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Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls
inducible expression of xenobiotics handling genes including biotransformation enzymes
and drug transporters. Nowadays it is clear that PXR is also involved in regulation
of intermediate metabolism through trans-activation and trans-repression of genes
controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these
processes PXR cross-talks with other NRs. Accumulating evidence suggests that the
cross-talk is often mediated by competing for common coactivators or by disruption
of coactivation and activity of other transcription factors by the ligand-activated PXR.
In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported
and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II
enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2,
Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and
G6Pase) have been shown as down-regulated genes after PXR activation. In this review,
I summarize our current knowledge of PXR-mediated repression and coactivation
interference in PXR-controlled gene expression regulation.

Keywords: PXR, nuclear receptor, gene regulation, metabolism, cross-talk

INTRODUCTION

Pregnane X receptor (PXR) is now accepted as a master transcription factor of xenobiotic- and
drug-inducible expression of key genes that encode members of the phase I and phase II metabolic
enzymes and drug transporters. Moreover, accumulating evidence suggests that PXR plays an
integral role also in endobiotic metabolism by regulating important genes implicated in glucose,

Abbreviations: CAR, constitutive androstane receptor; ChiP, Chromatin immunoprecipitation assay; CREB, cAMP-
response element-binding protein; CYP450, cytochrome P450; CYP3A4, cytochrome P4503A4, CYP7A1, cholesterol
7α-hydroxylase; DR-1, direct repeat separated by one nucleotide; FoxA2, forkhead factor 2; FOXO1, forkhead box protein
O1; FXR, farnesoid X receptor; HNF4α, hepatocyte nuclear factor 4α; Hmgcs2, mitochondrial 3-hydroxy-3-methylglutarate-
CoA synthase 2; GST; glutathione S-transferase; M2H, mammalian two hybrid assay; NR, nuclear receptor; OCT1, organic
cation transporter 1; PGC-1alpha, PPARgamma coactivator 1α; PXR, pregnane X receptor; PGC-1α, peroxisome proliferator-
activated receptor gamma, coactivator 1 α (PPARGC1A); RXRα, Retinoid X Receptor Alpha; SGK2, serum/glucocorticoid
regulated kinase 2; SLC22A1, solute carrier family of transporter A 1; SRC-1, steroid receptor coactivator; SREBP-1, Sterol
regulatory element binding protein 1.
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lipid, and bile acid metabolism. In addition, it was documented
that PXR both induces as well as suppresses expression of
numerous hepatic transcripts. The latest report shows that PXR
up-regulates 164 genes, but down-regulates expression of 334
genes in primary human hepatocytes (Kandel et al., 2016). In
this review I summarize well-documented examples of PXR-
mediated trans-repression and coactivation interference in the
PXR-mediated transactivation.

Pregnane X Receptor
Nuclear receptors (NRs) form a super-family of transcription
factors implicated in various physiological functions, from
development, detoxification to homeostasis. Many NRs are
ligand-activated transcription factors sharing a common
evolutionary history and similar sequence features at the protein
level, mainly in their DNA-binding domain (DBD), and to a
lesser extent in ligand binding domains (LBD). PXR (or NR
subfamily 1, group I, member 2, NR1I2), together with CAR
(NR1I3), and vitamin D receptors (VDR, NR1I1), form a group I
of the subfamily 1 of NRs (Moore et al., 2006; di Masi et al., 2009;
Smutny et al., 2013).

Mouse PXR (mPXR) was first identified in 1998 by using
an expressed sequence tag to screen a mouse liver library. It
was found to be activated by derivatives of dexamethasone
and pregnenolone (Kliewer et al., 1998). At the same time, the
human steroid X receptor was cloned (Blumberg et al., 1998)
and established to be the human homologue of mPXR involved
in CYP450 3A4 regulation (CYP3A4) (Bertilsson et al., 1998;
Lehmann et al., 1998).

Human PXR (hPXR) is the product of the NR1I2 gene, which
is located on chromosome 3, locus 3q11–q13.3. The NR1I2 gene
comprises 10 exons separated by nine intronic regions (Hustert
et al., 2001; Zhang et al., 2001). PXR, like any other member in the
NR super-family, is composed of the DBD, the H region, and the
C-terminal LBD. PXR-DBD is involved in receptor dimerization
and in the binding of specific DNA sequences. H region (or Hinge
region) is a flexible domain that connects the DBD with the
LBD. PXR heterodimerizes with RXRα to form a transcriptionally
active complex (Blumberg et al., 1998; Lehmann et al., 1998).

The flexible ligand-binding pocket of PXR-LBD enables
binding of a wide range of structurally unrelated endogenous
and exogenous ligands. Watkins et al. (2001) first showed the
crystal structure of the ligand-binding domain both alone and in
complex with the PXR ligand SR12813. The PXR-LBD structure
consists of a three-layered α-helical sandwich (α1–α3/α4–α5–
α8–α9/α7–α10) and five-stranded antiparallel β-sheets (β1, β10,
β2, β3, and β4). Interestingly, PXR-LBD contains an insert of
approximately 60 residues which is unique within members of the
NR super-family. This is the main reason for the larger cavity as
well as the wider substrate diversity of PXR ligands. The apo-PXR
binding cavity volume is approximately 1150 Å3; in the presence
of ligands it can extend to 1290–1540 Å3 (Chrencik et al., 2005).
Thus, the binding cavity volume is substantially larger than that
of many other NRs. The ligand pockets of PXR, CAR as well as
VDR are lined by mostly hydrophobic residues. The cavity of
PXR is lined by 28 amino acids, of which eight have polar or
charged side chains (Watkins et al., 2001; di Masi et al., 2009).

The PXR-LBD ends with a short helix (αAF) which is critical for
the structural organization of the AF-2 (the activation function
2) region to recruit transcriptional coregulators. In NR LBDs, the
AF-2 region binds the Leu-Xxx-Xxx-Leu-Leu (LXXLL) motifs of
transcriptional coactivators, and the Ile/Leu-Xxx-Xxx-Ile/Val-Ile
motifs of corepressors (Lazar, 2003; Rosenfeld et al., 2006). The
coactivator recruitment appears to play a central role in fixing
ligands in the correct arrangement in the large PXR cavity after
a coreppresor release.

