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The tumor suppressor p53 is a canonical regulator of different biological functions, like
apoptosis, cell cycle arrest, DNA repair, and genomic stability. This gene is frequently
altered in human tumors generally by point mutations or deletions. Conversely, in
acute lymphoblastic leukemia (ALL) genomic alterations of TP53 are rather uncommon,
and prevalently occur in patients at relapse or with poor prognosis. On the other
hand, p53 pathway is often compromised by the inactivation of its regulatory proteins,
as MDM2 and ARF. MDM2 inhibitor molecules are able to antagonize p53-MDM2
interaction allowing p53 to exert tumor suppressor transcriptional regulation and to
induce apoptotic pathways. Recent preclinical and clinical studies propose that MDM2
targeted therapy represents a promising anticancer strategy restoring p53 dependent
mechanisms in ALL disease. Here, we discussed the use of new small molecule
targeting p53 pathways as a promising drug target therapy in ALL.
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INTRODUCTION

TP53 is a tumor suppressor gene, located on chromosome 17p13.1, with the main function
to prevent cancer transformation (Brady and Attardi, 2010). P53 is a transcription factor that
activates or represses a series of target genes exerting different biological functions (Shi and Gu,
2012; Leenders and Tuszynski, 2013). Consequently to a plethora of multiple stress signals, p53
determines cell fate activating apoptosis or maintaining cells at the G1/S regulation point in a
reversible cell cycle arrest process; furthermore, it can induce cellular senescence characterized
by an irreversible loss of proliferative potential (Demidenko et al., 2010; Timofeev et al., 2013;
Burgess et al., 2016). P53 dysfunction can promote the initiation or progression of different
human tumors and confer malignant characteristics, such as altered cellular differentiation, genetic
instability, and increased metastatic potential (Muller and Vousden, 2013; Bieging et al., 2014).
Generally, TP53 is inactivated in the majority of human solid tumors by missense mutations and
deletions impairing transcriptional function of the protein (Olivier et al., 2010; Naccarati et al.,
2012; Gibbons et al., 2014). Conversely, in hematological malignancies, where p53 mutations are
less recurrent, its activity may be likewise compromised by the alterations of MDM2 (Table 1) and
ARF (Richmond et al., 2015; Kojima et al., 2016), two regulators of p53. MDM2 (mouse double
minute-2) binds p53 regulating its stability and cellular localization. This interaction inhibits p53
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mediated transcriptional activity and induces p53 proteasomal
degradation (Eischen and Lozano, 2009; Van Maerken et al.,
2014). ARF (alternative reading frame), instead, is a tumor
suppressor encoded by CDKN2A gene, that participates to the
regulation of p53, by interacting with MDM2. This binding
blocks MDM2 shuttling between the nucleus and cytoplasm
avoiding p53 degradation (Maggi et al., 2014; Vivo et al., 2015).

In acute lymphoblastic leukemia (ALL) MDM2 is
overexpressed (Zhou et al., 1995, 2000; Gu et al., 2008) and
CDKN2A gene is frequently deleted (Usvasalo et al., 2008;
Iacobucci et al., 2011).

In this review, we summarized the current knowledge about
p53-MDM2 axis in ALL focusing our attention on a new potential
therapeutic agent restoring p53 dependent mechanisms in this
hematological disease.

P53 ABNORMALITIES IN ACUTE
LYMPHOBLASTIC LEUKEMIA

TP53 mutations were considered infrequent in ALL (Hof et al.,
2011; Chiaretti et al., 2013; Saha et al., 2013) and were correlated
with cytogenetic alterations, like low hypodiploidy, or MYC-
rearrangements (Holmfeldt et al., 2013; Stengel et al., 2014).
Moreover, the disruption of both TP53 alleles was associated
with adverse prognosis (Stengel et al., 2014). Also the aberrant
methylation could contribute to TP53 gene inactivation; in
particular, Agirre et al. (2003) showed that TP53 promoter
resulted methylated in 8 of out 25 ALL patients and its
expression was decreased in all the methylated samples. Other
literature data found 13 genes, involved in the TP53 dependent

TABLE 1 | MDM2 deregulations in various hematological malignancies.

