic
model in which tumor cells or tissues are grafted directly into
the organ or system of tumor origin (Peterson and Houghton,
2004). Patient derived xenografts offer high translational
value and are created when tumor tissue of human patients
is implanted into an immune-compromised animal (Jin et al.,
2010). Genetically engineered mouse models (GEMMs) are also
used to study carcinogenesis. In the GEMMs, transgenic mice
which over-express oncogenes or dominant negative tumor-
suppressor genes are often more susceptible to spontaneous
tumor induction (Sharpless and Depinho, 2006). Knockout
models in which the expression of specific genes is disabled
in animals exposed to carcinogens also provide valuable
information about mechanisms of tumor formation (Rosenberg

Abbreviations: ACF, aberrant crypt foci; 1-AG, 1- arachidonoyl glycerol; 2-AG,

2-arachidonoyl glycerol; ABDH, alpha/beta-hydrolase domain; AEA arachidonoyl

ethanolamide; Akt, protein kinase B; Ang2, angiopoietin-2 Protein; AOM,

azoxymethane; BBB, blood-brain-barrier; CB1, cannabinoid receptor type 1;

CB2 cannabinoid receptor type 2; CBD, cannabidiol; CBG, cannabigerol;

CHOP10, C/EBP-homologous protein; COX-2, cyclooxygenase-2; CNS, central

nervous system; CRC, colorectal cancer; DEN, diethylnitrosamine; DMBA,

dimethylbenz[a]-anthracene; DNA, deoxyribonucleic acid; ECS, endocannabinoid

system; EGFR, epidermal growth factor receptor; EMT, endocannabinoid

membrane transporter; ER, estrogen receptors; ER-stress, endoplasmic reticulum

stress; ERK, extracellular signal-regulated kinase; FAAH, fatty acid amide

hydrolase; Fas, TNF receptor superfamily; GEMMs, genetically engineered mouse

models; GFAP, glial fibrillary acidic protein; GPR55, G-protein coupled receptor

55; HCC, hepatocellular carcinoma; HER2, human epidermal growth factor

receptor type 2; ICAM-1, intracellular adhesion molecule-1; Id-1, inhibitor of

DNA binding protein; Jnk, c-jun N-terminal kinase; LC3, Microtubule-associated

protein 1A/1B-light chain 3;MAGL,monoacylglycerol lipase; MEF, mouse embryo

fibroblasts; MMP, matrix metalloproteinase; mTORC, mammalian target of

rapamycin complex; NMSC, non-melanoma skin cancer; NSCLC, non-small-cell

lung carcinoma; P-450, cytochrome P-450; pCXCR4, phospho-CXC chemokine

receptor 4; PPARγ, peroxisome proliferator-activated receptor gamma; PR,

progesterone receptor; p-S6, phospho-S6 ribosomal protein; ROS, reactive oxygen

species; S-100B, S100 calcium-binding protein B; SCLC, small-cell lung carcinoma;

THC, tetrahydrocannabinol; TIMP, tissue inhibitors of metalloproteinases; TMZ,

temezolamide; TPA, 12-O-tetradecanoylphorbol-13-acetate; TNBC, triple negative

breast cancer; TRB3, tribbles homolog protein 3; TRPM8, transient receptor

potential cation channel, subfamily M, member 8; TRPV1, transient potential

vanilloid receptor; UVB, ultraviolet light B; VEGF, vascular endothelial growth

factor; VEGFR, vascular endothelial growth factor receptor.

et al., 2009). Each of these tumor models is distinct and possess
advantages and disadvantages depending upon scientific and
clinical goals.

BRAIN CANCER

It is estimated that more than 23,000 individuals will be newly
diagnosed with central nervous system (CNS) cancers in 2016
(Siegel et al., 2016). There are many distinct neuronal and glial
tumor types that develop in the brain. Gliomas are a CNS
tumor subtype that are derived from glial tissue and account
for approximately 80% of all primary malignant brain tumors
(Ostrom et al., 2015). The prognosis for this neoplasm is poor
with an average 5-year survival rate of 5.1%. As such, novel
strategies are needed to impact current therapeutic approaches.
The ECS has been examined in clinical and preclinical glioma
models. Several studies show that glioma tissues from rodents
and humans express functional ECS components including the
CB1 and CB2 receptors (Sánchez et al., 2001; Moreno et al.,
2014). Furthermore, CB2 expression was found to be elevated
in high grade gliomas (Sánchez et al., 2001; Ellert-Miklaszewska
et al., 2007) Hence, a series of informative investigations
primarily conducted by the Guzman group, have examined the
effects of cannabinoids on glioma cell survival with the goal
of assessing the feasibility of developing these agents as novel
anti-neoplastics.

Numerous studies indicate that 19-tetrahydrocannabinol
(19-THC) is a potent inducer of glioma death in vivo. Utilizing
a C6 glioma cell xenograft model, it was demonstrated that
tumor growth was significantly reduced by 19-THC (Galve-
Roperh et al., 2000). Subsequent to orthotopic implantation of
the C6 cells the overall survival of 19-THC treated animals was
also increased. In vitro studies with the C6 cell line suggested
that the 19-THC-induced reduction in tumor growth occurred
as a consequence of increased ceramide synthesis and Erk
activation. Another study showed that 19-THC reduced the
growth of U87MG glioma xenografts (Salazar et al., 2009).
Experimentation in the U87MG cell line determined that
ceramide accumulation and the induction of ER stress proteins
p8, CHOP10, and TRB3, were required for 19-THC-induced
death. The authors further demonstrated the importance of
p8 in tumor growth by utilizing transformed mouse embryo
fibroblasts (MEF) in which tumor development was reduced
in p8+/+ animals treated with 19-THC compared to vehicle
treated animals. In contrast, no significant difference in tumor
growth was observed in 19-THC or vehicle treated p8−/−

mice suggesting that p8 was needed for 19-THC-mediated
tumor death. In a subsequent study by this group, endoplasmic
reticulum stress-mediated autophagy and cell death was observed
in 19-THC treated glioma. Specifically, 19-THC caused an
increase in ER stress protein, TRB3, autophagy protein, LC3,
and apoptosis as well as a decrease in mTORC protein, p-
S6 in U87MG xenograft tumors (Salazar et al., 2009). This
pattern of protein expression was also observed in glioma
biopsies from 2 patients with glioblastomamultiforme treated via
intracranial administration with 19-THC. In vitro experiments
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TABLE 1 | Pre-clinical assessment of cannabinoids on tumor development.

Cancer

type

Model type

-cell line

Animal

species/strain

Cannabinoid Dose (route) Findings References

Glioma Xenograft—C6.9 Immune deficient

mice

Delta-9-THC 500 ug/day (p.t.) Decreased tumor size and

tumoral TIMP-1 expression

Blázquez et al., 2008b

JWH-133 50 ug/day (p.t.) Decreased tumor size and

tumoral TIMP expression,

ceramide inhibition increased

tumor growth

Xenograft—C6 Rag 2-/- mice WIN 55,212-2 50 ug/day (i.t.) Decreased tumor size Galve-Roperh et al., 2000

Delta-9-THC 500 ug/day (i.t.)

Orthotopic—C6 Wistar rat WIN 55,212-2 50–250 ug/day (i.t.) Increased survival

Delta-9-THC 500–2500 ug/day (i.t.)

Xenograft—U87MG Nude mice Delta-9-THC 15mg/kg/day (p.t.) Decreased tumor size, TUNEL

and p8 levels increased in

tumor

Salazar et al., 2009

Orthotopic—U87MG CB-17 SCID mice KM-233 2–12mg/kg twice/day

(i.p.)

Decreased tumor size Gurley et al., 2012

Patient Derived

Xenograft

Athymic Balb/c

(nu/nu)

KM-233 12mg/kg, twice/day

(i.p.)

Tumor growth delay

Xenograft—C6 Rag 2-/- mice JWH-133,

WIN55,212-2

50 ug/day (i.t.) Decreased tumor size, effect of

JWH-133 prevented by CB2R

antagonism

Sánchez et al., 2001

Xenograft—

astrocytoma

cells

Rag 2-/- mice JWH-133 50 ug/day (i.t.) Decreased tumor size

Xenograft—U87MG Nude mice Delta-9-THC + TMZ 15 mg/kg THC,

5mg/kg TMZ (p.t.)

Greater reduction in tumor size

than THC or TMZ alone

Torres et al., 2011

Delta-9-THC + CBD 7.5mg/kg THC

7.5mg/kg CBD (p.t.)

