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Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of epileptic
disorders; however, the mechanisms of nACh receptors in seizure generation remain
unknown. Here, we performed behavioral and immunohistochemical studies in mice
and rats to clarify the mechanisms underlying nicotine-induced seizures. Treatment of
animals with nicotine (1–4 mg/kg, i.p.) produced motor excitement in a dose-dependent
manner and elicited convulsive seizures at 3 and 4 mg/kg. The nicotine-induced
seizures were abolished by a subtype non-selective nACh antagonist, mecamylamine
(MEC). An α7 nACh antagonist, methyllycaconitine, also significantly inhibited nicotine-
induced seizures whereas an α4β2 nACh antagonist, dihydro-β-erythroidine, affected
only weakly. Topographical analysis of Fos protein expression, a biological marker
of neural excitation, revealed that a convulsive dose (4 mg/kg) of nicotine region-
specifically activated neurons in the piriform cortex, amygdala, medial habenula,
paratenial thalamus, anterior hypothalamus and solitary nucleus among 48 brain regions
examined, and this was also suppressed by MEC. In addition, electric lesioning of
the amygdala, but not the piriform cortex, medial habenula and thalamus, specifically
inhibited nicotine-induced seizures. Furthermore, microinjection of nicotine (100 and
300 µg/side) into the amygdala elicited convulsive seizures in a dose-related manner.
The present results suggest that nicotine elicits convulsive seizures by activating
amygdalar neurons mainly via α7 nACh receptors.

Keywords: nicotine, convulsive seizures, nicotinic acetylcholine receptors, amygdala, Fos expression

Abbreviations: AcC, core region of nucleus accumbens; AcS, shell region of nucleus accumbens; AH, anterior hypothalamus;
AIC, agranular insular cortex; AM, anteromedial thalamic nucleus; Apir, amygdalopiriform transition area; AuC,
auditory cortex; BLP, basolateral amygdaloid nucleus; BMP, basomedial amygdaloid nucleus; CA, cornu ammonis area of
hippocampus; CgC, cingulate cortex; CM, centromedial thalamic nucleus; DG, dentate gyrus of the hippocampus; DHβE,
dihydro-β-erythroidine; DLEnt, dorsolateral entorhinal cortex; dlST, dorsolateral striatum; DM, dorsomedial hypothalamic
nucleus; dmST, dorsomedial striatum; Fos-IR, Fos-immunoreactivity; GP, globus pallidus; IO, inferior olive; LHb, lateral
habenular nucleus; LS, lateral septum; MC, motor cortex; MEC, mecamylamine; MePD, medial posterodorsal amygdaloid
nucleus; MePV, medial posteroventral amygdaloid nucleus; MHb, medial habenular nucleus; MLA methyllycaconitine;
mPFC, medial prefrontal cortex; nACh, nicotinic acetylcholine; PH, posterior hypothalamus; PirC, piriform cortex; PMCo,
posteromedial cortical amygdaloid nucleus; PRh-Ect, perirhinal-ectorhinal cortex; PT, paratenial thalamic nucleus; PV,
paraventricular thalamic nucleus; RPC, parvocellular part of the red nucleus; SC, sensory cortex; SNc, substantia nigra pars
compacta; SNr, substantia nigra pars reticulata; Sol, nucleus solitary tract; VM, ventromedial thalamic nucleus.
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INTRODUCTION

Nicotine, an alkaloid derived from leaves of Nicotiana species,
is the primary active compound of tobacco products (Saitoh
et al., 1985). Acute intoxication with nicotine shows two phases
of symptoms; early phase symptoms including nausea, vomiting
(Forrester, 1979; Bramley and Goulding, 1981; Lavoie and Harris,
1991; Rizzi et al., 1991), headache (Woolf et al., 1997), tremors
(Shiffman et al., 1983) and seizures (Dixit et al., 1971; Miner
and Collins, 1989; Singer and Janz, 1990; Woolf et al., 1996;
Murphy et al., 2006), and delayed phase symptoms including
CNS depression and coma (Frank et al., 1995; Murphy et al.,
2006). In addition, nicotine has a variety of pharmacological
actions including antidepressant effects (Vieyra-Reyes et al., 2008;
Mineur and Picciotto, 2010; Haj-Mirzaian et al., 2015), cognitive
enhancement (Stein et al., 1998; Swan and Lessov-Schlaggar,
2007; Wood et al., 2016), positive reinforcement (addictive
effects) (Stein et al., 1998; Le Foll and Goldberg, 2009; Besson
et al., 2012; Harrington et al., 2016), and motor excitement
(Miner and Collins, 1989; Swan and Lessov-Schlaggar, 2007; Le
Foll and Goldberg, 2009; Besson et al., 2012; Wood et al., 2016).