Hematological
malignancy

MDM2 deregulation References

ALL overexpression Zhou et al., 1995, 2000; Gu
et al., 2008; Zhu et al., 2008

AML overexpression Faderl et al., 2000; Kojima
et al., 2005; Reis et al., 2016

CLL overexpression Haidar et al., 1997;
Isin et al., 2012

CML Trotta et al., 2003;
Carter et al., 2015

HL amplification Kupper et al., 2001

NHL overexpression Pagnano et al., 2001

MCL amplification,
overexpression

Solenthaler et al., 2002;
Hernandez et al., 2005

BL overexpression Wilda et al., 2004

BCL overexpression Riley et al., 2016

DLBCL overexpression Davies et al., 2005

MM overexpression Teoh et al., 1997; Kryukov
et al., 2013; Teoh et al., 2014

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic
lymphocytic leukemia; CML, chronic myeloid leukemia; HL, Hodgkin’s lymphoma;
NHL, non-Hodgkin’s lymphoma; MCL, mantle cell lymphoma; BL, Burkitt’s
lymphoma; BCL, B-cell lymphoma; DLBCL, diffuse large B-cell lymphoma; MM,
multiple myeloma.

pathway, down-regulated by hypermethylation in a large cohort
of ALL patients at diagnosis. Methylation of at least 1 of
the 13 genes was observed in 78% of the patients, which
significantly correlated with a higher relapse and mortality rate
predicting the clinical outcome of patients (Vilas-Zornoza et al.,
2011).

On the other hand, also deregulation of microRNAs was
found to be correlated with p53 alteration. In particular, Nucera
et al. (2016) focused their attention of miRNA-126, a regulator
of hematopoietic stem cell quiescence. They found that mir-126
was highly expressed in human B-ALL and target p53 response
genes orchestrating an oncogenic program by down-regulation
of p53-dependent pathway. Another microRNA found to have a
role as onco-miRNA in ALL was mir-181a that down-regulated
the expression of tumor suppressor gene EGR1 (Verduci et al.,
2015).

Finally, p53 was also inactivated by the frequent deletion of
CDNK2A (Usvasalo et al., 2008; Iacobucci et al., 2011) and the
overexpression ofMDM2 in ALL patients (Zhou et al., 1995, 2000;
Gu et al., 2008).

CURRENT TREATMENTS OF ALL

B-ALL is a heterogeneous disease on biological and clinical
point of view, affecting pediatric, adolescent, adult, and older
patients. It prevalently occurs, however, in childhood, in whom
the prognosis is more favorable respect to adult patients, reaching
a cure rate of 80–90% thanks to multi-agent and intensive
combination chemotherapy regimens that have significantly
improved the outcome in the pediatric setting (Hunger and
Mullighan, 2015; Pui et al., 2015), as well as in that of adolescent
and younger adults (Curran and Stock, 2015). In other patients,
instead, “conventional” treatments remain unsatisfactory (Marks,
2015; Al Ustwani et al., 2016; Fedorov et al., 2016), due to
pharmacologic resistance (Ronson et al., 2016; Seiter, 2016)
or toxicity events, above all when aggressive “pediatric-like”
protocols are applied (Dias et al., 2016).

