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Ginkgo leaf is the most used form of supplement for cognitive ailments. The
standardized extract formulation EGb 761 is a dietary supplement with proven benefit in
several neurological and psychiatric conditions including memory decline in Alzheimer’s
disease, schizophrenia and dementia. Ginkgolic acid (GA) is a component of this extract
which shows pleiotropic effects including antitumoral and anti-HIV action; however, its
effect on memory is still unknown. Here, we carried out an electrophysiological analysis
to investigate the effects of GA on long term potentiation and synaptic transmission at
CA1 hippocampal synapses. We also evaluated the potential rescuing effect of GA on
the synaptic dysfunction following in vitro application of Aβ. Data obtained indicate that
GA exerts neuroprotective effects against Aβ-induced impairment of neurotransmitter
release and synaptic plasticity.
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INTRODUCTION

Ginkgo biloba L. (Mantissa Plantarum Altera, 1771, Ginkgoaceae) leaves and the nuts have been
in use for several centuries in traditional Chinese medicine. However, it was only in the last 20–
30 years that the use of Ginkgo leaf and its standardized extract formulation (EGb 761) has been
widely used as a form of supplement for cognitive ailments (Mahadevan and Park, 2008). Ginkgo
leaf extract has shown beneficial effect in different pathologies such as Alzheimer’s disease (AD),
memory loss, cardiovascular disease, cancer, age-related macular degeneration, and psychiatric
disorders like schizophrenia (Gessner et al., 1985; Kennedy et al., 2007; Ramassamy et al., 2007;
Scripnikov et al., 2007). Ginkgolic acid (GA) is a component of EGb 761, currently used as
memory enhancer and as a dietary supplement with proven benefit in several neurological and
psychiatric conditions (Le Bars et al., 1997; Hsu et al., 1999). Nonetheless, because EGb 761 is a
complex combination of several potentially active components that may be acting synergistically,
the exact mechanism of action remains difficult to elucidate. AD is a neurodegenerative disorder
characterized by the progressive loss of neurons, deposition of insoluble aggregates of two proteins
in the brain, amyloid-β (Aβ), and the microtubule associated protein tau (MAPT). Synaptic
deterioration occurs early in the disease, well before the formation of amyloid plaques and neuron
loss (Thompson et al., 2003; Arendt, 2009). This early synaptic impairment is evident in different
brain areas, including the hippocampus, and entorhinal cortex, which are involved in cognitive
process and memory formation (Thompson et al., 2003; Arendt, 2009).
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Ginkgolic acid has controversial effects, which were
characterized in several studies (Ude et al., 2013). Indeed,
GA is able to induce neuronal death at high concentrations
(Ahlemeyer et al., 2001); accordingly, today all commercial
preparations of Ginkgo leaf contain low dose of GA in order to
minimize side effects (McKenna et al., 2001). However, there is
recent evidence that GA has different protective effects, as well
as antitumoral and anti-HIV effects (Wang H. et al., 2010; Zhou
et al., 2010; Lü et al., 2012).

To shed same light on the potential effects of GA on
memory, we carried out an electrophysiological study analyzing
long term potentiation (LTP), a molecular mechanism which
underlies learning and memory (Bliss and Collingridge, 1993),
and excitatory synaptic transmission in the in vitro hippocampus.
Also, we investigated the protective effects of GA against
Aβ-induced synaptic impairment (Klyubin et al., 2008; Olsen and
Sheng, 2012; Yao et al., 2013; Varga et al., 2015).

MATERIALS AND METHODS

Slices Preparation
All experiments followed international guidelines on the ethical
use of animals from the European Communities (Santa Lucia
Foundation, Rome, Italy) Council Directive 2010/64/EU. C57BL6
mice (30–40 days old) were deeply anesthetized with halothane
and killed by decapitation. The brain was rapidly removed from
the skull and parasagittal hippocampal slices (250 µm thick)
were cut with a vibratome (VT 1200S, Leica) in cold (0◦C)
artificial cerebrospinal fluid (aCSF) containing (in mM): NaCl
124; KCl 3; MgSO4 1; CaCl2 2; NaH2PO4 1.25; NaHCO3 26;
glucose 10; saturated with 95% O2, 5% CO2 (pH 7.4; Cold Spring
Harbor Protocols), and left to recover for 1 h in ACSF at room
temperature.