Pregnane X receptor is primarily expressed in the liver,
intestine, and to a lesser extend in the kidney. Expression
of PXR/Pxr mRNA in other tissues including lung, stomach,
peripheral blood monocytes, uterus, ovary, breast, adrenal gland,
bone marrow, and some regions of the brain is minor (see
the comprehensive review by Pavek and Dvorak, 2008). Mouse
liver immunostaining suggests that mPXR is mainly located
in the cytosol of untreated liver cells. Similar to CAR/mCar,
mPxr forms a protein complex with cytoplasmic CAR retention
protein (CCRP) and the heat shock protein 90 (hsp90), which
retains the cytosolic localization of PXR. Upon ligand binding
to mPxr, the Pxr dissociates from the multi-protein complex
and translocates to the nucleus in primary mouse hepatocytes to
activate gene transcription (Kawana et al., 2003; Squires et al.,
2004). In contrast, nuclear localization of human PXR has been
reported in mammalian tumor derived cell lines (Saradhi et al.,
2005).

Pregnane X receptor was originally characterized as the key
transcription factor that activates hepatic genes encoding drug-
metabolizing enzymes and drug efflux transporters (Kliewer
et al., 2002). PXR protects the body from harmful foreign
toxicants or endogenous toxic substances by an autoregulation
mechanism. PXR ligands activate a number of genes involved
in their metabolism that in feedback manner contribute to their
clearance. PXR has a wide spectrum of ligands belonging to
drugs (such as antibiotic rifampicin, anticancer drugs tamoxifen
and taxol, antihypertensive drug nifedipine, antifungal drug
clotrimazole, or herbal antidepressant hyperforin), endogenous
ligands (including steroids such as lithocholic acid) or products of
gut microflora (di Masi et al., 2009; Smutny et al., 2013; Venkatesh
et al., 2014).

Nowadays, it is clear that the xenobiotic-sensing PXR
pathway regulates also energy metabolism, and reciprocally, the
energy homeostasis affects drug metabolism. In the review, I
focus on the PXR-mediated regulation of phosphoenolpyruvate
carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase),
two rate-limiting enzymes of hepatic gluconeogenesis; Hmgcs2,
the key enzyme involved in ketogenesis; the active form of
SREBP-1, which regulates genes required for sterol biosynthesis,
fatty acid and lipid production and glucose metabolism; and
lastly CYP7A1 and CYP8B1 enzymes critically involved in
bile acid synthesis. PXR or its rodent orthologues have also
been shown to be involved in heme, bilirubin and thyroxin
clearance, in bone homeostasis and vitamin D metabolism.
In addition, PXR activation is known to suppress the activity
of NF-κB, which is the key regulator of inflammation and

In all NRs, m and h denote mouse and human, respectively.
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immune response (Xie et al., 2003; Zhou et al., 2009;
Gao and Xie, 2012; Wang et al., 2012). These effects of PXR
activation are, however, beyond the scope of the present
review.

PXR Coactivation
Coactivators and corepressors have been found critical for
the function of DNA-binding transcription factors (TFs).
Coactivator and corepressor proteins are components of
multisubunit coregulator complexes involved in transcriptional
gene regulation machinery (for a comprehensive review on
coactivator/corepressors see Rosenfeld et al., 2006; Oladimeji
et al., 2016).

PXR-LBD AF-2 region binds the LXXLL motifs of
transcriptional coactivators as was shown with a 25 amino
acid residue fragment of the human SRC-1. The motif forms
hydrophobic contacts with the surface of hPXR in a groove
composed of α3, α4, and AF-2 region. From the LBD side, PXR
ligands are in direct contacts with αAF of AF-2 region (Xue
et al., 2007). Both the SR12813 ligand and SRC-1 coactivator
peptide in the crystal model stabilize the LBD of PXR. A charge
clamp involving PXR residues Lys259 and Glu427 stabilizes the
weak helix dipole at the C- and N-terminus of the LXXLL motif
(Watkins et al., 2003; Xue et al., 2007).

SRC-1 was the first coactivator identified for hPXR (Kliewer
et al., 1998; Lehmann et al., 1998). The members of the
SRC family contain several conserved structural domains: a
N-terminal basic helix-loop-helix-Per/ARNT/Sim (bHLH-PAS)
domain, a central NR interaction domain (RID) with three
LXXLL motifs, and two activation domains (AD1 and AD2) at
the C-terminus. Once recruited to the target gene promoters by
ligand-activated NRs, SRCs trigger the/an assembly of a multi-
protein coactivator complex by further recruiting secondary
coactivators and histone modifying enzymes to activation
domains 1 and 2 (AD-1 and AD-2) such as CBP/p300,
coactivator associated arginine methyltransferase 1 (CARM1)
and protein arginine methyltransferase 1 (PRMT1). The formed
transcriptional complex remodels transcriptionally inactive
chromatin within the target gene and attracts components
of the RNA polymerase II transcriptional complex. The AD-
1 domain binds p300 and CBP, both of which are potent
histone acetyltransferases (HATs) that remodel chromatin to
allow accessibility for the transcription preinitiation complex.
The AD-2 domain recruit protein arginine N-methyltransferase
(PRMT) family members, such as CARM1 and PRMT1,
which methylate residues of histone proteins and other
chromatin-associated proteins (Szwarc et al., 2014; Wang et al.,
2016).

The paradigm of NR action is that ligand binding enhances
the receptor’s affinity for coactivator proteins, while decreasing its
affinity for corepressors such as the silencing mediator of retinoid
and thyroid receptors (SMRT, NR corepressor 2, NCoR2) and of
the NR corepressor (NCoR, NCOR1), allowing further binding
of the coactivators. Coactivators often have an intrinsic HAT
activity, which weakens the association of histones to DNA, and
therefore promotes gene transcription. On contrary, corepressors
recruit histone deacetylases (HDACs), which strengthen the

association of histones to DNA, and therefore repress gene
transcription.

The mechanism of ligand-dependent activation of PXR
significantly differs from that seen in many other NRs.
Coactivation by SRC-1 stimulated after PXR activation has
not been confirmed in some rigorous biophysical studies
(Navaratnarajah et al., 2012). It was also demonstrated that
PXR and SRC-1 interact in the absence of a PXR ligand,
and further, that the interaction is strengthened by rifampicin
(Saini et al., 2005; Li and Chiang, 2006; Rulcova et al., 2010;
Krausova et al., 2011; Hyrsova et al., 2016). Moreover, no ligand
activated release, or even stronger interaction with SMRTα has
been reported for PXR (Takeshita et al., 2002; Mani et al.,
2005; Li et al., 2009; Navaratnarajah et al., 2012; Hirooka-Masui
et al., 2013). Nevertheless, also contradictory results have been
published regarding SMRT and NCoR interaction with PXR
(Ding and Staudinger, 2005b; Johnson et al., 2006). SMRT (or
its overexpression) has been documented as the repressor of
PXR-mediated transactivation (Takeshita et al., 2002; Mani et al.,
2005; Johnson et al., 2006; Hirooka-Masui et al., 2013). In
addition, repressed PXR by SMRT has been reported to inhibit
the activation of CYP24A1 gene by vitamin D receptor (Konno
et al., 2009).