A subset of B-ALL shows t(9:22) translocation that generates
“Philadelphia” chromosome (Ph) encoding a specific BCR-ABL1
tyrosine kinase fusion protein. This alteration occurs in 3–4% of
pediatric ALL and about 25% of adult patients, increasing with
age: these patients strongly benefit of the BCR–ABL1 tyrosine
kinase inhibitors (TKI) as first-line treatment (Malagola et al.,
2016). However, although TKI monotherapy induces complete
remission rates of 90–100% with low toxicity profile even in older
patients (Vignetti et al., 2007; Foa et al., 2011), the combination
of TKI with standard chemotherapy is generally required to
obtain higher long-term disease free survival in both adults
(Fielding et al., 2014; Fielding, 2015) and children (Biondi
et al., 2012; Bleckmann and Schrappe, 2016) with Ph positive
ALL.

More recently, new therapies seem to be appealing for
treatment of refractory/relapsed patients. They are based on
monoclonal antibodies targeting antigens, including CD19,
CD20, CD22, and CD52, expressed on leukemic blast cell
surface (Jabbour et al., 2015). Rituximab, an anti-CD20 antibody,
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in combination with conventional chemotherapy, has been
shown to improve survival in newly diagnosed CD20+ ALL
(Maury et al., 2016). Blinatumomab, a T-cell engaging bi-
specific single-chain antibody (BiTE) direct to CD19 and
CD3, is used as monotherapy in relapsed and refractory
ALL, prolonging relapse free survival (Benjamin and Stein,
2016; Le Jeune and Thomas, 2016). Inotuzumab ozogamicin,
an anti-CD22 antibody conjugated with a toxin, alone and
in combination with chemotherapy, has been promising in
relapsed and refractory B ALL (Yilmaz et al., 2015). Several
newer monoclonal antibodies (ofatumumab, obinutuzumab,
epratuzumab, denintuzumab mafodotin and, moxetumomab
pasudotox) are currently under investigation as single agents or
in combination with a chemotherapeutic back bone (Farhadfar
and Litzow, 2016).

Other novel clinical approaches are related to immunotherapy
by engineering of T-cells, derived from patients or allogeneic
donors, with synthetic chimeric antigen receptors (CAR T-cells)
that activate T cells enhancing their function (Maude et al., 2015;
Sadelain et al., 2015).

PRE-CLINICAL EVIDENCES OF MDM2
INHIBITION AS A THERAPEUTIC
STRATEGY IN ACUTE LYMPHOBLASTIC
LEUKEMIA

To improve the outcome of B-ALL patients, novel therapeutic
strategies have been developed, like the reactivation of apoptotic
pathway by inhibiting MDM2 protein.

Zhang et al. (2014) demonstrated that Nilotinib, a second
generation TKI inhibitor, inhibited MDM2 in both Ph+ and
Ph− ALL cell lines with high MDM2 expression. This inhibition
activated a p53-independent apoptosis by down-regulation of
the anti-apoptotic protein XIAP. Gu et al. (2008) instead
showed a cytotoxic activity of Nutlin-3a, a cis-imidazoline
small molecules antagonizing Mdm2-p53 binding, in pediatric
ALL with p53 wild-type and over-expressing MDM2. Moreover,
they also found the positive correlation between MDM2
expression and Nutlin-3A cytotoxicity in ALL. In fact, a major
effect of Nutlin was observed in cells over-expressing MDM2
respect to MDM2-negative ALL cells, probably due to the
higher induction of p53, p21, Bax, and PUMA (Gu et al.,
2008).

Moreover, Zhu et al. (2008) performed in vitro experiments
with Nutlin and the inhibitor of antiapoptotic PI3K/AKT
pathway that is frequently activated in different cancer cell types.
They demonstrated the synergic effect of these drugs in inducing
apoptosis in ALL cells.

Recently, we observed the effects of Nutlin-3a in adult B-ALL
confirming the activation of p53-mediated pathway in wild-
type p53 ALL cells (Trino et al., 2016). Given the clinical
significance of BCR-ABL1 mutations in inducing resistance to
conventional therapy (Soverini et al., 2016), we analyzed the
efficacy of Nutlin-3a in Ph+ ALL resistant patients carrying
the T315I BCR-ABL1 mutation. Interestingly, we observed

that this drug is able to reduce in vitro cell viability in this
subtype of resistant ALL suggesting its potential therapeutic
application in resistant clinical setting of patients (Trino et al.,
2016).

