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Proton pump inhibitors (PPIs) are well-known antacid drugs developed to treat gastric

disorders. Emerging studies demonstrate that PPIs possess biological activities that

extend beyond inhibition of H+/K+ ATPase (proton pumps) expressed in parietal cells of

the stomach. Some of the extra-gastric activities of PPIs include modulation of epithelial,

endothelial, and immune cell functions. Recently, we reported that PPIs suppress the

expression of several proinflammatory and profibrotic molecules, as well as enhance

antioxidant mechanisms in order to favorably regulate lung inflammation and fibrosis in an

animal model of bleomycin-induced lung injury. In addition, several retrospective clinical

studies report that the use of PPIs is associated with beneficial outcomes in chronic

lung diseases including idiopathic pulmonary fibrosis (IPF) and chronic obstructive

pulmonary disease (COPD). Based on these preclinical and clinical observations,

we hypothesized that PPIs ameliorate smoke-induced lung injury. Accordingly, we

evaluated the pharmacological efficacy of the PPI esomeprazole in a mouse model

of cotton smoke-induced lung injury. The animals were exposed to cotton smoke

for 3-weeks in the presence or absence of esomeprazole treatment. We found that

therapeutic administration of esomeprazole significantly inhibited the progression of

fibrosis throughout the lungs of the animals in this group compared to controls. In

addition, esomeprazole also reduced circulating markers of inflammation and fibrosis.

Overall, our work extends the emerging anti-inflammatory and antifibrotic potential of

PPIs and their role in modulation of chronic lung diseases.

Keywords: proton pump inhibitors, fibrosis, inflammation, lung injury

INTRODUCTION

For nearly 30 years, the field of gastroenterology has been substantially impacted by the
development and progressive use of proton pump inhibitors (PPIs) for the treatment of disorders
characterized by overproduction of gastric acid including gastroesophageal reflux disease (GERD).
In 2015, PPIs were among the 10 most prescribed and 10 most sold drugs in the United States
(Brown, 2015). In addition, PPIs are amongWHO’s model list of essential medicines for adults and
children (World Health Organization, 2015a,b).
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However, little is known about possible extra-gastrointestinal
role of PPIs in general and regulation of the pulmonary system
in particular. Lately, in vitro, in vivo and retrospective clinical
data has been emerging to suggest additional clinical utility of
the PPIs in non-gastric diseases including cancer (Goh et al.,
2014; Canitano et al., 2016; Fais, 2016), idiopathic pulmonary
fibrosis (IPF; Raghu et al., 2006; Lee et al., 2011; Ghebremariam
et al., 2015a), and chronic obstructive pulmonary disease (COPD;
Sasaki et al., 2011). One aspect of PPIs that might be responsible
for their pleiotropic pharmacological effect is the incorporation
of a benzimidazole scaffold into their structure (Shin et al.,
2004). Medicinal chemists and drug developers consider small
molecules with benzimidazole cores as “privileged” in that
the scaffold is able to simultaneously target several biological
molecules (Bansal and Silakari, 2012; Gaba et al., 2014; Kaur
et al., 2014). In fact, about 25% of the 100 best-selling drugs
incorporate a benzimidazole moiety (Khokra and Choudhary,
2011).

In previous studies, we have applied biochemical, cellular, and
animal models to characterize the effect of PPIs on alternate
biological targets. First, we discovered that the entire class of
PPIs directly inhibit the enzymatic activity of dimethylarginine
dimethylaminohydrolase (DDAH) (Ghebremariam et al., 2013).
Genetic and pharmacological studies show that DDAH is
pathologically involved in the disease process in IPF (Pullamsetti
et al., 2011). One mechanism by which DDAH is involved in
IPF is through dysregulation of inducible nitric oxide synthase
(iNOS) activity. Higher DDAH levels are expected to enhance
the enzymatic degradation of asymmetric dimethylarginine
(ADMA); the endogenous and competitive iNOS inhibitor
(Ogawa et al., 1987). Thus, the brake placed by ADMA on
iNOS can be released by overly active DDAH resulting in
higher iNOS expression and/or activity. Overexpression of iNOS
is associated with increased nitrosative stress and lung injury
whereas its genetic knockout or pharmacological inhibition
suppresses pathological lung remodeling in animal models of
bleomycin- and smoke-induced lung injury (Genovese et al.,
2005; Seimetz et al., 2011).