Recently, Masuyama et al. (2000) also found that PXR interacts
with SRC-1 and NR interacting protein 1 (NRIP1, RIP140) in
a ligand dependent manner. These data indicate that different
ligands may specifically change the conformation of PXR-LBD
resulting in different interaction with coactivators.

The interactions of co-factors with TFs are governed by post-
translational modifications. Phosphorylation plays an important
role in the regulation of NRs functions, enabling integration
of different cellular and extracellular stimuli in their functions.
PXR is phosphorylated by protein kinase A (PKA), resulting in
strengthened interaction with SRC-1 and PBP coactivators (Ding
and Staudinger, 2005a). In contrast, the activity of PXR can be
repressed by the activation of protein kinase C (PKC) isoforms
which alters the phosphorylation status of PXR and represses
PXR-SRC-1 interaction, but strengthens PXR-NCoR interaction
(Ding and Staudinger, 2005b). Therefore, the phosphorylation
status of PXR can modulate coactivator/corepressor recruitment
which could reflect the ligand-independent activation of
PXR.

NR CROSSTALK BASED ON
COACTIVATORS PROTEIN−PROTEIN
INTERACTIONS

As other NRs, PXR needs coactivators and corepressors for its
transcriptional activity and for tuning of the tissue-, ligand-, and
promoter (gene)-specific transactivation (Smutny et al., 2013).
Coactivators and corepressors are common for the most of
NRs and TFs. In addition, some NRs share the same response
elements in transactivation of their target genes. This is the most
strikingly evident in case of the CYP3A4 gene, when PXR, CAR,
and VDR share four different response elements in proximal
promoter and two enhancer elements in gene- and tissue-specific
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manner (Pavek et al., 2010). This is the mechanistic molecular
base for so called cross-talk of NRs in positive and negative
transcriptional regulation, in forming negative feedback loops
and in hierarchy of NRs in regulatory networks (Pascussi et al.,
2008).

Recently, the competition for common coactivators emerged
as an important process in the NR-mediated gene regulation.
Competition for the common coactivators PGC-1α or GRIP-
1 has been recently reported as a putative mechanism of
crosstalk between CAR and the estrogen receptor (Min
et al., 2002), HNF4α and PXR (Bhalla et al., 2004; Li and
Chiang, 2005), and HNF4α and CAR (Miao et al., 2006).
Competition for the common Src-1 coactivator has been
reported for Pxr-Car crosstalk (Saini et al., 2005), as well as
for Lxr and the retinoid-related orphan receptor α (Rorα)
interaction (Wada et al., 2008); and considered as the underlying
mechanisms in cases of Car-Lxrα/LXRα interaction (Zhai et al.,
2010).

Competition For Coactivators and
Cross-Talk in PXR-Mediated Regulation
of Intermediary Metabolism
Pregnane X Receptor has been shown to regulate glucose
and lipid homeostasis during fasting and modifies the
risk of hyperglycemia, diabetes, obesity, dyslipidemia, and
hepatosteatosis. Key transcription factors and their cofactors in
glucose and lipid homeostasis have been described to crosstalk
with PXR regulation.

CREB
In response to fasting and/or starvation, the liver increases
the production of glucose by stimulating both gluconeogenesis
and glycogenolysis. In the process glucagon up-regulates the
transcription of the hepatic genes that encode rate-limiting
enzymes of glucose homeostasis, such as the glucose-
6-phosphatase catalytic subunit (G6Pase), or PEPCK1
(phosphoenolpyruvate carboxykinase 1, PCK1). Glucagon
stimulates PKA (cAMP-dependent protein kinase) that
phosphorylates the CREB [CRE (cAMP response element)-
binding protein]. The phosphorylation of CREB leads to the
recruitment of HATs CBP/p300, binding of CREB to CREB
response elements (CREs), and the activation of the CRE-
bearing genes, such as those for G6Pase and PEPCK1, as well
as PGC-1α. The coactivators linked to CREB transactivation
(as well as FOXO1) include CBP/p300, CREB regulated
transcription coactivator 2 (CRTC2), PGC-1α, and protein
arginine methyltransferases (PRMTs) (Oh et al., 2013).

It has been reported that rifampicin-activated PXR represses
the transcription of the G6Pase gene by inhibiting the DNA-
binding ability of CREB to its response element CRE and that
direct interaction of PXR with CREB is involved (see Figure 1)
(Kodama et al., 2007).

In opposite to suppressive effects of PXR/mPxr activation
on gluconeogenic genes via CREB signaling, human-specific
induction of PEPCK and G6Pase genes have been described
recently in rifampicin-treated HepG2 cells stably expressing

human PXR. In these observations, serum- and glucocorticoid-
regulated kinase 2 (SGK2) has been found as an essential
factor for the PXR-induced G6Pase gene up-regulation. Non-
phosphorylated SGK2 has been found to co-activate PXR-
mediated trans-activation of gluconeogenic genes in human
liver cells, thereby enhancing gluconeogenesis and glucose
production (Gotoh and Negishi, 2014, 2015). In the mechanism
the activated PXR scaffolds both the protein phosphatase 2C
(PP2C) and SGK2 in order to stimulate PP2C to dephosphorylate
SGK2. Dephosphorylated SGK2 co-activates PXR in the trans-
activation of these genes (see Figure 2). At the same time,
the ligand-activated PXR stimulates expression of the SGK2
gene (Gotoh and Negishi, 2014). This finding of PXR-induced
gluconeogenesis is consistent with the clinical observation that
rifampicin can increase blood glucose level in humans (Hakkola
et al., 2016; Rysa et al., 2013) even though the effect was
attributed to the hepatic glucose transporter 2 (Glut2) mRNA
down-regulation in subsequent experiments in rats (Rysa et al.,
2013).