Moreover, due to the evidences that ETV6/RUNX1 (E/R),
the most common fusion gene in childhood ALL, impaired p53
signaling, Kaindl et al. (2014) investigated the effect of Nutlin
in E/R ALL cells. They demonstrated that MDM2 was over-
expressed in E/R-positive respect to E/R-negative primary B-cell
precursor-ALL samples, showing also that E/R transcription
factor binds to the MDM2 P2 promoter and consequently up-
regulates MDM2 in a direct and p53-independent manner.
Nutlin-3 treatment reactivated p53 function in E/R-expressing
leukemic cell lines, leading to cell cycle arrest, enhanced
apoptosis, and increased expression of p53 direct targets p21,
MDM2, and the pro-apoptotic BAX and PUMA (Kaindl et al.,
2014).

Furthermore, Richmond et al. (2015) carried out a preclinical
study in a specific subset of infant ALL patients carrying the
translocation in the mixed-lineage leukemia (MLL) oncogene,
associated with a lower survival rate. They demonstrated that
RG7112, the analog of Nutlin-3a, induced regression and
prolonged progression delay in a panel of patient-derived infant
MLL-ALL xenografts, and p53 upregulation, cell cycle arrest and
induction of apoptosis.

Kang et al. (2016) instead tested the efficacy of another
inhibitor of MDM2, MK-8242, in in vitro and in vivo
tumor panels and compared this study with their previous
evaluation of RG7112 in the same cell line models (Carol
et al., 2013). For both agents, they demonstrated that the
in vitro ALL cell line sensitivity correlated with TP53 mutation
status. Moreover, for in vivo experiments, the response of
the leukemia xenografts was similar between MK-8242 and
RG7112; in particular, xenografts from two MLL-rearranged
cell lines achieved or maintained complete responses. Other
non-MLL ALL xenografts had partial responses to MK-
8242.

Interestingly, emerging literature data reported that MDM2
inhibition played a role not only in apoptosis induction but also
in autophagy activation in different hematological malignancies,
like multiple myeloma (Gu et al., 2014) and acute myeloid
leukemia (AML; Borthakur et al., 2015).

Collectively, these different studies indicated that MDM2
inhibition could be a new promising target therapy in
hematological malignancies.

USE OF MDM2 INHIBITORS IN
COMBINATION SETTING

Since drug resistance to MDM2 inhibitors or current therapeutic
agents can be acquired by tumor cells, pharmacological
combination could be a successful strategy to improve the
treatment outcome and to reduce the side-effects of the
drugs. In this regard, different groups evaluated in vitro
the combinatory effects between Nutlin-3a and conventional
drugs used in ALL therapy. Kaindl et al. (2014) reported
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that co-exposure of Nutlin-3a and chemotherapeutic drugs
(daunorubicin, asparaginase, vincristine) reduced cell viability
and potentiated apoptosis in a childhood ALL cell line, with E/R
fusion gene.

In our previous study, we evaluated in vitro the co-treatment
of Nutlin-3a with TKIs in Ph+ cell lines. In particular, the
combination between Nutlin-3a and Imatinib, Dasatinib or
Nilotinib showed significant effect in reducing cell viability of
a Ph+ cell line in comparison with the effect of the single TKI
treatment (Trino et al., 2016).

Another study by Richmond et al. (2015), showed that
combining RG7112 with an induction type regimen (vincristine,
dexamethasone, and L-asparaginase) significantly enhanced
objective responses and prolonged leukemia regression in vivo
MLL-ALL xenografts.

On the light of these pre-clinical evidences, literature data
underline that targeting the p53-MDM2 axis in combination with
established drugs for the management of ALL warrants further
investigations.