Using primary human lung fibroblasts, epithelial, and
endothelial cells, we have shown that PPIs inhibit the expression
of iNOS and other proinflammatory molecules including
tumor necrosis factor alpha (TNFα), interleukins, and adhesion
molecules in response to bleomycin treatment (Ghebremariam
et al., 2015a). In addition to the regulation of the DDAH/iNOS
pathway, we have also demonstrated that PPIs possess anti-
proliferative and antifibrotic properties (Ghebremariam et al.,
2015a; Ghebre Y. T. and Raghu, 2016). The later effect of PPIs
might be associated with the upregulation of heme oxygenase
1 (HO1) that is observed upon treatment of these cells with
PPIs (Becker et al., 2006; Ghebremariam et al., 2015a; Ghebre Y.
and Raghu, 2016). Increased HO1 expression and/or activity is
expected to unleash the protective effects of 3 major biological
molecules that are released upon HO1-mediated catabolism of
heme: carbon monoxide, bilirubin, and ferritin (Morse and Choi,
2002; Slebos et al., 2003). Several other in vitro studies also
reported that PPIs have direct free-radical scavenging activities
and inhibit the adhesion of inflammatory cells to vascular

endothelial cells (Lapenna et al., 1996; Yoshida et al., 2000; Simon
et al., 2006).

Our in vivo study in a rat model of bleomycin-induced lung
injury demonstrated that the PPI esomeprazole significantly and
favorably modulates lung inflammation and fibrosis resulting in
reduced lung scarring and destruction of surfactant protein C
(SPC) positive cells (Ghebremariam et al., 2015a).

In the present study, we assessed the prophylactic and
therapeutic potential of esomeprazole in amousemodel of cotton
smoke-induced lung injury. In addition, we evaluated plasma
samples for circulating markers of inflammation and fibrosis.

MATERIALS AND METHODS

Cotton Smoke-Induced Lung Injury Model
The in vivo study was performed following approval by the
animal ethics committee of the University of Texas Medical
Branch, Galveston and all ethical principles on the use of animals
in research were adhered. We used 8-weeks old C57BL/6J mice
(25–30 g body weight) to evaluate the efficacy of esomeprazole
in a 3-weeks course of cotton smoke-induced lung injury; an
established model that is useful to evaluate acute lung injury
perpetrated by smoke from sources other than tobacco (Han
et al., 2015). The number of animals per study group was
calculated using Power and Sample Size Calculation (PS v3.1.2;
Vanderbilt University) to achieve normally distributed data that
has a standard deviation (σ) of 0.15 to detect a 20% difference in
the means (δ) of vehicle and treatment groups at a significance
(α) level of 0.05 and 80% power (β). Subsequently, all the animals
were randomized into no exposure (n= 6) and exposure groups.
Next, the exposure group of animals were subdivided into vehicle
(n = 10), prophylactic esomeprazole (n = 10), and therapeutic
esomeprazole (n = 10) and were subjected to cotton smoke for
21-days. Starting at 2 days post inhalation injury, the vehicle
and prophylactic esomeprazole groups were orally treated daily
with equal volume of 10% ethanol or 300 mg/kg esomeprazole
in 10% ethanol, respectively. In the therapeutic esomeprazole
group, the animals were treated daily starting from day 10 post-
initiation of smoke exposure until necropsy. At necropsy, blood
samples were collected by cardiac puncture and the lung, liver,
heart, and kidney tissues were harvested for organ weight and
histopathological comparisons.