Greater reduction in tumor size

than THC or CBD alone

Delta-9-THC + CBD

+ TMZ

3.7mg/kg THC

3.7mg/kg CBD

5.0mg/kg TMZ (p.t.)

Greater reduction in tumor size

than THC, CBD, or TMZ alone

Xenograft—T98G Nude mice Delta-9-THC + TMZ 15mg/kg THC

5.0mg/kg TMZ (p.t.)

Greater reduction in tumor size

than THC or TMZ alone

Xenograft—C6.9 Immune deficient

mice

Delta-9-THC 500 ug/day (p.t.) Decreased tumor growth and

tumor MMP-2 expression

Blázquez et al., 2008a

JWH-133 50 ug/day (p.t.) Decreased tumor size and

tumoral MMP-2 expression,

ceramide inhibition reduces

tumor growth

Xenograft—C6 Rag2-/- mice JWH-133 50 ug/day (i.t.) Decreased tumor size and

tumor expression of VEGFR

Blázquez et al., 2004

Xenograft—U87MG Athymic CD1 nude

(nu/nu)

CBD 0.5mg/day (p.t.) Decreased tumor size Massi et al., 2004

Xenograft—C6 cells

or primary

astrocytoma

Rag2-/- mice JWH-133 50 ug/day (i.t.) Decreased tumor size and

blood vessel size and

functionality

Blázquez et al., 2003

Orthotopic—U251 Athymic nude

(nu/nu)

CBD 15mg/kg (i.p.) Decreased tumor size,

decreased Id-1 and Ki67

expression in tumor

Aguado et al., 2007

(Continued)
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TABLE 1 | Continued

Cancer

type

Model type

-cell line

Animal

species/strain

Cannabinoid Dose (route) Findings References

Xenograft Athymic nude

(nu/nu)

CBD 15mg/kg (i.p.) Decreased tumor size,

Decreased Id-1 and K167

expression in tumor

Aguado et al., 2007

Xenograft—U87MG Nude mice Delta-9-THC 15mg/kg/day (p.t.) Reduced tumor size and

increased TRB1, LC3, caspase

3, and decreased S6 in tumors

Salazar et al., 2009

Xenograft—T98G Athymic nude Delta-9-THC 1.5 or 15mg/kg/day

(p.t.)

Decreased tumor size and

anti-tumor effect reversed by

GRP55 knockdown

Sánchez et al., 2001

Orthotopic—3832 or

387 cells

Athymic nude

(nu/nu)

CBD 15mg/kg, 5 days/week

(i.p.)

Initial decrease in tumor size

followed by resistance

Singer et al., 2015

Orthotopic—GL261 C57Bl/6 CBD + Delta-9-THC 2mg/kg each (i.p.) CBD and THC enhanced killing

effect of ionizing radiation

Scott et al., 2014

Xenograft—glioma

stem cells

Athymic nude HU-210, JWH-133 30 uM treatment before

inoculation (p.t.)

Decreased tumor growth rate

and size decreased stem cell

markers increased

differentiation markers in tumor

Duntsch et al., 2006

Xenograft—C6.9 Immune deficient

mice

Delta-9-THC 500 ug/day (p.t.) Decreased tumor size and

MMP expression in tumor

Blázquez et al., 2008a

JWH-133 50 ug/day (p.t.) Decreased tumor size and

MMP expression in tumor,

ceramide inhibition prevented

tumor regression

Colon

cancer

Azoxymethane-

induced colon cancer

model

Male ICR mice CBD 5mg/kg 3x weekly (i.p.) Reduced aberrant crypt foci

(ACF), number of polyps and

tumors

Aviello et al., 2012

Azoxymethane-

induced colon cancer

model

Male ICR mice Cannabis extract rich

in CBD

5mg/kg (i.p.) Reduced aberrant crypt foci

(ACF), number of polyps and

tumors

Romano et al., 2014

Xenograft—HCT-116 Athymic nude

female

CBG 3 and 10mg/kg (i.p.) Reduced the growth Borrelli et al., 2014

Azoxymethane-

induced colon cancer

models

Male ICR mice 5mg/kg (i.p.) Reduced ACF, number of

tumor/mouse

Xenograft—HT-29 Nude mice HU-331 5mg/kg (i.p.) Reduced angiogenesis Kogan et al., 2006

Xenograft—HT-29 Nude mice HU-331 5mg/kg (i.p., s.c.,i.t.) Reduced tumor growth Kogan et al., 2004

General in vivo

toxicity

Sabra male mice,

SCID-NOD Mice

HU-331 7.5mg/kg (i.p.) Less toxicity than doxorubicin Kogan et al., 2007

Xenograft—HT-29 male nude mice 5mg/kg (i.p.) Reduced tumor growth and

less cardiotoxic than

doxorubicin

Colitisis induced

colon cancer model

(Azoxymethane,

AOM+dextran sulfate

sodium, DSS)

Male CD1 mice O-1602 3 mg/kg (i.p.) Reduced number and area of

tumors. Decreased histoscore

tumor burden and the

expression of proliferation

marker PCNA. Reduced key

mediators that link the

inflammation with colorectal

cancer such as: inflammatory

mediator TNF-α, and

oncogenic transcription factors

STAT3 and NFκB

Kargl et al., 2013

(Continued)
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TABLE 1 | Continued

Cancer

type

Model type

-cell line

Animal

species/strain

Cannabinoid Dose (route) Findings References

Liver

Cancer

Xenograft—HepG2 Male athymic nude Delta-9-THC 15mg/kg (p.t.) Increased PPAR gamma

expression

Vara et al., 2013

JWH-015 1.5mg/kg (p.t.) PPAR-dependent reduction in

tumor growth

Xenograft—HepG2—

and

HuH-7

Athymic mice Delta-9-THC 15mg/kg (p.t.) Increase pAMPK, Reduced

pAKT, pS6.

Autogaphy-dependent

reduction in tumor growth

Vara et al., 2011

JWH-015 1.5mg/kg (p.t.)

Orthotopic—HepG2 Athymic mice Delta-9-THC 15mg/kg (i.p.) Decreased ascites formation,

increased pAMPK, Reduced

pAKT, pS6. Reduced alpha

fetoprotein levels

Vara et al., 2011

JWH-015 1.5mg/kg (i.p.)

Xenograft—Mz-ChA-1

(cholangiocarcinoma)

Nude mice AEA 10mg/kg (i.p.) GPR55-dependent reduction

of tumor growth

Huang et al., 2011b

O-1602 10mg/kg (i.p.)

Athymic mice AEA 10mg/kg (i.p.) Reduction in tumor growth and

VEGF expression

DeMorrow et al., 2008

Pancreatic Xenograft—MiaPaCa2 Nude mice Delta-9-THC 15mg/kg (p.t.) Reduced tumor growth Carracedo et al., 2006

JWH-133 1.5mg/kg (p.t.)

Orthotopic—

MiaPaCa2

WIN 55,212-2 1.5mg/kg (2 days) then

2.25mg/kg (2 days)

then 3.0mg/kg (10

days) (i.p.)

Reduced the growth and the

spreading of pancreatic tumor

cells

Breast Orthotopic—4T1.2

MVT-1

BALB/c CBD 10mg/kg (p.t.) Decreased tumor growth.

Decreased pAkt and EGFR

levels

Elbaz et al., 2015

Orthotopic—MVT-1 FVB

Xenograft—MBA-MD-

321

Athymic nu/nu CBD-rich extract 6.5mg/kg (i.t.) Decreased tumor growth Ligresti et al., 2006

Intraplanar—MBA-

MD-321

BALB/c CBD 5.0mg/kg (i.p.) Decreased tumor metastasis

Orthotopic—4T1 BALB/c CBD 1.0, 5.0mg/kg (i.p.) Decreased tumor growth and

metastasis

McAllister et al., 2011

Orthotopic—4T1 BALB/c CBD

O-1663

0.5, 1.0, 10mg/kg

CBD; 1.0mg/kg

O-1663 (i.p.)

Decreased tumor growth and

metastasis

Murase et al., 2014

Xenograft—MDA-MB-

231

Athymic nu/nu CBD

O-1663

0.5, 1.0, 10mg/kg

CBD; 1.0mg/kg

O-1663 (i.p.)

Decreased tumor metastasis.

O-1663 demonstrated greater

potency compared to CBD

Xenograft—4T1 BALB/c Delta-9-THC 12.5, 25, 50mg/kg

(s.c.)