The diverse actions of nicotine are mediated by nACh
receptors, which consist of a variety combinations of α

(α1–α10), β (β1–β4) and other (δ, γ, ε) subunits, forming ligand-
gated pentameric cation channels (Gotti et al., 2006; Dani and
Bertrand, 2007; Faure et al., 2014). Specifically, neural nACh
receptor subtypes are constructed from combinations of 9 α (α2–
α10) and 3 β (β2–β4) subunits. Among them, homomeric α7 and
heteromeric α4β2 nACh receptors are the most characterized and
abundant subtypes in the brain, whereas α3β4 nACh receptors
mainly function as peripheral ganglionic nACh receptors (Gotti
et al., 2006; Dani and Bertrand, 2007; Taly et al., 2009; Colombo
et al., 2013; Faure et al., 2014).

Since nicotine evokes motor excitement including Straub tail,
tremors and convulsive seizures (Miner and Collins, 1989; Swan
and Lessov-Schlaggar, 2007; Le Foll and Goldberg, 2009; Besson
et al., 2012; Wood et al., 2016), nACh receptors are implicated
in the pathogenesis of epileptic and movement disorders.
Indeed, previous studies showed that genetic polymorphisms
of α4, β2 and/or α7 subunits of nACh receptors are involved
in various epileptic disorders, including idiopathic generalized
epilepsy (e.g., epilepsy with generalized tonic-clonic seizures,
childhood absence epilepsy, juvenile absence epilepsy and
juvenile myoclonic epilepsy; Elmslie et al., 1997; Helbig et al.,
2009; Endris et al., 2010; Liao et al., 2011; Rozycka et al.,
2013b) and partial epilepsy (e.g., autosomal dominant nocturnal
frontal lobe epilepsy and benign epilepsy of childhood with
centrotemporal spikes; Steinlein et al., 1995; Bertrand et al., 2005;
Pidoplichko et al., 2013; Rozycka et al., 2013a). However, the role
and mechanisms of nACh receptors in seizure generation and
epileptogenesis are still unknown.

Fos protein, an immediate early gene product, is widely used
as a biological marker of neural excitation in neuropharmacology
research (Morgan et al., 1987; Herrera and Robertson, 1996;
Ohno et al., 2011; Iha et al., 2016). Specifically, mapping
analysis of Fos expression is a useful method to identify
brain regions linked to disease conditions (e.g., pain, epilepsy,

and emotional disorders) and to various drug treatments. In
the present study, therefore, we performed behavioral and
Fos-immunohistochemical studies to delineate the mechanisms
underlying nicotine-induced seizures in rodents.

MATERIALS AND METHODS

Animals
Male ddY mice (Japan SLC, Shizuoka, Japan) weighing 25–35 g
and male SD rats (Japan SLC, Shizuoka, Japan) weighting 250–
300 g were used. The animals were kept in air-conditioned rooms
under a 12 h light/dark cycle (light on: 8:00 a.m.) and allowed
ad libitum access to food and water. The housing conditions and
animal care methods complied with the Guide for the Care and
Use of Laboratory Animals of the Ministry of Education, Science,
Sports and Culture of Japan. The experimental protocols were
approved by the Experimental Animal Research Committee at
Osaka University of Pharmaceutical Sciences.

Behavioral Evaluation
Animals were intraperitoneally injected with nicotine
(1–4 mg/kg) or saline (vehicle) and placed in an individual
observation box (25 cm × 42 cm × 20 cm). Nicotine-induced
behavioral excitement was evaluated over 15 min after the
nicotine injection using a six point-ranked score (0: no effect;
1: mild head tremor and Straub tail; 2: apparent tremors in
extended regions, 3: severe tremors with wild running; 4: clonic
seizures; 5: tonic or tonic-clonic seizures) modified from previous
reports (Kunisawa et al., 2016; Tokudome et al., 2016). Incidence
of convulsive seizures was judged as positive when scores were 4
or higher. In the experiments using nACh receptor antagonists,
a subtype non-selective nACh antagonist, MEC (1 mg/kg), a
specific α7 nACh antagonist, MLA (10 mg/kg), a specific α4β2
nACh antagonist, DHβE (5 mg/kg) or saline (vehicle) was
intraperitoneally injected 15 min before the nicotine treatment.
The dosage of nACh antagonists was set to a level that sufficiently
antagonized the respective nACh receptors in previous studies
[MEC: (Gomita et al., 1989), DHβE: (Blondel et al., 2000), and
MLA: (Blondel et al., 2000; Kim et al., 2011; Liu, 2014)].