FOXO1
The forkhead box O transcription factor FOXO1 is regarded
as a master regulator of energy metabolism in numerous
organs including the liver, pancreas, adipose tissue and skeletal
muscle. FOXO1 regulates the transcriptional cascades controlling
glucose and lipid metabolism. FOXO1 is an activator of
gluconeogenic genes, such as PEPCK1, G6P, and insulin-like
growth factor-binding protein 1 (Igfbp1) via promoting the
function of PGC-1α during fasting. Insulin inhibits FOXO1
activity leading to the repression of these genes. These
gluconeogenic genes contain an insulin response sequence (IRS),
which FOXO1 directly binds to, and activates them in the absence
of insulin. Insulin triggers the phosphorylation of FOXO1
through the phosphatidylinositol 3-kinase (PI3K)-Akt pathway.
Phosphorylation inactivates FOXO1 by decreasing its binding
affinity to IRS of its target genes, which results in translocation
of FOXO1 from the nucleus (see reviews by Kousteni, 2012; Oh
et al., 2013).

It has been shown that Foxo1 coactivates mouse Pxr (mPxr)
in an insulin-PI3K-Akt-signaling dependent manner in the same
way as CAR (Kodama et al., 2004). Foxo1 stimulates the Pxr-
mediated transactivation of the CYP3A4 gene reporter construct.
Insulin as well as the constitutively active Akt abolished the
coactivation of mPxr by mouse Foxo1 in CYP3A4 luciferase
reporter construct activation in HepG2 cells (Figure 3A). At
the same time PCN-activated Pxr inhibited the mouse Foxo1
binding to the IRS of human IGFBP1 gene in EMSA assays.
Based on the given data, Foxo1 and PXR were proposed to
reciprocally coregulate their target genes (Figure 3B) (Kodama
et al., 2004).

FoxA2
FoxA2, a winged-helix/forkhead transcription factor, is the key
regulatory factor for the normal development of endoderm-
derived organs, such as the liver, pancreas, lungs, and prostate.
FoxA2 is also important factor in the glucose and lipid
metabolism control. FoxA2 activates gluconeogenic genes such
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FIGURE 1 | Pregnane X Receptor represses the transcription of the G6Pase. PXR represses the transcription of the G6Pase gene by inhibiting the
DNA-binding ability of CREB to its response element CRE. PXR directly interacts with CREB. The figure has been drawn based on data by Kodama et al. (2007).
Black bold arrows indicate effects of activated PXR on the G6Pase gene expression. Blue arrows indicate stimulation or activation. Dashed arrow indicates
squelching (competition for a common coactivator). CRE -CREB response element.

FIGURE 2 | Human-specific induction of PEPCK and G6Pase genes by PXR. In the model, serum- and glucocorticoid-regulated kinase 2 (SGK2) has been
found as an essential factor for PXR-induced glucose 6-phosphatase (G6Pase) up-regulation. Non-phosphorylated SGK2 co-activates PXR-mediated
trans-activation of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis and glucose production (Gotoh and Negishi, 2014, 2015). In the
mechanism, activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2. Dephosphorylated SGK2
co-activates PXR in the trans-activation of these PEPCK1 and G6Pase genes. At the same time, ligand-activated PXR transactivates the expression of SGK2 (Gotoh
and Negishi, 2014). Blue arrows indicate the effect of the activated PXR on tested genes expression. PSRE, PXR-SGK2 response elements; IRS, insulin response
sequence (IRS).
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FIGURE 3 | Reciprocal crosstalk of Pxr and Foxo1. (A) Foxo1 coactivates PXR in an insulin-PI3K-Akt-signaling dependent manner (Kodama et al., 2004). Foxo1
stimulates Pxr-mediated transactivation of CYP3A4 gene reporter construct. Insulin as well as the constitutively active Akt abolishes the coactivation of mPxr by
mouse Foxo1 in CYP3A4 gene luciferase reporter construct activation in HepG2 cells. (B) PCN-activated mPxr inhibits mFoxo1 binding to IRS of human IGFBP1
gene in EMSA assay (Kodama et al., 2004). Black bold arrows indicate effects of activated Pxr on gene expression. PCN, pregnenolone 16α-carbonitrile, a rodent
specific ligand of Pxr

as Pepck and G6p genes, as well as Cpt1a and Hmgcs2. These
enzymes are activated to increase the supply of glucose or ketone-
bodies in fasting mouse liver (Wolfrum et al., 2004; Friedman and
Kaestner, 2006).

Pregnane X Receptor cross-talks with the FoxA2 to repress
the transcription of the Cpt1a and Hmgcs2 genes. mPXR
was found to directly bind to the DBD of FoxA2 to
inhibit its binding to the FoxA2 response elements in Cpt1a
and Hmgcs2 genes promoters (Nakamura et al., 2007) (see
Figure 4).

SREBP-1
Sterol regulatory element binding protein 1 is a lipogenic
transcription factor of the basic helix-loop-helix family.
Srebps are a group of transcription factors which activate
an array of genes involved in the synthesis of cholesterol
and triglycerides. Whereas Srebp-2 is mainly involved
in cholesterol biosynthesis, Srebp-1a and Srebp1c, two
isoforms encoded from different promoters, mainly activate
genes involved in fatty acid and triglyceride synthesis.
SREBP-1 binds to sterol regulatory elements (SREs) in
promoters of lipogenic genes and induces fatty acid and
triglyceride synthesis (Bakan and Laplante, 2012; Guo et al.,
2014).

It was observed that SREBP-1 attenuates drug-mediated
induction of hepatic CYPs. The activation of SREBP-1 by
insulin or low cholesterol levels in mouse liver and primary
human hepatocytes inhibits the transcriptional effects of PXR
(as well as of CAR) by SREBP-1 binding to and competing with
coactivators such as SRC-1 (Roth et al., 2008b). Conversely, PXR

transcriptionally activates Insig-1 by binding to an enhancer
sequence of the Insig-1 gene. Insig-1 in turn reduces the
nuclear protein level of the active Srebp-1 (Roth et al., 2008a)
(Figure 5).

COMPETITION FOR COACTIVATORS
AND CROSS-TALK IN PXR-MEDIATED
REGULATION OF CYP450 ENZYMES
INVOLVED IN CHOLESTEROL/BILE ACID
METABOLISM AND IN DETOXIFICATION
MECHANISMS

Pregnane X Receptor is an important factor in controlling both
cholesterol and bile acid synthesis, as well as in xenobiotic
and endobiotic metabolism, respectively. CYP7A1, CYP8A1, and
CYP3A4 genes and their animal orthologs are major target genes
of the activated PXR/Pxr in these processes.