Increased tumor growth and

Metastasis

McKallip et al., 2005

SCID-NOD Delta-9-THC 25mg/kg (s.c.) No effect on tumor growth

Xenograft

(intraplanar)—EMT6

BALB/c Delta-9-THC 25, 50mg/kg (i.p.) No effect on immune response

(Continued)
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TABLE 1 | Continued

Cancer

type

Model type

-cell line

Animal

species/strain

Cannabinoid Dose (route) Findings References

Xenograft

(intraplanar)—4T1

BALB/c Delta-9-THC 25, 50mg/kg (i.p.) Decreased anti-tumor immune

response in CB2 dependent

manner

GEMM—MMTV-neu MMTV-neu Delta-9-THC 0.5mg/animal (p.t.) Decreased tumor growth,

multiplicity, and metastasis.

Decreased Akt levels

Caffarel et al., 2010

JWH-133 0.05mg/animal (p.t.)

Xenograft—N202.1 Athymic nu/nu Delta-9-THC 0.5 mg/animal (p.t.) Decreased tumor growth is Akt

mediated

JWH-133 0.05 mg/animal (p.t.)

Xenograft—MDA-

MB-231

SCID WIN-55,212-2,

JWH-133

5.0mg/kg (i.p.) Decreased tumor growth,

angiogenesis, and metastasis

Qamri et al., 2009

GEMM—MMTV-

PyMT

MMTV-PyMT WIN-55,212-2,

JWH-133

5.0mg/kg (i.p.) Decreased tumor growth and

progression

GEMM—MMTV-

PYMT

MMTV-PyMT JWH-015 5.0mg/kg (p.t.) Decreased tumor volume and

weight. Decreased CXCR4

phosphorylation

Nasser et al., 2011

Orthotopic—NT2.5 FVB

Orthotopic—

SUM159

Nude Mice JWH-015 10.0mg/kg (p.t.) Decreased tumor volume and

weight. Decreased EGFR and

IGF-1R signaling

McKallip et al., 2005

Orthotopic—MCF-7

Xenograft—MDA-

MB-231

Athymic nu/nu Synthetic CB2

agonist

2.0mg/kg (i.p.) Decrease tumor growth Morales et al., 2015

Allograft—TSA-E1 C57BL/6 Met-F-AEA 0.5mg/kg (i.p.) Decreased metastasis Grimaldi et al., 2006

Prostate Xenograft—LNCaP MF-1 nude CBD 1.0, 10, 100mg/kg

(i.p.)

Decreased tumor growth De et al., 2013

Xenograft—DU-145 MF-1 nude CBD 1.0, 10, 100mg/kg

(i.p.)

Potentiated tumor growth

Xenograft—PC-3 Athymic nu/nu JWH-015 0.15mg/kg (s.c.) Decreased tumor growth Olea-Herrero et al., 2009

Lung Xenograft—A549 NMRI nu/nu CBD 5.0mg/kg (s.c.) Decreased tumor growth,

plasminogen Activator

inhibitor- 1

Ramer et al., 2010a

Xenograft—A549 NMRI nu/nu CBD 5.0mg/kg (i.p.) Decreased tumor metastasis Ramer et al., 2010b

Xenograft—A549 NMRI nu/nu CBD 5.0mg/kg (i.p.) CBD upregulated ICAM-1 and

TIMP-1. ICAM-1 was required

for anti-metastatic properties

of CBD

Ramer et al., 2012

Xenograft—A549 NMRI nu/nu CBD 5.0mg/kg (i.p.) CBD decreased tumor growth

this was reversed by

co-administration with PPAR-γ

antagonist

Ramer et al., 2013

Allograft—LL2 C57BL/6 Delta-9-THC 5.0mg/kg (p.t.) No significant effect on tumor

growth

McKallip et al., 2005

Allograft—3LL C57BL/6 Delta-9-THC 5.0mg/kg (i.p.) Increased tumor growth in

immunocompetent mode

Zhu et al., 2000

Xenograft—L1C2 BALB/c Delta-9-THC 5.0mg/kg (i.p.) No effect on tumor growth in

immunosuppressed model

(Continued)
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TABLE 1 | Continued

Cancer

type

Model type

-cell line

Animal

species/strain

Cannabinoid Dose (route) Findings References

Xenograft—A549 SCID Delta-9-THC 5.0mg/kg (p.t.) Decreased Tumor growth and

metastasis. Decreased Akt

Preet et al., 2008

Xenograft—3LL C57BL/6 Met-F-AEA 0.5mg/kg (i.p.) Decreased tumor metastasis Bifulco et al., 2001

Allograft—3LL C57BL/6 Met-AEA 5.0mg/kg (i.p.) Increased tumor growth in a

COX-2 dependent manner

Xenograft—L1C2 BALB/c Met-AEA 5.0mg/kg (i.p.) Increased tumor growth in a

COX-2 dependent manner

Gardner et al., 2003

Thyroid Xenograft—KiMol Athymic Nude VDM-11 5.0mg/kg (i.t.) Decreased tumor size Bifulco et al., 2004

AA-5-HT 5.0mg/kg (i.t.)

Met-AEA 0.7mg/kg (p.t.) Decreased tumor size,

anti-tumor effect blocked by

CB1 antagonist

Bifulco et al., 2001

Met-AEA 0.5mg/kg (p.t.) Decreased tumor size,

anti-tumor effect blocked by

CB1 antagonist, VEGF

expression decreased in tumor

Xenograft—ARO cells Balb/c (nu/nu) nude

mice

JWH-133 50 ug/ml (i.t.) CB2 overexpressing ARO cells

reduced tumor weight vs.

ARO-empty vector cells

Melanoma Xenograft—CHL-1 Athymic nude mice Delta-9-THC 15mg kg (p.o.) Reduced tumor growth, Ki67

and increased TUNEL positive

cells

Armstrong et al., 2015

Xenograft—HCmel12

(intracutaneous)

Cnr1/2−/− mice

were crossed into

the Hgf-Cdk4R24C

melanoma mouse

model to generate

mice with a dark

skin phenotype

which develop CB1

and CB2

receptor-deficient

melanomas.

Delta-9-THC 5mg/kg (s.c.) CB receptors-dependent

reduction in tumor growth

Glodde et al., 2015

Xenograft—B16 C57BL/6 mice and

Nude

WIN-55,212–2 50 ug/day (p.t.) Reduced tumor growth, cell

proliferation, apoptosis, and

angiogenesis

Blázquez et al., 2006

JWH-133

Xenograft B–16

(intraplantar)

C57BL/6 mice WIN-55,212–2 50 ug/day (p.t.) Reduced metastasis in lung

and liver

JWH-133 JWH-133

NMSC Xenograft—PDV.C57 Nude (NMRI nu)

mice

WIN-55,212-2 6.7 ug/ul (flow

pump—0.52 uL/h

(11 days)

Inhibited skin tumor growth,

angiogenesis and EGFR

activation

Casanova et al., 2003

JWH-133

DMBA/TPA skin

carcinogenesis model

Female ICR mice JWH-018 0.02 and 0.2 uM (t.o.) Inhibited inflammation,

promotion of skin papillomas,

tumor incidence

Nakajima et al., 2013

JWH-122 0.2 and 2 uM (t.o.)

JWH-210 0.2 and 2 uM (t.o.)

p.t., peritumor; i.t., intratumor; i.p., intraperitoneal; s.c., cubcutaneous; t.o., topical; p.o. oral.
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with the U87MG cell line suggested that 19-THC mediated
activation of TRB3 was a critical link between the ER stress
and autophagy pathways as TRB3 activation was needed for
inactivation of Akt and the mTORC1 complex. Other reports
indicated that the administration of 19-THC improves the
therapeutic outcome of the clinically utilized glioma anti-
neoplastic, temezolamide (TMZ) (Torres et al., 2011). In this
study, 19-THC significantly reduced the growth of U87MG
xenograft tumors treated with TMZ when compared to TMZ
or 19-THC alone. Similarly, administration of 19-THC +

cannabidiol (CBD) or 19-THC + CBD + TMZ significantly
reduced tumorigenesis compared to the individual drugs (Torres
et al., 2011). The combined drug regimen was associated with
prevalent LC3 expression and cell death in U87MG tumors. The
mechanism of cell death was also examined in cultured U87MG
cells where inhibition of ceramide synthesis and autophagy
prevented cellular cytotoxicity (Torres et al., 2011). Since each of
these studies also determined that the cytotoxic effect of19-THC
was dependent on cannabinoid receptors, the findings of these
reports indicate that ceramide synthesis, ER stress, autophagy
and cannabinoid receptor activation are likely shared mechanism
of 19-THC-induced glioma death.