Analysis of Fos Protein Expression
Staining of Fos-IR was performed using the methods published
previously (Ohno et al., 2011, 2012; Iha et al., 2016). Briefly,
ddY mice were treated with a convulsive dose (4 mg/kg,
i.p.) of nicotine or saline (vehicle), and brain samples were
obtained 120 min after the nicotine injection under pentobarbital
(80 mg/kg, i.p.) anesthesia. In some experiments, mice were
pretreated with MEC (1 mg/kg) 15 min before the nicotine
injection. After fixation with 4% formaldehyde solution, brains
were cut into coronal sections (30 µm thickness) using a
Microslicer (DSK-3000, Dosaka, Kyoto, Japan). Slices were
incubated in the presence of 2% normal rabbit serum for 2 h
and in the presence of 2% normal rabbit serum and goat
c-Fos antiserum for an additional 18–36 h. The sections were
then incubated with a biotinylated rabbit anti-goat IgG for 2 h
and with PBS containing 0.3% hydrogen peroxide for 30 min
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to inactivate endogenous peroxidase. Thereafter, the sections
were incubated with avidin–biotinylated horseradish peroxidase
complex for 2 h.

Fos-IR was visualized by the diaminobenzidine–nickel
staining method and quantified by counting the number of
Fos-IR positive nuclei in the following 48 regions (Franklin and
Paxinos, 2008), (1) the cerebral cortices (19 regions), mPFC,
CgC, MC (1-4), SC (1-4), AIC, PirC (1-4), Apir, AuC, PRh-Ect,
DLEnt, (2) the limbic regions and basal ganglia (14 regions),
AcC, AcS, BLP, BMP, PMCo, MePV, MePD, CA (1-3), DG, dlST,
dmST, GP, LS, (3) the epithalamic and lower brainstem regions
(15 regions), MHb, LHb, PT, PV, PH, AM, CM, VM, AH, PH,
DM, RPC, SNr, SNc, Sol, IO.

Electrical Lesion Study
Electrical lesion studies were performed using SD rats as reported
previously (Ohno et al., 2015; Kunisawa et al., 2016). Briefly,
animals were anesthetized with pentobarbital (60 mg/kg, i.p.)
and fixed in a stereotaxic frame (Narishige, SR-6, Tokyo, Japan).
A bipolar concentric electrode was bilaterally inserted into the
thalamus (Th; A: −1.5 mm; L: ± 0.4 mm; H: + 4.2 mm); PirC
(A: +1.3 mm; L: ± 4.3 mm; H: + 7.2 mm), MHb (A: + 0.4 mm;
L:± 0.4 mm; H:+ 4 mm); or amygdala (A:−3.1 mm; L:± 4 mm;
H: + 7.9 mm; Paxinos and Watson, 2007) and a direct current
of 1 mA was delivered to the respective regions for 15 s. After
a recovery period (2–4 days) from the surgery, animals were
treated with nicotine (4 mg/kg) or vehicle, individually placed
in an observation box and underwent behavioral evaluation as
described previously. After the experiments, the animals were
deeply anesthetized with pentobarbital (80 mg/kg, i.p.) and the
brain was removed from the skull in order to check the position
of each electrical lesion.

Microinjection Study
Microinjection studies were performed using SD rats as reported
previously (Shimizu et al., 2010, 2013, 2014). After the animals
were fixed in a stereotaxic instrument under pentobarbital
(40 mg/kg, i.p.) anesthesia, a stainless steel guide cannula was
bilaterally inserted 1 mm above the amygdala (A: −3.1 mm;
L: ± 4 mm; H: + 7.9 mm; Paxinos and Watson, 2007) and
fixed on the skull with dental cement. After a recovery period
(2–4 days), an injection cannula was inserted into the amygdala
through a guide cannula and nicotine (100 or 300 µg/µL per
side) was injected at a flow rate of 0.25 µL/min (Microinfusion
pump KDS220; KD Scientific Inc., USA) for 4 min under freely
moving conditions. The control animals were given the same
volume of saline (vehicle) alone. Nicotine-induced behavioral
excitement was evaluated as previously described using a six
point-ranked score. After the experiment, animals were deeply
anesthetized with pentobarbital (80 mg/kg, i.p.) and their brains
were removed for subsequent guide cannula insertion site
verification.