Whole-Cell Patch Clamp Recordings
Individual slices were placed in a recording chamber, on
the stage of an upright microscope (Zeiss, Germany) and
submerged in a continuously flowing (3 ml/min) solution at
30◦C (±2◦C). Individual neurons were visualized through a
40× water-immersion objective (Olympus, Japan) connected
to infrared video microscopy (Hamamatsu, Japan). Borosilicate
glass electrodes (5–7 M�), pulled with a PP 83 Narishige puller,
were filled with a solution containing the following (in mM):
CsCH3SO3 115; CsCl 10; KCl 10; CaCl2 0.45; EGTA 1; Hepes
10; QX-314 5; Na3-GTP 0.3; Mg-ATP 4.0; pH adjusted to 7.3
pH with CsOH. Whole-cell voltage clamp (at −70 mV holding
potential) or current clamp experiments were carried out with a
MultiClamp 700B amplifier (Axon Instruments, Foster City, CA,
USA), filtered at 1 kHz and digitized (5 kHz).

Excitatory post-synaptic currents (EPSCs) were elicited by
monopolar stimulating electrode placed in stratum radiatum in
order to stimulate Schaffer collateral fibers. LTP was induced
by 30 pulses (0 mV holding potential) as previously described
(Peineau et al., 2007).

Some slices were incubated for 30 min with GA (1–30 µM)
or Aβ1–42 (Aβ 200–500 nM) or both before recordings; other

recordings (control condition) were performed from non-
incubated slices. All experiments were made in the presence of
the GABA antagonist picrotoxin in order to pharmacologically
isolate the EPSC.

For paired-pulse ratio (PPR) experiments, paired-pulse
stimuli (50 ms inter-pulse interval) were elicited with stimulating
electrode placed close to the recording neuron. Spontaneous
excitatory post-synaptic currents (sEPSCs) were recorded in the
presence of picrotoxin (100 µM).

Statistical Analysis
Excitatory post-synaptic currents peak amplitude was normalized
to baseline; statistical significance was evaluated by paired or
unpaired Student’s t-test, according to the groups compared,
between 50 and 60 min following delivery of conditioning
trains. The PPR was calculated as the ratio of the second EPSC
amplitude to the first. Amplitude and frequency of sEPSC was
evaluated on 3 min recordings. All values were described as
mean ± SEM. Statistical significance was set at p < 0.05. For
all statistical comparisons, the n used reflected the number of
neurons recorded.

Drugs
Picrotoxin and GA was purchased from Abcam (Milan, Italy);
Aβ1–42 was purchased from Sigma-Aldrich. When drugs were
dissolved in DMSO, the final concentration of DMSO did not
exceed 0.5%.

RESULTS

Ginkgolic Acid Enhanced Hippocampal
LTP
Whole-cell recordings were obtained from hippocampal CA1
pyramidal neurons and synaptic responses were evoked by
electrical stimulation of Schaffer collateral afferents using a
monopolar electrode. To induce LTP, the stimulating train was
applied 5 min after the whole cell configuration, as previously
described (Peineau et al., 2007).

In our experimental condition, in nine control neurons the
LTP elicited was 164 ± 11%. In neurons from slices incubated
with GA, we found a dose-dependent increase in LTP magnitude
compared to control condition. Indeed, GA, at the concentration
of 1 µM, did not affect LTP magnitude (155 ± 13%, n = 6,
p > 0.05, Figures 1A,B). On the other hand, treatment with
GA between 3 and 30 µM was able to increase significantly LTP
compared to vehicle (3 µM, 237± 14%, n= 6; 10 µM, 270± 15%,
n= 7; 30 µM, 275± 11%, n= 8, p< 0.001, Figures 1A,B).

Ginkgolic Acid Restores LTP Impairment
Following Aβ Application
It is known that Aβ oligomers are able to perturb hippocampal
LTP (Chapman et al., 1999; Chen et al., 2000; Varga et al.,
2015) and were also reported to alter synaptic glutamate (Glu)-
recycling and transmission (Yao et al., 2013; Varga et al., 2015).
Here we wanted to test whether GA exerts a neuroprotective
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FIGURE 1 | Ginkgolic acid (GA) modulates long term potentiation (LTP) in hippocampus. (A) Superimposed pooled data showing the effect of GA (1–30 µM)
on LTP compared to control. (B) Concentration-response curve showing the effects of GA on the Excitatory post-synaptic currents (EPSC; measured as % of
control) 1 h after induction of LTP. Each plot represents the recording of at least six separate neurons.