Cannabinoid regulation of matrix remodeling proteins
may also play a role in its anti-tumor activity. Matrix
metalloproteinases (MMP) can promote or prevent tumor
invasion and metastasis by degrading extracellular matrix
and other cell-associated proteins (Lukaszewicz-Zajac et al.,
2014). In addition, the effects of MMPs are counteracted by
tissue inhibitors of metalloproteinases (TIMPs). MMPs/TIMPs
also directly regulate tumor growth, tumor apoptosis and
angiogenesis. An examination of the effect of 19-THC on C6.9
cell xenograft growth showed that animals treated with 19-
THC contained smaller tumors with reduced MMP-2 expression
in contrast control group animals (Blázquez et al., 2008a).
19-THC also reduced tumor growth and the expression of
MMP-2 in tumors of 19-THC-treated patients. Cell culture
studies with C6.9 cells confirmed that MMP-2 expression and
cell viability were decreased as a result of 19-THC exposure
(Blázquez et al., 2008a). A different study by this research
group also indicated selective participation of TIMP-1 in the
anti-neoplastic activity of 19-THC (Blázquez et al., 2008b).
Similar to MMPs, TIMPs have both a positive and negative
impact on tumor growth (Lukaszewicz-Zajac et al., 2014).
In C6.9 xenografts, 19-THC decreased tumor development
and tumoral TIMP-1 but had little impact on TIMP-2 or
TIMP-3 expression. Selective TIMP-1 downregulation was also
observed in patient tumor samples subsequent to 19-THC
administration. C6.9 cell culture studies showed that 19-
THC decreased TIMP-1 expression by increasing ER stress
and ceramide synthesis and also demonstrated that 19-
THC reduced C6.9 cell migration (Lukaszewicz-Zajac et al.,
2014). These studies suggest that downregulation of MMP-
2 and TIMP-1 is important for 19-THC regulation of
tumor size, however additional work is needed to reveal
whether the reduction in these matrix modulating proteins
also alters the metastatic and invasive behavior of tumor cells
in vivo.

An investigation of the effects of 19-THC on human
glioblastoma-T98G xenografts demonstrated concentration-
dependent effects with low 19-THC concentrations causing
a modest increase in tumor growth and high 19-THC
concentrations promoting tumor cell death (Sánchez et al.,
2001). Experiments in cultured T98G cells suggested that this
effect was mediated by the formation of a functional dimeric
complex between GPR55 and CB2 receptors such that low
concentrations of 19-THC activated the CB2 receptor and Erk
expression thereby promoting tumor cell growth. However, in
the presence of high19-THC concentrations,19-THC inhibited
GPR55 which blocked the CB2 receptor and Erk activation
thereby inhibiting tumor cell growth. This finding is consistent
with reports showing that the putative G-protein-coupled
cannabinoid receptor, GPR55, is overexpressed in cancers and
promotes carcinogenesis (Falasca and Ferro, 2016).

Most clinically available cancer chemotherapeutic agents
demonstrate significant toxicity toward cancer and normal cells.
This lack of selectivity often produces undesirable side effects that
limit its therapeutic utility. 19-THC preferentially induced cell
death in tumorigenic compared to non-tumorigenic astrocytes
(Salazar et al., 2009). Moreover, in non-tumor bearing rats, 19-
THC (2500µg) exhibited limited toxicity and did not affect
animal survival, health, behavior or hematopoietic parameters
(Galve-Roperh et al., 2000). These findings suggest that 19-THC
will cause limited adverse effects thereby making this compound
an attractive candidate for therapeutic use. Furthermore, the
anti-emetic, appetite stimulating and analgesic effects of 19-
THC and other cannabinoids can provide relief for important
co-morbidities commonly associated with cancer and cancer
chemotherapy.

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid
whose effect on tumor growth is being extensively explored.
CBD significantly reduced U87MG xenograft growth when
compared to vehicle control animals (Massi et al., 2004). An
in vitro examination of the mechanism of action suggested that
the induction of reactive oxygen species (ROS) and activation
of the CB2 receptor was involved in the anti-tumor effect.
However, unlike 19-THC, CBD toxicity did not appear to be
regulated by CB1 or ceramide. Furthermore, in an orthotopic
and subcutaneous tumor model, CBD significantly decreased
U251 cell tumor growth (Soroceanu et al., 2013). In tumors
generated by both methods, the expression of the proliferation
marker, Ki67, and inhibitor of DNA binding (Id-1) protein
were reduced. Id-1 is a transcription factor that prevents tumor
cell differentiation and its expression is elevated in highly
aggressive tumors (Ling et al., 2006). Cell culture studies showed
that CBD inhibited Id-1 expression which occurred coincident
with a reduction in U251 cell invasiveness (Soroceanu et al.,
2013). A follow up study by this group demonstrated that
CBD inhibited tumor growth and increased the survival of
animals orthotopically implanted with primary 3832 and 387
glioblastoma cells (Singer et al., 2015). The reduction in tumor
size was accompanied by decreased expression of Id-1 and Sox-
2 indicating a reduction in tumor aggressiveness. Continued
administration of CBD in this model resulted in reduced
responsiveness to CBD, increased antioxidant response gene
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expression and upregulated expression of mesenchymal markers
in the tumors. Investigation of the in vitromechanism suggested
that resistance to CBD was primarily caused by activation of
SCL7A11 (a transcriptional target of Nrf2) antioxidant signaling
as inhibition of this target decreased tumor cell survival and
augmented the antitumor activity of CBD. A different study
revealed that CBD potentiated the killing effect of ionizing
radiation (IR), a common clinical therapy for glioblastoma.
Using an orthotopic xenograft model, CBD + 19-THC + IR
significantly decreased the size of GL261 gliomas compared to
CBD + 19-THC or IR alone (Scott et al., 2014). Increased
TUNEL positive cells in tumors isolated from animals exposed to
CBD + 19-THC + IR implicated cell death as the mechanism
of tumor growth inhibition. Thus, the antitumor activity of
19-THC and CBD has been demonstrated in different in vivo
tumor models and the diverse pathways by which these agents
elicit death appear to favor co-administration with other
chemotherapeutic agents.

Numerous studies suggest that synthetic cannabinoids such
as JWH-133, WIN 55,212-2 and HU-210 are promising
chemotherapeutic agents for treatment of gliomas. In murine C6
xenografts, the growth of glioma solid tumors was significantly
inhibited by JWH-133 compared to control group animals
(Sánchez et al., 2001). This effect was found to be mediated
by the CB2 but not the CB1 receptor. In the same animal
model, JWH-133 also inhibited the growth of human glioma
cells. Examination of the mechanism of cytotoxicity in cultured
C6 cells showed that ceramide synthesis was needed for JWH-
133-mediated tumor cell death. Later studies by this group
validated the in vitromechanism by demonstrating that blockade
of ceramide synthesis in vivo decreased the anti-tumor activity of
JWH-133 (Blázquez et al., 2008a,b). These studies also revealed
that ceramide was involved in JWH-133-induced suppression
of the invasion associated proteins, MMP-2 and TIMP-1.
The combined reports suggest that the induction of ceramide
synthesis by JWH-133 causes a reduction tumor cell survival and
invasion.

The effect of synthetic cannabinoids on angiogenesis was also
examined. JWH-133 reduced the growth of C6 gliomas that was
accompanied by a decrease in tumoral, pro-angiogenic VEGF
and VEGFR (Blázquez et al., 2004). It was determined that
VEGFR levels were also downregulated in glioma biopsies from
patients treated with 19-THC. In vitro studies with C6 cells
demonstrated that both JWH-133 and WIN 55,212-2 decreased
VEGFR2 phosphorylation and VEGF levels by increasing
ceramide production. The reduction in VEGF signaling by the
cannabinoids was also dependent on CB1 and CB2 receptors.
A more detailed examination of the effect of cannabinoids on
angiogenesis showed that JWH-133 decreased the permeability
of tumor localized blood vessels as well as the growth of C6 and
patient-derived glioma cells in xenograft tumor studies (Blázquez
et al., 2003). Consistent with these results, the mRNA expression
of the angiogenesis and metastasis-promoting proteins VEGF,
Ang2 and MMP-2 were decreased by JWH-133. Furthermore,
in vitro studies using HUVEC cells demonstrated that JWH-
133 inhibited endothelial cell migration and initiated death that
was reversed by antagonism of CB1 and CB2 receptors. The

findings of these reports indicate that cannabinoid prevention of
angiogenesis is reliant on ceramide production and cannabinoid
receptor activation.