Biochemical Studies
The blood samples were collected in EDTA containing tubes
and plasma was separated by centrifugation at 5000 rpm for
15 min. Subsequently, the plasma samples were transferred
into fresh tubes and frozen at −80◦C for biochemical studies.
The concentrations of ADMA, NO, TNFα, IL1β, and matrix
metalloproteinase type 7 (MMP7) were determined by ELISA
and respective standard curves were used for comparisons.
For the ADMA study, frozen plasma samples were thawed
and assayed as recommended by the manufacturer (DLD
Diagnostika, Hamburg, Germany). In brief, 20 µL of diluted
plasma from each group was transferred into a 96-well plate for
ADMA acylation prior to overnight incubation of the acylated
ADMA with rabbit anti-acyl-ADMA Antibody. Subsequently,
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unbound analytes were washed off the plate and TMB substrate
was used to develop the reaction. The concentration of ADMA
in the samples was calculated from a standard curve obtained by
measuring absorbance of the provided standards at 450 nm as
described (Schulze et al., 2004; Ghebremariam et al., 2015b). For
the NO, TNFα, IL1β, and MMP7 studies, kits were purchased
from Assay Designs (Ann Arbor, MI), Invitrogen (Camarillo,
CA), Sigma (St Louis, MO), and Kamiya Biomedical Company
(Seattle,WA), respectively. Total plasmaNOwasmeasured in the
form of nitrite using a colorimetric assay that allows reduction
of nitrate into nitrite prior to quantification. For TNFα, IL1β,
and MMP7 assays, antibody directed at the respective analyte
was coated onto the wells of microtiter strips and diluted plasma,
controls, and standards were allowed to react to the capture
antibody. Biotin and streptavidin were used to develop the
reaction. The intensity of the color produced, proportional to the
concentration of analyte present in the samples, was measured
using a plate reader at 450 nm. The mean value of each data was
used to compare the groups.

Histopathological Studies
Lung tissues were fixed in 10% formalin prior to cutting,
embedding and staining with H&E and Masson’s Trichrome
for evaluation of inflammation and fibrosis respectively. The
stained slides were evaluated microscopically by a board-certified
pathologist who was blinded to the treatment that the animals
received. For theH&E stained,multiple fields per slide were semi-
quantitatively scored for inflammation on a scale of 1+ to 4+:
1+ = minimal change containing one or a few small foci in
the alveoli and/or around the conducting airways; 2+ = mild
change containing small to medium sized foci; 3+ = moderate
change containing frequent and medium sized foci; and 4+
= marked change characterized by extensive and confluent
foci affecting most of the tissue. For the Masson’s Trichrome
stained slides, fibrosis was scored based on a published and
widely accepted system (Ashcroft et al., 1988) where grade 0
indicated essentially normal lung without fibrosis; and grade 8
represented complete fibrous obliteration of the normal lung
architecture. All fields of an entire lung section per slide were
scored individually and the mean score values were calculated for
comparison.

Statistical Analysis
The number of animals per study group was calculated
using Power and Sample Size Calculation as described above.
GraphPad Prism (La Jolla, CA) was used in all the statistical
tests post-necropsy. For the organ weight study, as well as
for comparison of the concentrations of plasma ADMA, NO,
TNFα, IL1β, and MMP7, mean value ± standard error of the
mean (SEM) is shown. Multiple groups were compared using
one-way analysis of variance (ANOVA) and Bonferroni tests.
Pairwise comparisons were performed using student’s t-test.
For the survival study, Kaplan–Meier analysis was performed
to establish the number of surviving animals per group over
time. In each of the studies above, data was considered to
be statistically significant when the p-value was below 0.05
(p < 0.05).

RESULTS

Esomeprazole Increases Plasma ADMA
and Reduces NO
Lower DDAH enzymatic activity in vivo is reflected by higher
concentration of ADMA and reduced NO in plasma and/or
tissue (Palm et al., 2007; Lambden et al., 2015). Animals exposed
to smoke showed higher levels of ADMA and NO suggesting
reduction in DDAH activity and induction of iNOS. Moreover,
the animals that were treated with esomeprazole showed higher
plasma concentration of ADMA (Figure 1A) and reduction
of NO (Figure 1B) compared to controls suggesting further
inhibition of DDAH and iNOS in vivo by PPIs despite the effects
of smoke on the enzymes. Recently, we have reported direct
inhibition of DDAH enzymatic activity and reduction of iNOS
by PPIs (Ghebremariam et al., 2013, 2015a).