FIGURE 2 | Ginkgolic acid reverses Aβ-mediated LTP impairment. (A) Superimposed pooled data showing LTP in slices treated with Aβ or scrambled Aβ.
On top, representative traces for both conditions are shown. (B) Histograms illustrating the magnitude of LTP (% of baseline) in the two experimental conditions.
(C) Superimposed pooled data showing LTP in slices treated with Aβ or GA + Aβ. On top, representative traces for both conditions are shown. (D) Histograms
illustrating the magnitude of LTP (% of baseline) in the two experimental conditions. ∗∗∗p < 0.001.
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FIGURE 3 | Ginkgolic acid reverses Aβ-mediated paired-pulse ratio (PPR) alteration. (A) On the left, representative traces are shown; on the right,
histograms show change in PPR. (B) GA reverses Aβ-induced change in PPR. On the left, representative traces in baseline and GA+Aβ conditions are shown. On
the right, histograms show PPR in both conditions. (C) GA alone did not alter PPR. On the left, representative traces are shown; on the right, histograms show no
change in PPR. ∗p < 0.05; ∗∗p < 0.01.

action against Aβ-induced LTP deficiency. In our experimental
system, pretreatment of slices for 30 min with 200 nM of Aβ was
able to fully block LTP in hippocampal CA1 pyramidal neurons
(109 ± 10%, n = 7, p > 0.05, Figures 2A,B). This effect did
not occur when slices were pretreated with scrambled form of
Aβ (157 ± 8%, n = 5, p < 0.001, Figures 2A,B). Notably, co-
application of GA (1 µM) was able to reverse LTP impairment
induced by Aβ (199± 14%, n= 5, p< 0.001, Figures 2C,D).

Ginkgolic Acid Restores PPR Alteration
Following Aβ Application
To test whether Aβ influences basal synaptic transmission, we
recorded evoked EPSCs of hippocampal CA1 pyramidal neurons.
After a stable baseline was obtained, we perfused Aβ (200 nM,
30 min) and found it had no effect on basal synaptic transmission
(98± 6%, n= 6, p> 0.05). However, when applied at 500 nM, Aβ

caused a marked depression in EPSC amplitude when compared
to baseline (53 ± 7%, n = 7, p < 0.01). We then studied paired
pulse facilitation (PPF) paradigm, which represents a presynaptic
form of synaptic plasticity. Perfusion of 200 nM Aβ did not alter
the PPR, whereas 500 nM Aβ induced a significant increase in
the PPR (4 ± 0.8, n = 7, p < 0.05, Figure 3A) compared to
baseline (2 ± 0.9, Figure 3B), which is associated with a reduced
release of neurotransmitter. Pretreatment with GA (1 µM) before
Aβ application (500 nM) normalized the PPF alteration to the
baseline level (n = 7, p > 0.05, Figure 3B), while GA per se did
not affect PPR (n= 5, p> 0.05, Figure 3C).

Ginkgolic Acid Rescues Aβ-mediated
Effects on Excitatory Transmission
Next, we studied synaptic transmission by recording sEPSC
from CA1 pyramidal neurons. We found that 500 nM Aβ
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FIGURE 4 | GA normalizes Aβ-mediated change in excitatory neurotransmission. (A) Reduction in amplitude and frequency of Spontaneous excitatory
post-synaptic currents (sEPSC) following Aβ perfusion. On the left, representative traces are shown; on the right, histograms show the effect of Aβ on amplitude and
frequency of sEPSC (as % of baseline). (B) GA prevented Aβ-triggered impairment of sEPSC. On the left, traces of sEPSC are shown. On the right, histograms show
effect of GA+Aβ on amplitude and frequency of sEPSC (as % of baseline). (C) GA alone did not alter sEPSC amplitude and frequency. On the left, representative
traces in baseline conditions and following perfusion of GA are shown. On the right, histograms show effect of GA on amplitude and frequency of sEPSC (as % of
baseline). ∗p < 0.05.

significantly suppressed both sEPSCs amplitude (80 ± 4%,
n = 8, p < 0.05, Figure 4A) and frequency (74 ± 4%, n = 8,
p < 0.05, Figure 4A) compared to baseline, suggesting that
Aβ-induced inhibition of synaptic transmission relies on both
presynaptic and postsynaptic mechanisms. Next, we investigated
whether GA was able to reverse the Aβ-mediated effect on
excitatory synaptic transmission. In the same conditions,
GA was able to reverse the changes induced by Aβ on both
the amplitude and frequency of sEPSC (n = 6, p > 0.05,
Figure 4B). Notably, GA alone neither influenced the
amplitude nor the frequency of sEPSC (n = 6, p > 0.05,
Figure 4C).