Accumulating evidence suggests that a subpopulation of
brain tumors originate from pluripotent stem-like cells (Singh
et al., 2004). These undifferentiated cells are often associated
with poor prognosis and highly aggressive tumor phenotypes
whereas well-differentiated glial cells are typically less aggressive
(Wan et al., 2011). As such, the stem-like population of
U87MG cells and human gliomas were treated with JWH-133
or HU-210 and then subcutaneously implanted to examine
the effect of cannabinoids on this tumor cell subtype (Aguado
et al., 2007). Cannabinoid treated cells formed smaller tumors
which contained low levels of stem-like stage proteins such
as nestin and high levels of differentiation-associated proteins
including β-tubulin III and S-100β. Consistent with these
findings, JWH-133 and HU-210 decreased the expression of
nestin and increased the expression of GFAP, S-100β and
β-tubulin III in cultured stem-like glioma cells. Hence it appears
that the anti-neoplastic activity of the synthetic cannabinoids
may be attributed to their ability to prevent tumor cell
survival, invasion, and angiogenesis while promoting tumor cell
differentiation.

KM-233 is a synthetic cannabinoid that signals through
CB1 and CB2 receptors and is a derivative of 18-THC
(Krishnamurthy et al., 2008). The anti-neoplastic activity of KM-
233 was examined in an orthotopic U87MG cell tumor protocol
where a significant reduction in tumor size occurred (Gurley
et al., 2012). These results were verified in a xenograft tumor
study using patient-derived glioblastoma multiforme tissue.
In vitro studies showed that KM-233 induced U87MG death
was prevented by antagonizing the CB1 receptor. A subsequent
study by this group confirmed the anti-tumor activity of KM-
233 against U87MGxenograft tumors and also demonstrated that
KM-233 produced minimal damage to neuronal tissue within the
therapeutic dosage range (Duntsch et al., 2006). As such, KM-233
may be an effective agent against glioma with an acceptable safety
profile similar to other cannabinoids.

The bulk of our knowledge about the effect of cannabinoids
on cancer growth in in vivo models is derived from the
aforementioned glioma studies. Much of this work demonstrated
potent antitumor activity, confirmed in vitro mechanisms of
cannabinoid antitumor action and provided evidence that
these molecules were minimally toxic and therefore paved the
way for execution of a clinical study with a small number of
glioma patients (Clinical trial ID# NCT01812603). However,
additional experimentation in animals is needed to define the
pharmacokinetic properties of cannabinoids before large scale
human studies are conducted. It will be particularly important
to examine drug accumulation in tumors and drug disposition
in body compartments subsequent to drug administration via
different routes as most of the glioma studies conducted thus far
employ intra/peri-tumor drug delivery. Such investigations may
identify more clinically convenient routes of administration,
establish the extent of drug stability and metabolism while
providing clues about potential adverse effects of these
agents.
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DIGESTIVE SYSTEM CANCER

Digestive system cancers include colon, stomach, liver, and
pancreatic cancer. In the United States, these combined
malignancies account for the highest incidence of cancer besides
skin cancer and are the second leading cause of death for both
sexes. In 2016, an estimated 304,930 new cases of digestive system
cancer will be diagnosed in the US with 153,030 estimated deaths
(Siegel et al., 2016).

Colorectal Cancer
Colorectal cancer (CRC) is the most lethal type of digestive
cancer followed by pancreatic and then liver cancer. Recent
studies advocate that the ECS plays a critical role in CRC
development and is therefore considered an appropriate target
for CRC inhibition. The levels of the endocannabinoid,
anandamide (AEA), the enzymes participating in AEA
biosynthesis and degradation, as well as its molecular target
CB2, are elevated in tumor specimens of CRC patients (Cianchi
et al., 2008; Chen et al., 2015). Furthermore, there was a positive
correlation between CB2 receptor expression and human colon
cancer growth. Consistent with this finding, the CB2 receptor
was a poor prognostic marker in advanced stages of colon cancer
(stage III and IV) (Martinez-Martinez et al., 2015). Hence, the
ECS may significantly impact colon tumor progression. The
anti-cancer activities of phyto- and synthetic cannabinoids
in colon cancer animal models have also been reported. In
chemically-induced azoxymethane (AOM) colon carcinogenesis,
the phytocannabinoids, CBD and Cannabis sativa extract (which
contains high CBD content, one of the main components of the
botanical drug, Nabiximols) reduced aberrant crypt foci (ACF)
formation and the number of precancerous polyps and tumors
(Aviello et al., 2012; Romano et al., 2014). In vitro experiments
in the same studies suggested that the cytotoxicity was mediated
by CB1, TRPV1, and PPARγ (CBD and Cannabis extract) or
CB2 (Cannabis extract) (Aviello et al., 2012; Romano et al.,
2014). Furthermore, the non-psychoactive phytocannabinoid,
cannabigerol (CBG), reduced the growth and development of
HCT-116 xenografts and AOM-induced colon cancer formation.
Using the HCT-116 cell lines, cell death was prevented by
blocking TRPM8 but not CB1, CB2, or TRPV1 receptors
(Borrelli et al., 2014). Synthetic cannabinoids also showed anti-
cancer activity in different animal models. HU-331, a quinone
compound synthesized from cannabidiol, reduced angiogenesis
and tumor growth in a HT-29 xenograft model (Kogan et al.,
2004, 2006). In nude mice xenografts with HT-29 cells, HU-
331 also showed greater inhibition of tumor growth than the
clinically utilized chemotherapeutic, doxorubicin (Kogan et al.,
2007). Moreover, a comparative study utilizing multiple animal
models showed that HU-331 exhibited less cardiotoxicity than
doxorubicin. In a different study, O-1662 an analog of abnormal
cannabidiol, reduced the number and size of tumors formed
by AOM + dextran sulfate sodium in the colitis-induced
colon cancer model. This activity was accompanied by reduced
inflammation, proliferation, and induction of apoptosis in the
tumor tissue (Kargl et al., 2013). Although numerous studies
tested the effect of cannabinoids and their derivatives in different

CRC models, reports that utilize agents which bind selectively
to CB1 or CB2 receptors are lacking. As such, the direct role of
cannabinoid receptor activation in the context of CRC treatment
has not been addressed in vivo.

Liver Cancer
There are two major types of liver cancer, hepatocellular
carcinoma (HCC; also known as hepatoma), which originates in
hepatocytes and accounts for approximately 75% of liver cancers
and cholangiocarcinoma, which develops within the bile ducts
of the liver (Huang et al., 2011a). Xu et al. found that the
expression of both CB1 and CB2 receptors was increased in HCC
tissues and was strongly associated with improved prognosis
and disease-free survival rates (Xu et al., 2006). Conversely,
Mukhopadhyay et al. reported that CB1 receptors promote
the initiation and progression of diethylnitrosamine (DEN)-
induced HCC in mice (Mukhopadhyay et al., 2015). Hence, it
is appropriate to investigate whether cannabinoid receptors are
suitable targets for treatment of liver cancer. Phytocannabinoid,
19-THC, and synthetic CB2 receptor agonist, JWH-015 reduced
the growth of HepG2 and HuH-7-derived tumor xenografts
and diminished ascites development in an orthotopic model
of HCC. The anti-tumor activities of 19-THC and JWH-015
in hepatocellular carcinoma cell lines (HepG2 and HuH-7)
were mediated by the activation of CB2 receptors followed by
increased ceramide, ER-stress, PPAR-γ activity, and eventually
the induction of autophagy (Vara et al., 2011, 2013). Furthermore,
the endocannabinoid, AEA, reduced the growth of Mz-ChA-1-
derived cholangiocarcinoma xenografts and downregulated the
tumor expression of angiogenic factors, VEGF-C, VEGF-R2, and
VEGF–R3 in AEA-treated tumors. The anti-neoplastic activity of
AEA was mediated by GPR55 receptors (in vivo and in vitro),
activation of Wnt/JNK signaling (in vitro), and recruitment of
the Fas death receptor into lipid rafts (in vitro) (DeMorrow et al.,
2008; Huang et al., 2011b). These studies provide strong support
that phyto, synthetic, and endogenous cannabinoids confer anti-
proliferative effects on liver tumor cells, however, in these
reports xenografts are the primary model utilized. Additional
insight would be gained by assessing the effect of cannabinoids
on HCC using chemical carcinogenesis models which evaluate
tumor growth with clinically relevant carcinogens in their native
microenvironment.