Esomeprazole Attenuates Circulating
Markers of Inflammation and Fibrosis
Exposure to tobacco or cotton smoke is known to induce
proinflammatory cytokines including TNFα and interleukins in
cultured cells in vitro and in animal models in vivo (Orosz
et al., 2007; Lee et al., 2012). In our study, the levels of
circulating TNFα and MMP7 were significantly lower in the
low dose therapeutic esomeprazole group compared to vehicle
or high dose prophylactic groups (Figure 2). In addition, the
circulating level of IL1β showed a lower trend in the therapeutic
esomeprazole group compared to the other experimental groups.

Esomeprazole Suppresses Lung Fibrosis
Smoke inhalation can induce and exacerbate severe organ
damage including lung inflammation in preclinical models and
human subjects (Murakami et al., 2002; Gualano et al., 2008;
Lee et al., 2012). As an interface between the environment
and the body, the lungs are particularly more susceptible to
the effects of smoke whether released from cigarette or other
combustible substance like burning of wood, paper, or cotton. In
this study, the cotton smoke exposed animals had substantially
increased number of foamy macrophages in the alveoli and
focal inflammation around conducting airways compared to
the animals exposed to clean air (Figure 3). Treatment with
esomeprazole did not have favorable effect on lung inflammation
in this model. For the fibrosis score, 10 or more non-overlapping
fields were analyzed per lung section. Intriguingly, almost all the
fields in the therapeutic esomeprazole group had no-to-minimal
fibrosis score (between 0 and 1) while 64% of the fields in the
vehicle group scored between 1 (i.e., minimal fibrous thickening
of the alveoli) and 3 (i.e., moderate thickening of the alveolar
walls) of which 17% had the histological feature of grade 3 fibrosis
(Figure 4) indicating that the therapeutically administered low
dose of esomeprazole inhibited fibrosis throughout the lungs.
As described below, the high dose esomeprazole was not well
tolerated by the animals resulting in increased mortality and
no meaningful impact in suppressing lung fibrosis (Figure 4).
For the low dose therapeutic esomeprazole group, representative
histology demonstrating its efficacy is presented as Figure 5

(mean fibrosis score of 0.64 vs. 1.06 in the vehicle; p < 0.05).
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FIGURE 1 | Measurement of plasma ADMA and NO concentration at necropsy in sham (clean air), vehicle, and esomeprazole treated mice. Exposure to

smoke increased ADMA (sham vs. vehicle) and NO while esomeprazole treatment further spiked the concentration of ADMA (*p < 0.05 vs. sham group) to modulate

NO (*p < 0.05 vehicle vs. sham group; #p < 0.05 vehicle vs. Eso-L/Eso-H groups). Data is mean ± SEM from at least 5 animals per group run in replicates. Eso-L,

low dose of esomeprazole (i.e. 30 mg/kg); Eso-H, high dose of esomeprazole (i.e., 300 mg/kg).

FIGURE 2 | ELISA-based measurement of circulating TNFα, IL1β, and MMP7 concentration in the plasma of sham, vehicle, and esomeprazole treated

animals. Smoke exposure increased levels of the proinflammatory cytokines (TNFα and IL1β), and the profibrotic protein MMP7 [sham (clean air) vs. vehicle].

However, therapeutic dose of esomeprazole reduced their concentration (*p < 0.05 vs. vehicle control). Data is mean ± SEM from at least 5 animals per group run in

duplicates. Eso-L, low dose of esomeprazole; Eso-H, high dose of esomeprazole.

Esomeprazole Treatment Did Not Change
Organ Weight
Recordings of total body and organ weight at necropsy showed
that treatment with esomeprazole did not significantly alter the
weight of the lungs, heart, and kidneys. However, there was
a slight but insignificant increase in the weight of the liver
in the esomeprazole group compared to vehicle (Figure S1).
In addition, the animals in the high dose esomeprazole

group (300 mg/kg) had increased incidences of bloating up,
sluggishness, and mortality (Figure S2). Extensive preclinical

and clinical studies have been conducted to test the tolerability,
safety, and efficacy of PPIs when administered at various doses
systemically. These studies have established that although side

effects including liver toxicity may be seen at lower doses of
PPI, the lethal dose in rodents is generally above 1 g/kg body

weight.
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FIGURE 3 | H&E stained lung sections showing the presence of foamy macrophages and mixed cell infiltrates in animals exposed to cotton smoke

and treated with vehicle or esomeprazole. The sham (clean air) group shows normal lung architecture with a few alveolar macrophages (arrows). Image is at 40x

magnification. Scale bar is 50 µm.