PGC-1α
PPARgamma coactivator 1α is a key metabolic regulator
of liver energy metabolism in fasting adaption and it was
originally identified as a peroxisome proliferator-activated
receptor-γ-interacting coactivator in brown adipose tissue.
Numerous studies showed that PGC-1α is a versatile coactivator
for numerous NRs implicated together in diverse biological
functions including lipid and glucose metabolisms. In the liver
PGC-1α has been shown to increase the HNF-4α-mediated
transactivation of CYP7A1 and together with FOXO1 and
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FIGURE 4 | Pregnane X Receptor cross-talks with the FoxA2 to repress the transcription of the Cpt1a and Hmgcs2 genes. Mouse Pxr directly bounds to
with the DBD of FoxA2 to inhibit its binding to the FoxA2 response elements and to repress Cpt1a and Hmgcs2 genes transactivation (Nakamura et al., 2007). Black
bold arrows indicate effects of activated Pxr on gene expression.

FIGURE 5 | SREBP-1 inhibits PXR-mediated transactivation of hepatic CYPs. Activation of SREBP-1 by insulin in mouse liver and primary human
hepatocytes inhibits the transcriptional effect of PXR due to SREBP-1 competing with coactivators such as SRC-1 (Roth et al., 2008b). PXR transcriptionally
activates Insig-1 by binding to an enhancer sequence of the Insig-1 gene reducing nuclear protein levels of the active form of Srebp-1. SREBP1a strongly interacts
with PXR. Black bold arrows indicate the effect of activated PXR on genes expression.

HNF4α controls the fasting-induced hepatic gluconeogenesis via
PEPCK1 and G6Pase genes. In addition, PGC-1α is involved
in fatty-acid β-oxidation, ketogenesis and heme biosynthesis.
In extrahepatic tissues, it controls adaptive thermogenesis,

homocysteine metabolism, mitochondrial biogenesis, peripheral
circadian clock, fiber-type switching in skeletal muscle and in
heart development. The basal hepatic expression of PGC-1α

is relatively low in fed conditions, but its expression is
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FIGURE 6 | Crosstalk of PXR with HNF4α in CYP7A1 and CYP8A1 regulation. (A) Rifampicin did not inhibit HNF4α binding to the native promoters of CYP7A1
and CYP8B1 (and PEPCK1) genes but stimulates dissociation of PGC-1α from HNF4α by competing for binding PGC-1α to HNF4α. This leads to attenuation of
HNF4α-mediated transactivation and down-regulation of the genes (Bhalla et al., 2004). (B) In another model, activated PXR triggers interaction of PXR with HNF4α

in the context of promoter resulting in chromatin remodeling and release of PGC-1α. This again results in HNF4α-controlled expression attenuation (Li and Chiang,
2005). Black bold arrows indicate the inhibitory effects of activated PXR on genes expression. Dashed arrow indicates squelching (competition for a common
coactivator).

readily upregulated by fasting, glucagon and diabetes, mainly
through an altered insulin–glucagon balance. PGC-1α cannot
bind to DNA itself but functions as a coactivator via its
LXXLL motif by interacting with a number of NRs and
TFs, such as peroxisome proliferator-activated receptor alpha
(PPARα), FOXO1, hepatocyte nuclear factor 4 alpha (HNF4α),
mineralocorticoid (MR), glucocorticoid (GR), liver X receptors
(LXR), the CAR, vitamin D receptor (VDR), or PXR. In addition,
PGC-1α has a strong transcriptional activation domain at the N
terminus, which interacts with several HAT complexes including
CBP/p300 (Handschin, 2009; Liu and Lin, 2011).

Rifampicin, a prototype ligand for human PXR, is known
to reduce hepatic bile acid levels in patients with cholestasis.
Therefore, a functional cross-talk between PXR and HNF-4α,
a key hepatic regulator of genes involved in bile acid synthesis
including the cholesterol 7-alpha hydroxylase (CYP7A1)
and sterol 12-alpha hydroxylase (CYP8B1) genes, has been
studied. It was shown that PXR interacts with the coactivator
PGC-1α through its C-terminal ligand binding domain in a
rifampicin-dependent manner and that PGC-1α coactivates
PXR transactivation (Bhalla et al., 2004; Li and Chiang, 2005,
2006; Hyrsova et al., 2016). Consistently, endogenous Pgc-1α

from mouse liver extracts was found to bind to PXR, and
recombinant PGC-1α directly interacts with PXR. In addition,
rifampicin-dependent interaction of PXR with PGC-1α was
shown in cells by co-immunoprecipitation and by intranuclear
localization studies using confocal microscopy (Bhalla et al.,
2004). Nevertheless, also conflicting results have been reported
as regards significant rifampicin-mediated stimulation of PXR

interaction with PGC-1α. No evidence of interaction was
observed in GST pull-down assay and only a weak effect was
seen in the mammalian two hybrid (M2H) assay (Li and Chiang,
2006).

PGC-1α at the same time coactivates and enhances the
transcriptional activity of HNF-4α in the regulation of several
liver-specific genes, including CYP7A1, CYP8A1, SHP, OCT1
(SLC22A1), and PEPCK1 (Bhalla et al., 2004; Li and Chiang,
2005, 2006; Hyrsova et al., 2016). This PGC-1α coactivation
of HNF4α was reported to be suppressed by PXR ligands
in an SHP-independent manner. In the case of CYP7A1
and CYP8A1 genes, rifampicin treatment did not inhibit
HNF-4α binding to native promoters of these genes but
resulted in dissociation of PGC-1α from HNF4α-formed
transcription complex and subsequent gene repression (Bhalla
et al., 2004). Most interestingly, the same effect was also
observed in the PEPCK1 regulation. The authors therefore
proposed that PXR could be inhibitory in the process by
competing for PGC-1α binding to HNF4α that dominantly
controls the high hepatic expression of CYP7A1, CYP8A1, and
PEPCK genes (Bhalla et al., 2004) (see also chapter HNF4α,
Figure 6A).