Drugs
Nicotine, MEC hydrochloride, MLA citrate and DAB substrate
were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and DHβE hydrobromide from Tocris (Bristol, UK). The

primary antibody against c-Fos was purchased from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA), and the secondary
biotinylated anti-goat IgG antibody, ABC kit from Vector
Laboratories (Burlingame, CA, USA). Others common laboratory
reagents were also obtained from commercial sources.

Statistical Analysis
Data are expressed as the mean ± S.E.M. Statistical significance
of differences among multiple groups was determined by the
Kruskal–Wallis test followed by the Steel-Dwass post hoc test
(behavioral scores) or one-way ANOVA followed by Tukey’s
post hoc test (Fos expression). Comparisons between only
groups were determined by parametric Student’s t-test (Fos
expression) or non-parametric Mann–Whitney’sU test (electrical
lesion). Comparisons of seizure incidence rate were done by
χ2 test. A P-value of less than 0.05 was considered statistically
significant.

RESULTS

Nicotine-Induced Convulsive Seizures
Nicotine at doses from 1 to 4 mg/kg (i.p.) dose-dependently
produced motor excitement both in mice and rats, inducing
Straub tail and tremor (score 1–3) at low doses (i.e., 1–2 mg/kg,
i.p.) and convulsive seizures (score 4 or 5) at high doses (i.e.,
3–4 mg/kg, i.p.; Figures 1A,B). The incidence of nicotine-
induced motor excitement including seizures was normally
transient and subsided within 10 min. The percentages of animals
which showed clonic or tonic-clonic seizures with nicotine
(4 mg/kg, i.p.) were 82 and 62.5% in mice and rats, respectively
(Figures 1A,B).

To clarify the subtype of nACh receptors involved in nicotine-
induced seizures, we tested the actions of nACh antagonists
in mice. Pretreatment of animals with a subtype non-selective
nACh antagonist, MEC (1 mg/kg, i.p.) markedly reduced the
seizure intensity and incidence rate due to nicotine (4 mg/kg,
i.p.; Figure 1C). An α7 nACh antagonist MLA (10 mg/kg, i.p.)
also significantly inhibited nicotine-induced seizures whereas a
specific α4β2 nACh antagonist DHβE (5 mg/kg, i.p.) only weakly
reduced the seizure intensity and incidence (Figure 1C).

Nicotine-Induced Fos Expression
To explore brain regions excited with nicotine-induced seizures,
we analyzed the topographical expression of Fos protein, a
biological marker of neural excitation, in mice. Treatment of
animals with a convulsive dose (4 mg/kg, i.p.) of nicotine caused
a region-specific elevation of Fos expression in 7 out of 48 brain
regions examined (Figure 2). In the 19 cortical regions, nicotine
increased Fos expression in the PirC2 [t(7) = 2.385, P = 0.050;
PirC4, t(12) = 4.783, P < 0.001] and APir [t(10) = 3.470,
P = 0.013] (Figure 3). In the 29 subcortical regions, nicotine
significantly enhanced Fos expression in the amygdala, medial
habenula [MHb, t(5) = 3.982, P = 0.010], paratenial thalamus
[PT, t(6)= 2.882, P = 0.027], AH [t(10)= 2.397, AH, P = 0.037]
and in the solitary tract nucleus [Sol, t(5) = 3.121, P = 0.025]
(Figure 4). In the amygdala, all investigated regions showed
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FIGURE 1 | Effects of nicotine on convulsive seizure induction in rodents. (A,B) Nicotine-induced convulsive seizures in mice (A) and rats (B), respectively.
(C) Effects of nACh antagonists, MEC (non-selective; 1 mg/kg i.p.), MLA (α7 nACh antagonist; 10 mg/kg i.p.), and DHβE (α4β2 nACh antagonist; 5 mg/kg i.p.) on
nicotine (4 mg/kg. i.p.)-induced seizures in mice. Behavioral scores are expressed as the mean ± S.E.M. of 7–11 animals. Seizure incidence represents the
percentage of animals, which showed convulsive seizures (score 4 or 5), against total animals examined. ∗P < 0.05 and ∗∗P < 0.01; Significantly different from the
control animals treated with vehicle alone (Vehicle or Vehile+Vehicle). #P < 0.05 and ##P < 0.01; Significantly different from the value for nicotine group
(Vehicle+Nicotine).

considerably high Fos expression (about two to four times
the control level) with nicotine, while it reached statistical
significance only in the medial posterodorsal region [MePD,
t(6) = 2.439, P = 0.048]. Other brain regions including the
hippocampus, striatum, GP and substantia nigra, did not show
any significant changes in Fos expression (Figure 4).