DISCUSSION

Several studies have demonstrated that the DDAH/iNOS
pathway is pathologically involved in a number of pulmonary
disorders including asthma (Trifilieff et al., 2000; Batra et al.,
2007), IPF (Pullamsetti et al., 2011), and COPD (Seimetz et al.,
2011). Using a murine model of bleomycin-induced lung injury,
Pullamsetti et al. (2011) showed that overexpression of DDAH
plays a pathological role in lung inflammation and fibrosis at
preclinical and clinical levels. This study also revealed that iNOS
and DDAH co-localize more densely in the alveoli of IPF-derived
lung sections compared to lungs obtained from healthy donors.

Given the significance of iNOS/DDAH involvement in lung
pathobiology and predicted druggability of this pathway, it
is logical to test and develop small molecule inhibitors of
these enzymes. Accordingly, we screened over 100,000 small
molecules against the DDAH enzyme and reported several
small molecules as DDAH inhibitors (Ghebremariam et al.,
2012, 2014). Intriguingly, we discovered that the entire class of
PPIs inhibits the enzymatic activity of DDAH (Ghebremariam
et al., 2013). Subsequent studies revealed that PPIs downregulate
the expression of iNOS and several other proinflammatory
cytokines (Ghebremariam et al., 2015a). Our in vivo study also
demonstrated that a prototype PPI, esomeprazole, attenuates
bleomycin-induced lung inflammation and fibrosis and surfaced

the idea of PPIs as potential antifibrotic drugs (Ghebre Y. T. and
Raghu, 2016).

In the present study, we extended the assessment of
esomeprazole’s emerging pharmacological role in airway diseases
into cotton smoke-induced lung injury and remodeling. This
animal model recapitulates many features of acute lung injury
including oxidative stress, upregulation of iNOS expression
and activity, as well as inflammatory and fibrotic changes
(Enkhbaatar, 2015; Han et al., 2015). Although, our initial
intention was to evaluate the prophylactic and therapeutic
potential of esomeprazole in a mouse model of smoke-induced
lung injury at a dose of 300 mg/kg, the animals in the
prophylactic group (which started esomeprazole treatment 2
days post-initiation of smoke insufflation), were increasingly
unable to tolerate this dose of esomeprazole and started dropping
out before the pre-scheduled therapeutic arm could begin
treatment. The bloating up, sluggishness, and mortality seen in
the prophylactic group compelled us to lower the dose of the
therapeutic arm. By contrast to the effects seen in mice, our study
of high dose esomeprazole (300 mg/kg) in rats was well tolerated
and showed significant effect on lung inflammation and fibrosis
(Ghebremariam et al., 2015a). In the present study, however,
the therapeutic esomeprazole group which received 30 mg/kg
esomeprazole treatment 10 days post-initiation of smoke injury,
showed good tolerance of the drug and therapeutic benefits
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FIGURE 4 | Fibrosis score based on scanning of multiple non-overlapping fields of Masson’s Trichrome stained sections of lung tissue harvested from

animals exposed to clean air (sham) or cotton smoke. The clean air exposed animals in the sham group show no fibrotic changes. However, the animals in the

vehicle treated control group show higher fibrotic changes (indicated by red pie) while the animals in the therapeutic esomeprazole (Esomeprazole-L) group show

normalized levels of collagen (indicated by blue pie) compared to vehicle or high-dose (Esomeprazole-H) group. Two or three slides per group were scanned and the

total number of non-overlapping fields counted is shown below each pie. The averaged fibrotic score is shown as bar graph in the lower panel (*p < 0.05 vs. sham

group).

including inhibition of DDAH enzymatic activity, suppression
of circulating proinflammatory and profibrotic markers, as well
as attenuation of lung tissue scarring (Figure 5). Despite the
suppression of systemic inflammation, the lack of significant
inhibition of inflammation in the lungs is not clear but indicative
of reduced bioavailability of the drug in the lung tissue itself.