A slightly different model of PXR-HNF4α crosstalk inCYP7A1
gene repression has been proposed by Li and Chiang (Li and
Chiang, 2005). In their experiments employing M2H assay and
ChiP, rifampicin enhanced PXR interaction with HNF4α in
the context of CYP7A1 gene promoter, but reduced PGC-1α

interaction with HNF4α resulting in overall CYP7A1 repression
(see also chapter HNF4α, Figure 6B).
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FIGURE 7 | Crosstalk of PXR and HN4α in OCT1 gene repression. Activated PXR competes and deplete (“squelches”) the SRC-1 coactivator from
HNF4-mediated transactivation of OCT1 (SLC22A1) gene. OCT1 is dominantly regulated by HNF4α in the liver (Hyrsova et al., 2016). Dashed arrow indicates the
squelching (competition for common coactivator). Black bold arrows indicate the effects of activated PXR on genes expression

In a recent study, we examined the suppressive effect of
activated PXR on OCT1 (SLC22A1) expression. OCT1 is one of
the most tightly controlled genes with HNF4α transactivation.
We rather observed competition for SRC-1 than PGC-1α

coactivator in PXR-HNF4α interaction, thereby suggesting a
gene(promoter)-specific crosstalk of PXR-HNF4α in the case of
OCT1 gene regulation (Hyrsova et al., 2016) (Figure 7).

HNF4α
Hepatocyte nuclear factor 4α is a master transcriptional activator
for a large number of genes in hepatocytes and pancreatic
cells. HNF4α belongs to the “orphan” NRs (it is classified as
NR2A1), although fatty-acid CoA thioesters have been proposed
as its ligands. Mutations in this gene have been associated
with the monogenic autosomal dominant non-insulin-dependent
diabetes mellitus type I (MODY 1, maturity onset diabetes of the
young). HNF4α also belongs among the so called liver-enriched
transcription factors controlling liver physiology, differentiation
and drug-metabolism enzymes expression (Jover et al., 2009).
By using a combination of ChiPs and promoter microarrays,
910 genes in hepatocytes and 758 genes in pancreatic islets were
regulated by HNF4α in regulatory circuits together with HNF1α

and HNF6 transcription factors (Odom et al., 2004). HNF4α is
essential for cholesterol and glucose/energy metabolism because
it is a key factor for the basal hepatic expression of CYP7A1,
CYP8B1, G6Pase, and PEPCK genes, respectively.

These genes all contain functional HNF4α-binding sites in
their promoter, and mutation of these sites substantially disrupt
promoter activation. HNF4α binds as a homodimer mainly to
DR1 response elements. Such DR1 motifs have been found in the
bile acid responsive element (BARE) II region at−148 to−129 in
the human CYP7A1 gene promoter and at +198 to +227 of the
human CYP8B1 gene promoter. The promoter of human PEPCK
gene also contains a functional HNF4α-binding site at −431 to
−418 (Watt et al., 2003; Crestani et al., 2004).

Hepatocyte nuclear factor 4α augments the PXR/Pxr-
mediated transactivation of the human CYP3A4 and mouse
Cyp3a11 genes (Tirona et al., 2003; Li and Chiang, 2006). This
enhancement was proposed through cis-acting HNF4α-binding
sites in the proximal promoter and at the far upstream
enhancer region for the CYP3A4 gene (Tirona et al., 2003;
Matsumura et al., 2004; Pavek et al., 2010) even though an
HNF4α-RE independent mechanism has also been proposed
(Li and Chiang, 2006). Rifampicin strongly stimulates PXR
and HNF4α interaction in CYP3A4 gene transactivation, which
is further augmented by PGC-1α and SRC-1 coactivators,
but inhibited by Small heterodimer partner (SHP, NR0B2)
(Tirona et al., 2003; Li and Chiang, 2006). ChiPs revealed
that the rifampicin-activated PXR recruits HNF4α and SRC-
1 (but not PGC-1α) to the CYP3A4 gene chromatin. In
CYP3A4 transactivation, SHP, PXR, and HNF4α have been
proposed to interact and compete for binding to each other
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FIGURE 8 | Model of PXR-mediated transactivation of CYP3A4 gene. In the model, PXR ligands stimulate PXR/Pxr binding to DNA and interaction of PXR with
HNF4α. PXR-HNF4α-SRC-1 complex transactivates CYP3A4 gene promoter (A). PXR at the same time trans-represses SHP gene expression. SHP interferes with
PXR-HNF4α-SRC-1 coactivation and with PXR-DNA interaction (B) (Ourlin et al., 2003; Li and Chiang, 2006).

(Li and Chiang, 2006). Concomitantly, PXR has been proposed
to inhibit SHP promoter activity and to repress SHP gene
transcription by disrupting PGC-1α coactivation of HNF4α (Li
and Chiang, 2006) (Figure 8).

In the case of CYP7A1 gene promoter, HNF4α directly
binds with PXR and both NRs are strongly co-activated by
PGC-1α (Li and Chiang, 2005, 2006). With respect to PXR-
mediated CYP7A1 gene repression, two theories regarding
the mechanism have been postulated based on the PXR-
HNF4α-PGC-1α crosstalk. Bhalla et al. (2004; Dr. Jongsook
Kim Kemper’s group) proposed that PXR competes for the
binding of PGC-1α with HNF4α in CYP7A1 gene regulation
and squelches PGC-1α from HNF4α/DNA complex (Figure 6A).
The group of Dr. Chiang proposed that the activation of
PXR by rifampicin promotes PXR interaction with HNF4α in
the CYP7A1 gene promoter, but blocks PGC-1α interaction
mainly with HNF4α and to a lesser extend with PXR. This
results in the inhibition of CYP7A1 gene expression dominantly
transactivated by HNF4α-PGC-1α (Li and Chiang, 2005)
(Figure 6B). The latter authors also argue that “squelching”
of the common coactivator PGC-1α is an unlikely mechanism
since PGC-1α mostly interacts with PXR in a ligand-independent
manner.

Pregnane X Receptor activation by rifampicin was also found
to repress the estrogen sulfotransferase 1E1 (SULT1E1)
gene. Mechanistic studies showed that activated PXR
displaces HNF4α bound to the PXR-responsive enhancer of
SULT1E1 gene resulting in promoter remodeling, histone
3 deacetylation and repressed expression (Kodama et al.,
2011).

SRC-1
Steroid receptor coactivator 1 is a well-known coactivator
with the conserved N-terminal basic helix−loop−helix-
Per/ARNT/Sim (bHLH-PAS) domain, a central NR interaction
domain (RID) with three LXXLL motifs, and two activation
domains (AD1 and AD2) at the C-terminus. SRC-1 interacts
with many NRs including PXR, LXRα, CAR, FXR, HNF4α, GR
etc. It was shown that PXR and SRC-1 interact in the absence of
a PXR ligand and the interaction is strengthened by rifampicin
(Saini et al., 2005; Li and Chiang, 2006; Rulcova et al., 2010;
Krausova et al., 2011; Hyrsova et al., 2016), although SRC-1 was
proposed to bind to PXR much weaker that PGC-1α (Li and
Chiang, 2005).