DISCUSSION

The present study demonstrates, for the first time, that
GA, the major component of Gingko biloba standardized
extract formulation EGb 761, rescues Aβ-mediated alteration
of LTP, PPF, and spontaneous excitatory transmission in CA1
hippocampal pyramidal neurons. In line with this, previous
studies have demonstrated that EGb 761 component acts as
memory enhancer thus improving cognitive decline in AD
patients (Amieva et al., 2013), as well as LTP and hippocampal-
dependent working memory following acute perfusion or chronic
treatment, respectively (Williams et al., 2004; Wang et al., 2006).
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It has been established that nanomolar concentrations of
Aβ cause inhibition of LTP mainly through postsynaptic
mechanisms, whereas keeping basal synaptic transmission
intact (Vitolo et al., 2002; Puzzo et al., 2005; Monfort and
Felipo, 2010; Wang X.H. et al., 2010). On the other hand,
presynaptic dysfunction has only been observed following the
perfusion of high nanomolar to low micromolar concentrations
of Aβ (Santos-Torres et al., 2007; Yao et al., 2013). To
test neuroprotective action of GA against Aβ, we chose the
concentration at which GA per se does not affect synaptic
plasticity.

Interestingly, here we show that GA was able to rescue
Aβ-mediated LTP impairment at a concentration ineffective to
affect basal neurotransmission and LTP. In addition, our results
demonstrate that GA could reverse Aβ-induced alterations of
either PPR or sEPSC, which measure both pre- and post-
synaptic function, respectively. We have not investigated so far
the mechanism underlying GA effect. Our results might suggest
that both pre- and post-synaptic mechanisms might be involved
in its neuroprotective action.

Based on the current literature, putative molecular targets
might involve SUMOylation, a post-translational modification
that is known to control many aspects of cell function also at
the neuronal level (Martin et al., 2007; Henley et al., 2014). In
particular, it has been demonstrated that SUMOylation is among
the mechanisms that links Aβ to synaptic dysfunction (Fukuda
et al., 2009; Lee et al., 2013, 2014, Nisticò et al., 2014). Indeed,
GA directly binds E1 and inhibits the formation of E1-SUMO
intermediate at the same range of concentrations here used to
prevent LTP inhibition by Aβ (Fukuda et al., 2009). In addition,
GA can also inhibit the SUMOylation of p53 (Fukuda et al., 2009),
which is known to play a crucial role in the early phase of LTP
(Pustylnyak et al., 2015) and has been shown to be involved in
aging and AD (LaFerla et al., 1996; Lanni et al., 2012).

Another possible mechanism might rely on the Bcl-2/Bax
pathway, which contributes to the antitumoral and anti-HIV

effects of GA (Wang H. et al., 2010; Zhou et al., 2010;
Lü et al., 2012). Inasmuch, as Bcl-2/Bax is also involved in
Aβ-mediated impairment of LTP (Olsen and Sheng, 2012), it can
be hypothesized that the protective effect of GA here observed
might be mediated by Bcl-2/Bax inhibition.

In addition, a recent work suggested that GA inactivates
PI3K/Akt/mTOR in lung cancer cells (Baek et al., 2016). The
PI3K/Akt/mTOR is a crucial pathway regulating autophagy and
synaptic plasticity in the brain (Heras-Sandoval et al., 2014).
Dysregulation of this pathway is commonly reported in brains
from AD patients and in AD model mice and was demonstrated
to occur by means of Aβ-promoted autophagy (Heras-Sandoval
et al., 2014). Thus, inactivation of PI3K/Akt/mTOR pathway
by GA might be a protective mechanism against Aβ-promoted
autophagy.

To conclude, our work investigated the effect of GA on
hippocampal plasticity, neurotransmitter release, and excitatory
neurotransmission. In particular, we demonstrate for the first
time that GA acts at the synaptic level affording neuroprotection
against Aβ-mediated impairment, possibly representing a novel
approach to AD prevention and cure.
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