Pancreatic Cancer
The ECS plays an active role in pancreatic carcinogenesis.
It was reported that CB1 and CB2 receptor expression was
elevated in human pancreatic tumors when compared to normal
pancreas (Carracedo et al., 2006; Michalski et al., 2008). Although
the levels of endocannabinoids, AEA, 1-AG, and 2-AG were
unchanged in pancreatic cancer compared to normal human
pancreas, high levels of CB1 receptor expression and low levels
of endocannabinoid degrading enzymes, FAAH and monoacyl
glycerol lipase (MAGL), were associated with shorter survival
(Michalski et al., 2008). On the other hand, Carracedo et al.,
demonstrated that 19-THC and JWH-133 reduced growth
of MiaPaCa2-derived xenografts. Additionally, WIN-55,212-
2 reduced the growth of orthotopically implanted MiaPaCa2
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pancreatic tumors and prevented the spread of tumor cells to
distal organs (Carracedo et al., 2006). In vitro studies showed that
the anti-proliferative activity of the cannabinoids was mediated
by the activation of CB2 receptors followed by de novo synthesis
of ceramide and the induction of ER-stress (Carracedo et al.,
2006).

Collectively, the ECS plays an important role in the
progression of digestive cancers including colon, liver, and
pancreatic cancers. Cannabinoid receptor expression is elevated
in tumors when compared to normal tissues, indicating that
endogenous cannabinoids have cancer promoting activity.
However, preclinical studies revealed that exogenous synthetic,
phyto-, and endo- cannabinoids reduced tumor incidence,
growth, and angiogenesis. Although sufficient evidence is not
available to explain this effect, these seemingly opposing events
may be explained by the biphasic effect of cannabinoids.
Whereas low cannabinoid concentrations (<10 uM) increase
tumor progression, high concentrations (>10 uM) reduce cancer
cell proliferation (Martinez-Martinez et al., 2015). Further
research is required to uncover potential in vivo biphasic effects
and determine the optimum drug concentrations needed to
prevent pancreatic cancer growth. Moreover, since the number
of pancreatic tumor studies with cannabinoids is extremely
limited, more research is required to demonstrate cannabinoid
efficacy.

BREAST CANCER

Breast cancer is the most commonly diagnosed cancer in women
and the second leading cause of female cancer deaths in the
United States (Siegel et al., 2016). Risk factors for developing
this type of cancer include: being of the female sex, having a
family history of this disease, obesity, and menopause-associated
hormone replacement (Kaminska et al., 2015). Recent research
suggested that cannabinoids and the ECS played a role in
breast cancer progression and may possess therapeutic potential
(Caffarel et al., 2012).

Breast cancer can be divided into three sub-types: hormone
sensitive breast cancer, which expresses estrogen receptors
(ER) and/or progesterone receptors (PR); HER2-positive breast
cancer, which expresses human epidermal growth factor receptor
(ErbB2, a member of the EGFR family); and triple negative
breast cancer (TNBC), a type of breast cancer which is difficult
to treat due to the lack of ER, PR, and HER2 expression.
Cannabinoid receptor expression differs between these breast
cancer sub-types. CB1 receptors were reported to be present
in 28% of all breast carcinoma patients, with 14% being HER2
positive. On the other hand CB2 receptors were found in 72% of
breast carcinomas and 91% of these tumors were HER2 positive,
suggesting a possible link between HER2 and CB2 expression
(Qamri et al., 2009; Caffarel et al., 2010; Pérez-Gómez et al.,
2015). Of interest, a correlation between CB2 receptor expression
and breast cancer aggressiveness has been suggested (Caffarel
et al., 2006). As such, the effects of cannabinoids on breast tumor
growth and metastasis using in vivo models has helped elucidate
their therapeutic and prognostic potential.

Phytocannabinoids such as 19-THC and CBD induce both
breast cancer regression and progression in vivo, indicating that a
complex interaction between these compounds and cancer exists.
CBD was shown to decrease tumor growth in multiple breast
cancer models including: two orthotopic models, one genetically
engineered mouse model (GEMM) and one TNBC xenograft
model (Ligresti et al., 2006; McAllister et al., 2011; Murase
et al., 2014; Elbaz et al., 2015). CBD significantly decreased
the incidence of lung metastasis in TNBC xenograft metastatic
and orthotopic mouse models. Furthermore, two of these
studies which used genetically engineered and xenograft models
proposed that CBD elicited these effects by inhibiting EGFR
activation, cytokine secretion, and Akt expression (McAllister
et al., 2011; Elbaz et al., 2015). The CBD derivative, O-1663,
was also shown to decrease TNBC xenograft growth through a
mechanism requiring the generation of oxidative stress (Murase
et al., 2014). Consistent with the findings for CBD, 19-THC
impaired tumor growth, multiplicity and metastasis in both
HER2 positive MMTV-neu mice (a GEMM) and HER2 positive
xenografted mice (Caffarel et al., 2010). This group also found
that downregulation of pro-tumorigenic Akt was involved in the
anti-proliferative effects of 19-THC (Caffarel et al., 2010). In
contrast, phytocannabinoids also promoted tumor development.
The Nagarkatti group found that mice implanted with 4T1 cells
that were treated with 19-THC displayed greater tumorigenicity
and metastatic potential by inhibiting host anti-tumor immune
responses (McKallip et al., 2005). Indeed, phytocannabinoid-
induced immune suppression has been reported to be mediated
by the CB2 receptor in similar tumor models (Zhu et al., 2000).

Synthetic cannabinoid receptor agonists have also been
utilized to elucidate the role of CB1 and CB2 receptors in breast
cancer growth. Activation of CB1/CB2 receptors using WIN-
55,212-2 led to significant decreases in tumor growth and lung
metastasis in a TNBC xenograft and a genetically engineered
MMTV-PyTV (mouse mammary tumor virus encoding polyoma
virus middle T antigen) mouse model (Qamri et al., 2009).
Furthermore, selective CB2 receptor activation with JWH-133
inhibited the growth of tumors and decreased metastasis in
MMTV-PyTVmice, HER2 positive MMTV-neu mice andMDA-
MB231-derived xenografts (Qamri et al., 2009; Caffarel et al.,
2010; Morales et al., 2015). Follow-up in vitro studies performed
in MDA-MB231, MDA-MB468 and N202.1 cells also suggested
that CB2 receptor activation by synthetic cannabinoids such
as JWH-133 downregulated pro-tumorigenic prostaglandin E2
(PGE2) or Akt similar to phytocannabinoids (Qamri et al., 2009;
Caffarel et al., 2010). Another CB2 receptor agonist, JWH-
105, was found to inhibit tumor growth in a NT2.5-orthotopic
mouse model and the MMTV-PyMTmodel and this observation
corresponded to decreased pro-metastatic phospho-CXCR4 and
phospho-ERK levels in vivo and in vitro (Nasser et al., 2011).
Additionally, activation of CB2 receptors by a similar compound,
JWH-015, was also found to decrease tumor growth and weight
in both, ER- positive and ER- negative orthotopic models
(Elbaz et al., 2016). JWH-015 treated mice exhibited decreased
EGFR and IGF-1R signaling and Akt expression (Elbaz et al.,
2016). Finally, the synthetic and metabolically stable analog of
AEA, 2-methyl-2’F-anandamide (Met-F-AEA), was also shown
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to decrease lung metastasis in TSA-E1 cell-derived xenografts
(Grimaldi et al., 2006). For the most part, in vivo studies indicate
that phyto-, synthetic- and endo- cannabinoids suppress tumor
development in hormone receptor positive, EGFR positive and
triple negative breast cancer animal models. However, additional
animal studies are needed to understand how cannabinoid
regulation of the immune system impacts breast tumor
growth.

PROSTATE CANCER

Carcinoma of the prostate is the development of malignant
cells within the male reproductive prostate gland. It is the
most commonly diagnosed cancer in all men with an estimated
180,000 new cases in 2016 (Siegel et al., 2016). This cancer type
is also the second leading cause of cancer deaths in men, which
primarily appears to be a result of late detection. Risk factors for
developing this disease are advanced age, family history, and race.