MDM2 INHIBITORS IN CLINICAL TRIALS

As previously described, different preclinical studies
demonstrated the in vitro and in vivo effects of MDM2 inhibitors

to kill wild-type p53 tumor cells. Therefore, due to their
promising anticancer abilities, these drugs are now translated
into clinical trials to better assess their biological effects and
toxicities in patients. RG7112 was the first MDM2 inhibitor
entered clinical evaluation. Recently, a multicenter phase I
trial of RG7112 was conducted in patients with hematological
malignancies, including ALL (Andreeff et al., 2016). This study
confirmed p53 stabilization and transcriptional activation
of p53 target genes after MDM2 antagonist treatment, also
demonstrating clinical activity in patients with poor prognosis,
relapsed, or refractory. To identify the effective biomarkers of
response, in this study were evaluated the p53 status by detection
of single nucleotide substitution or deletion in exons 2-11 as well
as their splice sites. Moreover, mRNA expression, by quantitative
real-time PCR, of 24 direct and indirect p53 target genes and
MDM2 transcript was also examined. By analyzing patient
data the authors did not find any molecular marker predicting
response to RG7112. Since this inhibitor was effective in patients
with at least 1 wild-type TP53 allele, TP53 mutation status alone
did not define pharmacological response. Furthermore, baseline
MDM2 expression levels were found positively correlated with
clinical response, but also this was not sufficient to define MDM2
as a single predictive marker of sensitivity to treatment. The
analysis of p53 target genes showed 10, among 24, p53 target

FIGURE 1 | Reactivation of p53 pathway via Nutlin-3a in acute lymphoblastic leukemia (ALL). In response to oncogenic activation, ARF protein interacts
with MDM2 sequestering it into the nucleolus. This binding prevents the proteasomal degradation of p53 that activates its target genes promoting several functions
like apoptosis, growth arrest, DNA repair, and senescence. In ALL, 9p21 locus deletion and MDM2 overexpression eliminate the tumor surveillance mechanism
based on ARF-MDM2 interaction leading to the p53 degradation. Nutlin-3a, a small molecule targeting MDM2, restores p53 pathway, suggesting a promising
therapeutic option for ALL.
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genes significantly modulated but only in p53 wild-type samples.
Among those, the most induced genes were CDKN1A/p21, a
crucial p53-mediator of cell-cycle arrest, and BBC3/PUMA, an
important mediator of p53 dependent apoptosis (Andreeff et al.,
2016).

However, from a clinical point of view, RG7112 showed
several disadvantages as the gastrointestinal intolerance due to a
high dose required for drug efficacy and variability of exposure
at the maximum tolerate dose. To overcome these limitations,
recently a new potent MDM2 inhibitor RG7388, also known
as Idasanutlin, has been discovered (Ding et al., 2013) and
actually entered in a phase 1/1b study in relapsed/refractory
AML. Recent data about this trial revealed that MDM2 protein
expression levels in leukemic blasts and stem cells were
associated with Idasanutlin-induced complete remission in AML
patients (Reis et al., 2016). Moreover, the same trial evaluated
Idasanutlin as monotherapy or in combination with cytarabine
in relapsed/refractory AML patients (Reis et al., 2016). No current
data are available on ALL.

CONCLUSION

P53 pathway is often altered in ALL, in particular due to
the overexpression of MDM2 and deletion of CDKN2A, the

two main regulator of p53. Thus, targeting of MDM2-p53 axis
could represent an attractive cancer therapeutic strategy in
ALL. Nodaway, potent and selective MDM2 inhibitor drugs are
available, such as Nutlins (Figure 1). These small molecules not
only showed a preclinical evidence to restore p53 pathway, but
also had a pharmaceutical properties and entered into clinical
trials.

Clinical testing of Nutlin-3a and new agents activating p53
tumor suppressor functions may provide proof of concept for
their therapeutic approaches in ALL.
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