Several cohorts of retrospective studies have reported that IPF
patients on “antacid” therapy (>85% of PPIs) have favorable
respiratory outcomes including greater diffusing capacity of
the lung for carbon monoxide (DLCO), prolonged median
transplant-free survival time, fewer to no episodes of acute
exacerbations, and fewer IPF-related, as well as all-cause
mortality (Raghu et al., 2006; Lee et al., 2011, 2013; Noth
et al., 2012; Ghebremariam et al., 2015a; Ghebre, 2016; Kreuter
et al., 2016). Recently, the American Thoracic Society (ATS)
and its sister respiratory societies in Europe (ERS), Japan (JRS),
and Latin America (ALAT) released an official statement that
includes the conditional recommendation for the treatment
of IPF patients with PPIs regardless of the GERD status
of patients (Raghu et al., 2011). Similar to the potentially
beneficial effects of PPIs in IPF, a prospective study in COPD
patients also reported such beneficial outcomes associated

with PPI use (Sasaki et al., 2009, 2011). Based on ours and
several other reports, it is becoming evident that PPIs have
biological functions that extend beyondmere reduction of gastric
acidity (Ghebre Y. and Raghu, 2016). The growing number
of extra-intestinal diseases for which PPIs may have clinical
utility include respiratory diseases. However, parallel to the
demonstration of biological efficacy, it is important to dissect
the mechanistic basis by which PPIs may regulate non-gastric
cells. Our previous cell biological and molecular studies have
uncovered polypharmacological properties of PPIs by showing
downregulation of several classic proinflammatory molecules
and upregulation of HO1. Our unpublished data indicates that
the later effect of PPI on lung cells is due to regulation of
the Keap1/Nrf2 pathway. This effect of PPIs is consistent with
compounds that harbor electrophile moieties in their structure
and trigger chemical stress on cellular processes to ultimately
induce cytoprotective mechanisms (Satoh et al., 2013). Such
mechanistic understanding becomes particularly important for
PPIs due to long standing comorbid confounders such as GERD
in respiratory diseases including IPF and COPD. Although,
GERD might be involved in IPF/COPD disease pathogenesis
through reflux and microaspiration, PPIs neither prevent reflux
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FIGURE 5 | Masson’s Trichrome stain of lung tissue harvested from mouse model of smoke-induced lung injury. Therapeutic esomeprazole (30 mg/kg)

reduced collagen accumulation resulting in lower fibrosis score; lower panel *p < 0.05). Image is at 40X objective magnification.

nor block microaspiration of acidic droplets (Raghu, 2011;
Ghebre Y. T. and Raghu, 2016). Thus, it appears that PPIs may
be able to regulate lung injury without having therapeutic efficacy
on GERD.

In conclusion, it is important to realize that PPIs are
administered as prodrugs in the treatment of GERD. Once in
the stomach, the acidic microenvironment enforces chemical
rearrangement of the prodrug and eventual transformation into
sulfenic acids or sulfonamide analogs to block the H+/K+ pumps
that are expressed in parietal cells (Shin and Sachs, 2008).
However, our cell biological and molecular studies are conducted
at neutral to basic pH (7.4–7.6) with freshly prepared drug
(Ghebremariam et al., 2015a). Although, exposure to low pH
(<5) triggers rapid degradation of the PPI prodrug into these
derivatives, there is no appreciable conversion of the prodrug
into sulfenic acids or sulfonamides at higher pH (>6.1; Shin
et al., 2004). In addition, the present study was conducted in
mice; specie that do not have reflux response physiologically.
Thus, our findings, in light of these accounts, argue that the
prodrug in GERD may actually be the active one in the direct
modulation of processes involved in lung inflammation and
fibrosis.
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Figure S1 | Measurement of organ weight at necropsy following

smoke-induced lung injury in a mouse model. There was no difference in the

weight of the lungs, heart and kidneys. However, the liver was slightly enlarged in

the esomeprazole treated groups (p > 0.05). Data is mean ± SEM from at least 5

animals per group.

Figure S2 | Kaplan-Meier survival plot of mice exposed to clean air (sham)

or cotton smoke and treated with vehicle (10% ethanol) or esomeprazole

at low (30 mg/kg; Esomeprazole-L) or high (300 mg/kg; Esomeprazole-H)

concentration. There was increased mortality rate in the animals treated with

high esomeprazole dose.
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