Cannabinoids and their receptors have shown promise as
potential therapeutics in prostate cancer. CB1 and CB2 receptor
expression was shown to be elevated in prostate cancer compared
to normal prostate tissue and are suggested to be positively
correlated with poor disease outcome (Sarfaraz et al., 2005;
Chung et al., 2009). Prostate cancer progression depends on
androgen activity and while the ECSmay influence this signaling,
the interplay between these systems in the context of cancer is
poorly understood (Sánchez et al., 2003a,b). Although numerous
studies have evaluated the effect of cannabinoids on prostate
cancer in cell culture studies, relatively few reports have
determined if these effects occur in in vivo animal models.
Di Marzo’s group found that cannabis extracts enriched with
CBD effectively decreased tumor growth in androgen receptor
positive LNCaP xenografts but potentiated tumor growth of
androgen receptor negative DU-145 xenografts (De et al., 2013).
Furthermore, in vitro experiments using PC-3, DU-145, 22RV1,
and LNCaP cell lines in this study found that CBD decreased
androgen receptor expression suggesting that crosstalk between
the CBD and androgen signaling pathways may affect tumor
growth. CBD also significantly increased the generation of ROS
and pro-apoptotic CHOP10 expression in these four prostate
cancer cell lines (De et al., 2013). Similarly, JWH-015 led
to decreased tumor proliferation in PC-3 derived xenografts.
These anti-proliferative effects were examined in vitro and were
suggested to be mediated by CB2 induced synthesis of ceramide
(Olea-Herrero et al., 2009). While these studies show a promising
role for cannabinoids in targeting prostate cancer, more research
is needed to definitively establish cannabinoid efficacy in vivo and
the importance of androgen receptor signaling in this system.

LUNG CANCER

Lung cancer is the most deadly neoplasm in both males and
females in the United States with a death toll anticipated to
exceed 150,000 individuals in 2016 (Siegel et al., 2016). The two
major types of lung cancer are small-cell lung cancer (SCLC) and
non-small-cell lung cancer (NSCLC). Risk factors for developing

this disease are tobacco smoking, genetic predisposition, and
exposure to radon gas. Survival figures from this disease
powerfully demonstrate the need for novel interventions. As
such, cannabinoids have been evaluated in vivo for their efficacy
against lung cancer.

CB1 receptors were expressed in 24% human NSCLC tissues,
while CB2 receptor expression was found in 55% of NSCLC,
suggesting a role for CB-receptors in tumor development (Preet
et al., 2011). Cannabinoids such as 19-THC, CBD and Met-
AEA elicited different effects in lung cancer animal models.
CBD administration to mice with A549 cell xenografts decreased
tumor growth, invasion and metastasis (Ramer et al., 2010a,b,
2012). Follow up in vitro experiments using A549, H358, and
H460 lung cancer cell lines suggested that the anti-metastatic
effect of CBD was mediated by upregulation of intracellular
adhesionmolecule-1 (ICAM-1), an anti-metastatic protein which
has been suggested to suppress tumor growth via an immuno-
surveillance mechanism (Wolfram et al., 2000; Ramer et al.,
2012). In another study, CBD exhibited anti-tumor effects that
were reversed by co-administration of a PPARγ antagonist in
vivo (Ramer et al., 2013). Similarly, Preet et.al. found that
the phytocannabinoid, 19-THC, downregulated Akt in A549-
derived xenografts, which corresponded with decreased tumor
growth and metastasis (Preet et al., 2008). In contrast, Zhu
et al. showed that 19-THC increased the tumorigenicity of
3LL lung cancer cells in allografted immunocompetent mice
and demonstrated that CB2 mediated inhibition of anti-tumor
lymphocyte activity was the primary mechanism for accelerated
tumor growth (Zhu et al., 2000). Furthermore, these investigators
and the Arevalo group found that 19-THC administration had
no effect on tumor growth in xenografted immunodeficient
mice (Zhu et al., 2000; McKallip et al., 2005). Stable analogs of
AEA also showed differential effects on lung cancer progression
in vivo. The Dubinett group found that met-AEA increased
tumor growth in a xenograft and allograft murine model and
that COX-2 inhibition abrogated these effects (Gardner et al.,
2003). Conversely, Bifulco et al. found that met-F-AEA treatment
decreased tumor metastasis in a 3LL cell-derived xenograft
model (Bifulco et al., 2001). These studies suggest that the ECS
plays a role in both lung cancer progression and suppression.
Consequently, several of these studies indicate that anti-tumor
immunity is suppressed by certain cannabinoids, exacerbating
tumor growth in immune-competent animals. As such, exploring
the interplay between the immune system, the ECS and lung
cancer development may be critical in determining whether
cannabinoids are suitable for lung cancer treatment.

THYROID CANCER

Thyroid cancer is the most frequently diagnosed endocrine
malignancy in the United States. It is estimated that more than
64,000 new cases will be identified and 1900 deaths will result
from this disease (Siegel et al., 2016). Although the death rate
is relatively low compared to other types of cancer, therapeutic
options are needed for aggressive forms of this disease whose
lethality is thought to be associated with the differentiation
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state of the tumor (Lee et al., 2016). Relatively few studies
have examined the effect of cannabinoids on thyroid tumor
development in vivo, but these reports showed that the ECS was
expressed and was capable of modulating tumor growth (Portella
et al., 2003; Bifulco et al., 2004; Shi et al., 2008). For example,
the activity of a variety of ECS modulators was examined in
KiMol thyroid cells which generate undifferentiated tumors
in xenograft models (Bifulco et al., 2004). In this study, the
endogenously synthesized cannabinoid, 2-AG reduced thyroid
tumor development. Similarly, agents that inhibited the EMT
(VDM-11) and blocked AEA hydrolysis (AA-5HT) prevented
in vivo tumor growth. Also, the metabolically stable molecules,
arvanil and met-F-AEA also produced a significant reduction
in tumor growth. The results of this study suggested that
manipulation of the EC system was a viable option to prevent
propagation of thyroid tumor cells. Additional preclinical studies
were conducted with met-F-AEA. Using the xenograft model
with KiMol cells it was determined that met-F-AEA prevented
thyroid tumor growth and this that effect was reversed by
antagonism of the CB1 receptor (Bifulco et al., 2001). Other
studies with KiMol cells confirmed the anti-tumor activity
of met-F-AEA and also indicated that this agent regulated
tumor angiogenesis (Portella et al., 2003). Specifically, tumors
isolated from met-F-AEA treated animals contained reduced
levels of VEGF and VEGF receptor compared to vehicle
treated animals. Furthermore, the reduction in VEGF signaling
could be prevented by blockade of CB1 receptor activity. In
another study, the synthetic cannabinoid, JWH-133, was tested
in the highly aggressive ARO cell tumor model (Shi et al.,
2008). Xenograft tumor growth using ARO/CB2 cells (a CB2
receptor overexpressing thyroid cancer cell line) was inhibited
in mice treated with JWH-133 compared to vehicle. Cell culture
experimentation suggested that JWH-133 toxicity was mediated
by the CB2 receptor in contrast to met-F-AEA which was
reported to initiate thyroid carcinoma cell death via CB1 (Portella
et al., 2003). The data collected thus far suggest that synthetic
EC system modulators represent novel therapeutic targets for
thyroid cancer. However, because of the scarcity of in vivo thyroid
cancer studies with cannabinoids, more extensive evaluation
is needed to confidently define the role of the ECS in this
malignancy.

SKIN CANCER

The epidermis is comprised of different cell types including
keratinocytes and melanocytes, which are the source of non-
melanoma skin cancer (NMSC) and melanoma, respectively.
Skin cancer is the most common cancer in the United States
with approximately 5.4 million new lesions (3.3 million cases) of
NMSC and more than 76,000 new cases of melanoma diagnosed
each year (American Cancer Society, 2016; Siegel et al., 2016).
Melanoma is more deadly and aggressive than NMSC. It is
estimated that over 10,000 patients will die from melanoma in
2016 (Siegel et al., 2016). Several in vitro and in vivo studies
suggest that the ECS plays a vital role in melanoma and
NMSC development and progression (reviewed in Soliman et al.,

2016a). It has been reported that CB1 and CB2 receptors were
expressed in human melanoma cell lines as well as in human
cutaneous melanoma biopsies (Blázquez et al., 2006). In addition,
circulating levels of the endocannabinoid, 2-AG, increased in
metastatic B16F10 mouse melanoma as well as in patients with
metastatic melanoma suggesting a link between the ECS and
melanoma progression (Sailler et al., 2014). Furthermore, in
human and murine normal keratinocytes and non-melanoma
skin tumors (e.g., papilloma, basal cell carcinoma, squamous cell
carcinoma) CB1 and CB2 receptors were expressed and were
required for the development of NMSC in vivo (Casanova et al.,
2003; Zheng et al., 2008).