Interesting results have been obtained with Pxr-null, Car-
null and double-KO mice. In Pxr-null mice, Car target genes
Mrp2, Mrp3, Ugt1a1, Oatp4, and Gsta2 were up-regulated.
A detailed investigation has shown that unliganded Pxr may
attract coactivators such as Src-1 from Car to dominate over Car
and to control the constitutive activity of Car in detoxification
enzymes regulation (Saini et al., 2005). Based on this, the ligand-
free Pxr can suppress both the constitutive and ligand-induced
activity of Car by competing for common coactivator Src-1 in
a target gene specific manner. This finding also highlights a
regulatory hierarchy of Pxr/Car (PXR/CAR) cross-talk in the
regulation of common target detoxifying enzymes (Saini et al.,
2005).

The antidiabetic drug metformin was reported to suppress
PXR-regulated transactivation of CYP3A4 gene (Krausova et al.,
2011). Metformin did not affect PXR expression, instead it
disturbed PXR interaction with SRC-1 (Krausova et al., 2011).
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Since there is some analogy with the regulation of PXR
and PGC-1α interaction by metformin-induced SIRT1, we can
speculate that SIRT1 can play a role in the process (Hakkola et al.,
2016).

SHP
The small (or short) heterodimer partner (SHP) is a NR (NR
subfamily 0, group B, member 2) encoded by the NR0B2 gene in
humans. SHP is unusual as a NR in that it lacks a DNA binding
domain. No endogenous ligand has been found, therefore SHP
belongs to the “orphan” subfamily. SHP executes its regulatory
function through protein–protein interactions as a coreppresor
of numerous NRs (including PXR, CAR, LXRs, PPARs, HNF4α,
LRH-1, GR, TRβ, RARα, FXR, ERs, ERRs etc.), TFs (such as
FOXO1, C/EBPα, NF-κB etc.) or kinases (such as C-jun or
Smad3) (Zhang et al., 2011). SHP represses the transcriptional
activities of its target proteins by utilizing two functional LXXLL-
related motifs in the LBD domain. The binding of SHP to
TFs/NRs either competes or dissociates coactivators on the AF-
1/2 domains from the receptors. SHP is thus involved in bile
acid, cholesterol, triglyceride, glucose, and drug metabolism.
SHP mainly plays important role in the negative regulation of
the conversion of cholesterol to bile acids via FXR, as well in
regulating the expression of genes playing roles in bile acid
transport (BSEP, NTCP), lipid metabolism (SREBP1C), and
gluconeogenesis (PEPCK, G6Pase) (Zhang et al., 2011; Zou et al.,
2015).

It was shown that SHP inhibits PXR-mediated transactivation
of the CYP3A4 gene by interfering with PXR binding to promoter
response elements (Ourlin et al., 2003; Pavek et al., 2012; Smutny
et al., 2014). However, this finding has been questioned by
Li and Chiang (Li and Chiang, 2006). Instead, they proposed
that HNF4α and SHP compete for binding to PXR in CYP3A4
gene transactivation after rifampicin treatment. In addition, SHP
partially blocks PXR-SRC-1 (but not PXR-PGC-1α) interaction
in CYP3A4 gene regulation (Li and Chiang, 2006). Interestingly,
rifampicin strongly enhanced PXR−SHP interaction in M2H
and GST pull-down assays (Li and Chiang, 2006). In addition,
it was shown that the activated PXR trans-represses SHP
expression, which is dominantly controlled by HNF4α-PGC-
1α regulation, by blocking PGC-1α recruitment to SHP gene
promotor chromatin (Li and Chiang, 2006). By this mechanism,
PXR may concomitantly inhibit SHP gene transcription and
maximizes the PXR-mediated induction of the CYP3A4 gene in
human livers (Li and Chiang, 2006) (see Figure 8).

SIRT1
SIRT1 (silent mating type information regulation 2 homolog
1) also named as NAD+-dependent deacetylase sirtuin-1, is a
protein that is encoded by the SIRT1 gene in humans. SIRT1
is a deacetylase protein which is both catalytically activated
by increased NAD+ level and also transcriptionally induced
during fasting. SIRT1, a mammalian ortholog of the yeast Sir2
protein, belongs into the class III of HDAC that has been
reported to deacetylate many target proteins including some NRs,
either activating or repressing their functions. Sirtuin 1 is a key
metabolic/energy sensor and mediates homeostatic responses to

caloric restriction. Accumulating evidence indicates that Sirtuin
1 is a master regulator that controls hepatic lipid metabolism.
During fasting conditions, SIRT1 deacetylates and alters the
expression and the activities of key transcriptional regulators
involved in hepatic lipogenesis, β-oxidation, and cholesterol/bile
acid metabolism (Moore et al., 2012; Kemper et al., 2013).
In addition, SIRT1 deacetylates PGC-1α and thus enhances its
ability to coactivate gluconeogenic genes (Rodgers et al., 2005).

SIRT1 is one of two major regulators of hepatic energy
homeostasis (together with PGC-1α) involved in PXR signaling.
SIRT1 binds and deacetylates PXR after the ligand-dependent
activation of PXR (Biswas et al., 2011; Buler et al., 2011).
Interestingly, Buler et al. (2011) found PGC-1α-mediated
regulation of PXR expression. SIRT1 was also shown to
interfere with PCN-induced Pxr coactivation by Pgc-1α in
Cyp3a11 gene transactivation (Figure 9). Thus SIRT1 and
PGC-1α fasting-activated pathways differentially affect PXR/Pxr-
mediated function.

RXRα
Pregnane X Receptor heterodimerizes with the NR retinoid
X receptor α (RXRα, NR2B1), encoded by the RXRA gene
(Blumberg et al., 1998; Kliewer et al., 1998). Similarly, other
NRs such as CAR, FXR, LXR, and PPARs form heterodimers
with hetero-oligomeric partner RXRα. Therefore, it is logical
to suppose crosstalk due to the competition for the common
heteropartner. However, no NR−NR interactions have been
reported at the level of RXR crosstalk between these receptors
in the literature. It was shown that ligand-activated LXRα

transactivates CYP3A4 gene expression but suppresses the PXR-
dependent transcription of CYP3A4 through known PXR-
responsive elements dNR1 and eNR3A4. However, the amount
of RXRα was not found as the limiting factor in CYP3A4
transcription after simultaneous activation of PXR and LXRα

(Watanabe et al., 2013). We can thus speculate that there is
sufficiently high amount of RXRα in hepatocytes to sustain
parallel heterodimerization with several activated NRs. We
should also take into account that PXR forms functional
homodimer, which again suggests that RXRα amount may not
be a limiting factor for PXR activity (Noble et al., 2006).