Melanoma
The anti-tumor activity of phyto- and synthetic-cannabinoids
against melanoma was reported in different in vivo studies
using xenograft tumor models. Phytocannabinoid, 19-THC
decreased proliferation, increased death and reduced the growth
of CHL-1 melanoma xenografts (Armstrong et al., 2015). Using
CB1/CB2-receptor deficient mice (CB1/2−/−), Glodde’s group
demonstrated that the anti-tumor effect of19-THC onHCmel12
xenografts was dependent on cannabinoid receptors (Glodde
et al., 2015). Synthetic cannabinoids, with different affinities for
CB1 and CB2 receptors, have helped to shed light on the potential
of targeting CB1 and CB2 receptors in melanoma. Mixed
CB1/CB2 agonist, WIN-55212,2 decreased the progression and
metastasis of B16F10 melanoma cells in mice after subcutaneous
and intra-plantar implantation, respectively (Blázquez et al.,
2006). Because the psychotropic effects of WIN-55212,2 are
primarily mediated by the CB1 receptor, the anti-tumor effects of
the non-psychoactive, CB2 selective cannabinoid, JWH-133 was
examined. JWH-133 was as effective asWIN55212,2 in inhibiting
melanoma tumor growth, suggesting that the anti-tumor activity
of cannabinoids was mediated by CB2 receptor activation
(Blázquez et al., 2006). Hence, the data generated thus far
indicate that cannabinoid receptor agonists may be appropriate
therapeutic targets for melanoma. Newer clinical approaches
to combat melanoma involve mobilization of cytotoxic T-cells
with monoclonal antibodies such as ipilimumab and nivolumab.
Since cannabinoids are known immunomodulators, the effects of
cannabinoids on cancer immunosurvailence must be addressed
in future studies to have a complete understanding of the
therapeutic potential of these molecules.

Non-melanoma Skin Cancer
Several studies report that cannabinoids and endocannabinoids
have anti-cancer activity against NMSC via cannabinoid receptor
dependent or independent pathways (Van Dross et al., 2013;
Soliman and Van Dross, 2015; Soliman et al., 2016b). There
are two well-known animal models for NMSC, the UVB-
light-induced skin carcinogenesis model (Fischer et al., 2007)
or the two-stage chemical carcinogenesis protocol using a
tumor initiator such as dimethylbenz[a]-anthracene (DMBA)
and a tumor promoter such as 12-O-tetradecanoylphorbol-
13-acetate (TPA) (Kiraly et al., 2016). Using CB1 and CB2
receptor deficient (CB1/2−/−) and wild type (CB1/2+/+) mice,
it was determined that CB1 and CB2 receptors were required
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for papilloma formation initiated by UVB-light. In contrast,
similar studies with CB1/2+/+ and CB1/2−/− mice in the
DMBA/TPA model demonstrated that cannabinoid receptors
were not required for skin tumorigenesis. Data from these two
different studies indicate that the involvement of ECS in skin
cancer development is dependent on the type of the stimulus
(Zheng et al., 2008; Gegotek et al., 2016). The in vivo anti-
tumor activities of different synthetic cannabinoids have also
been reported.WIN-55,212–2 and JWH-133 reduced the growth,
impaired vascularization, and reduced the expression of various
pro-angiogenic factors in the murine epidermal tumor cell
PDV.C57 xenograft model (Casanova et al., 2003). In a different
study, the anti-tumor activity of other synthetic cannabinoids was
analyzed in the DMBA/TPA skin carcinogenesis model where
JWH-018, JWH-122, and JWH-210 reduced tumor incidence
and multiplicity compared to vehicle treated animals (Nakajima
et al., 2013). Collectively, it appears that the ECS is involved
in the formation of UVB-induced NMSC and that phyto- and
synthetic- cannabinoids are capable of decreasing NMSC growth
in different tumor models. It will be important for future
investigations to include human NMSC tissue models (such as
PDX) in the examination of cannabinoid activity since many of
the existing reports primarily utilize mouse tissue xenograft and
carcinogen-induced cancer models.

ANTI-CANCER EFFECTS OF
CANNABINOIDS IN HUMANS

Human studies that investigate the pharmacotherapeutic benefits
associated with the use of cannabinoid ligands focus on
reductions in pain, spasticity and cognitive deficits in a number
of central and peripheral nervous system disorders (Velasco et al.,
2016). To date only a few cannabis-based pharmacological agents
are licensed for clinical use. In Europe, Sativex R© is approved for
treatment of spasticity associated with multiple sclerosis and in
Canada it is additionally approved as an adjunct analgesic for
cancer pain. The CB1 antagonist rimonabant (Acomplia R©) was
licensed for use in Europe to treat obesity and related conditions
but was discontinued due to adverse effects (Fijal and Filip, 2016).
In the United States and Europe, nabilone (Cesamet R©) and
dronabinol (Marinol R©) are approved compounds for prevention
of chemotherapy-induced nausea and vomiting. The emergence
of preclinical studies that demonstrate the anti-tumor effects of
cannabinoids are growing in number and have formed the basis
of limited clinical studies which are beginning to shed light on
the translational value of the preclinical work.

Guzman and colleagues were the first group to report a Phase
I human study of the anti-metastasic effects of 19-THC. In this
open-labeled two-part clinical trial, nine patients with recurrent
glioblastoma who were refractory to surgery and radiotherapy
were treated with intracranial 19-THC in combination with
high-dose chemotherapeutic agent, temozolomide (Temodar R©).
Following a washout phase (a period in a clinical trial where
patients receive no active medication), the safety and tolerability
of 19-THC was then compared to placebo (Clinical trial
ID# NCT01812603). The primary outcome measured was the

incidence of adverse effects in patients receiving the combination
of 19-THC and Temodar R©. Secondary measures were the
progression free survival at 6 months and overall survival.
Additional study outcomes have not yet been reported. 19-
THC was found to reduce tumor cell growth in vitro from 2
study participants and reduce tumor cell immunostaining in
these same patients. Importantly, intracranial administration
of 19-THC was found to be a safe and tolerable approach
with no apparent psychoactive effects (Gúzman et al., 2006).
In a 2011 case report by Foroughi et al. two children with
septum pellucidum/forniceal policytic astrocytomas experienced
tumor regression following craniotomies and partial excision.
The tumor regression occurred during the time that cannabis
was inhaled by the patients (Foroughi et al., 2011). In another
study, a 14-year-old female Philadelphia chromosome positive
patient who had been unsuccessfully treated with “traditional”
therapy (i.e., chemotherapy, bone marrow transplant and
radiation) for acute lymphoblastic leukemia experienced a
dose-dependent management of the condition with orally
administered cannabinoid extracts (Singh and Bali, 2013). A
clear limitation of the current human studies evaluating the anti-
cancer effects of cannabinoid compounds is the small patient
size. To date, no study findings have been replicated in multiple
cohorts. Moreover, the measured outcomes and study designs
are often variable across trials, making it difficult to compare
their findings. However, despite these challenges, the evidence
generated in these human studies are still informative and, when
taken together with the strong in vivo animal data demonstrating
anti-tumor effects of cannabinoids, offer promise for a clinical
role for cannabinoids in the eradication of tumors.

CONCLUSION

To gain an understanding regarding the translational and
therapeutic potential of cannabinoids, this review focused on
examining the overall efficacy of these molecules in animal
and human studies. The majority of in vivo animal studies
discussed here indicate that cannabinoids from plant, synthetic
and endogenous origin are capable of effectively decreasing
tumor growth and invasion (Table 1). Furthermore, clinical
studies evaluating cannabinoid efficacy in human subjects are
limited, yet these studies showed that cannabinoids may be safe
and effective anti-neoplastics. Because large scale clinical trials
are lacking, examining the activity of cannabinoids in clinically
translatable animal models (such as PDX) should be the goal of
future research as this approach may provide a more accurate
assessment of the therapeutic potential of cannabinoids.

This review also sought to couple in vivo animal studies with
in vitro experiments in order to examine proposed cannabinoid
mechanisms of action and to identify specific cellular targets. The
studies reviewed herein indicate that cannabinoids elicit activity
through cannabinoid receptor dependent and independent
pathways. Moreover, processes such as ceramide production,
ER-stress, autophagy, angiogenesis and matrix remodeling also
appear to regulate the anti-tumor activity of cannabinoids.
Hence, these investigations shed light on the role of cannabinoids

Frontiers in Pharmacology | www.frontiersin.org 14 October 2016 | Volume 7 | Article 361

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Ladin et al. Cannabinoids as Anti-Cancer Agents

on tumor growth in vivo and may ultimately pave the way for
the development of novel cannabinoid therapeutics for cancer
treatment.
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