Some retinoids and rexinoids, ligands of RXRα, significantly
induce the PXR/RXR-mediated transactivation (Wang et al.,
2006; Pettersson et al., 2008). Interestingly, rexinoids can
antagonize PXR activation by rifampicin due to the reduced
binding of PXR/RXR to PXR response elements. In addition,
rexinoids, bexarotene (LGD1069), and LG100268 can stimulate
protein degradation of both PXR and RXR (Pettersson et al.,
2008). Therefore, ligand-dependent PXR-RXR interactions may
have an effect on PXR target genes expression.

NF-κB
Proinflammatory stimuli down-regulate CYP expression and
drug-metabolizing activities in the liver.

NF-κB is the key regulator of inflammation and immune
responses. The NF-κB family comprises five members, namely
p65 or Rel A, Rel B, c-Rel, p50, and p52. NF-κB normally resides
in the cytoplasm bound to the protein inhibitor of NF-κB (IκB).

Frontiers in Pharmacology | www.frontiersin.org 11 November 2016 | Volume 7 | Article 456

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-07-00456 November 23, 2016 Time: 17:3 # 12

Pavek PXR-Mediated Repression and Crosstalk

FIGURE 9 | SIRT1 represses Pxr-PGC-1α coactivation in Cyp3a11 gene regulation. SIRT1 binds to PXR and deacetylate PXR after its ligand-dependent
activation. Sirt1 interferes with Pxr-Pgc-1α coactivation in Cyp3a11 gene regulation (Biswas et al., 2011; Buler et al., 2011).

FIGURE 10 | Crosstalk of NF-κB p65 and PXR-RXRα in PXR-mediated CYPs regulation. Proinflammatory cytokine interleukin 6 (IL-6) down-regulates PXR
mRNA in primary human hepatocytes. In addition, activation of NF-κB by either LPS or TNF-α leads to PXR suppression through interaction of NF-κB p65 and the
PXR-RXRα heterodimer. NF-κB p65 directly binds to RXRα DBD and thus disrupts the association of the PXR/RXRα complex with the PXR responsive sequence
ER6 of the CYP3A4 gene (Pascussi et al., 2000; Gu et al., 2006).

Activating signals, such as pro-inflammatory cytokines lead to
phosphorylation and degradation of IκB, thus allowing NF-κB
to translocate to the nucleus. In the nucleus, NF-κB directly
regulates the transactivation and expression of its target genes.

Signaling mediated by lipopolysaccharide (LPS) and
cytokines, such as IL-1 and TNFα, leads to the activation of
NF-κB. Activated NF-κB was shown to repress PXR activation
and the PXR-mediated induction of several CYPs. Pascussi et al.
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first have shown that the proinflammatory cytokine interleukin
6 (IL-6) down-regulates PXR mRNA in primary human
hepatocytes and inhibits the rifampicin-mediated induction of
the PXR target CYPs genes such as CYP2B6, CYP2C8/9, and
CYP3A4. However, PXR activity itself was not affected by the IL-6
in reporter assays (Pascussi et al., 2000).

Gu et al. (2006) reported that the activation of NF-κB by
either LPS or TNF-α leads to PXR suppression through the
interaction of NF-κB p65 and PXR-RXRα heterodimer. NF-κB
p65 disrupted the association of the PXR/RXRα complex with
the PXR responsive sequences ER6 in electrophoretic mobility
shift and ChiPs. This interference has been explained by the direct
binding of NF-κB p65 to the RXRα DBD in the GST pull-down
assay (Figure 10).

Zhou et al. (2006) further corroborated the NF-κB-PXR
crosstalk and reported that NF-κB activation inhibits hPXR
activation, and that inhibition of NF-κB potentiates PXR
activation. In addition, they showed that NF-κB target genes
are up-regulated and small bowel inflammation is significantly
increased in Pxr−/− mice.

In addition to NF-κB signaling, both protein kinase C
and A (PKC and PKA) signaling is involved in repressing
CYP3A gene expression by affecting the PXR activity during
inflammation. Mechanistically, posttranslational modifications
of PXR by the kinase signaling are involved. I refer to other
reviews for more details (Smutny et al., 2013; Oladimeji et al.,
2016).

Thus, the reciprocal crosstalk between PXR and NF-κB is the
proposed mechanism for the anti-inflammatory function of PXR
and down-regulation of PXR target CYPs during inflammation.

DISCUSSION AND CONCLUSION

In the review, I comprehensively summarize our current
knowledge about the molecular mechanisms of: (i) competition
for coactivator binding to PXR, (ii) coactivation of PXR by
other transcription factors or NRs leading to NRs cross-talk, (iii)
signaling and posttranslational modification of PXR that impairs

its coactivation and (iv) trans-repression of TFs and NRs by
PXR. All these processes form the NR-signaling network that
enables at the same time sensing to caloric restriction or to
toxic injury. Some of the mechanisms confirm our view on the
hierarchy of xenobiotic and endobiotic metabolism regulation
and propose novel targets for drug development. However,
considering the number of NRs, coactivators, corepressors and
signaling pathways that orchestrate transcriptome and proteome
regulation, it is clear that we have discovered only a minor part of
the network.

Pregnane X Receptor plays both positive and negative roles
in regulating numerous genes involved in homeostasis and
detoxification. Indeed, the latest report shows that PXR down-
regulates expression of twice as many genes than it induces in
primary human hepatocytes (Kandel et al., 2016). According to
current knowledge, SULT1E1, SHP, HNF4α, OCT1, and FOXO1
genes are the only candidates that have been reported as repressed
genes of activated PXR in detailed mechanistic studies (Li and
Chiang, 2006; Zhou et al., 2006; Kodama et al., 2011; Kodama
et al., 2015). In the case of these genes, however, protein−protein
interactions of coactivators with NRs or TFs take place and no
direct trans-repression via a cis-acting PXR repression element
has been reported so far.

Therefore, a better understanding of the coactivator/coreppresor
relationships in PXR-mediated gene regulation may help us do
delineate the regulation of other genes repressed by activated
PXR in PXR expressing tissues.
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