To confirm the involvement of nACh receptors, we assessed
the effects of MEC on nicotine-induced Fos expression in
the above seven brain regions (i.e., PirC2, PirC4, Apir,
MePD, MHb, PT, and Sol). We confirmed that nicotine
(4 mg/kg, i.p.) significantly elevated Fos expression in the PirC2
[F(2,21)= 15.880, P< 0.001], PirC4 [F(2,23)= 7.498, P= 0.003],
MePD [F(2,20) = 7.771, P = 0.003], MHb [F(2,25) = 86.928,
P < 0.001], PT [F(2,20) = 16.097, P < 0.001] and Sol
[F(2,21) = 35.564, P < 0.001] (Figure 5). The nicotine-induced
Fos expression was mostly abolished by MEC [F(2,21) = 15.880,
PirC2, F(2,23) = 7.498, P = 0.004; PirC4, F(2,20) = 7.771,

P = 0.027; MePD, F(2,25) = 86.928, P = 0.026; MHb,
F(2,25) = 86.928, P < 0.001; PT, F(2,20) = 16.097, P = 0.001;
and Sol, F(2,21) = 35.564, P < 0.001], indicating that nicotine-
induced Fos expression is mediated by nACh receptors in these
brain regions (Figure 5).

Electrical Lesion Studies
To determine the brain regions responsible for generation of
nicotine seizures, we next conducted electrical lesion studies of
the sites which showed high Fos expression with nicotine in
rats. The animals received electrical lesioning at the bilateral
PirC, Th, MHb or amygdala 2–4 days before the nicotine-
induced seizure test. Under these conditions, only the lesioning
of the amygdala markedly reduced the intensity [U(8) = 3.000,
P = 0.028] and the incidence (χ2

= 0.225, P = 0.009) of
nicotine-induced seizures. In contrast, neither lesioning of PirC,
Th nor MHb affected seizure induction (Figure 6), suggesting
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FIGURE 2 | Schematic illustrations of the brain sections selected for quantitative analysis of Fos expression. Filled squares in each section indicate the
sampling areas analyzed and red squares represent the sites which showed significant increments in Fos expression by nicotine (4 mg/kg, i.p.). Anteroposterior
coordinate (distance from the bregma) is shown above each section. Analysis of the MC, SC, and PirC were performed in four different levels from Bregma (Area 1 at
+1.7 mm, Area 2 at +0.74 mm, Area 3 at −0.82 m, Area 4 at −2.06 mm).

FIGURE 3 | Effects of nicotine (4 mg/kg, i.p.) on Fos expression in cortical regions in mice. Brains were removed 2 h after the nicotine (4 mg/kg, i.p.)
administration and subjected Fos-immunochemical staining. Representative photographs illustrating the Fos-IR-positive cells in the PirC4 are shown in the left top.
Each column represents the mean ± S.E.M. of 5–8 mice. ∗P < 0.05, ∗∗P < 0.01; Significantly different from the control animals treated with vehicle alone (Vehicle).
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FIGURE 4 | Effects of nicotine (4 mg/kg, i.p.) on Fos expression in subcortical regions in mice. (A) Fos expression in the limbic regions and basal ganglia.
(B) Fos expression in the brain stem regions. Brains were removed 2 h after the nicotine (4 mg/kg, i.p.) administration and subjected Fos-immunochemical staining.
Each column represents the mean ± S.E.M. of 5–8 mice. ∗P < 0.05; Significantly different from the control animals treated with vehicle alone (Vehicle).

FIGURE 5 | Effects of MEC on nicotine-induced Fos expression in mice. Animals were pretreated with MEC (1 mg/kg, i.p.) 15 min before the nicotine injection
(4 mg/kg i.p.). Each column represents the mean ± S.E.M. of 5–8 mice. ∗∗P < 0.01; Significantly different from the control animals treated with vehicle alone (Vehicle
+ Vehicle). #P < 0.05 and ##P < 0.01; Significantly different from the nicotine groups (Vehicle + Nicotine).

Frontiers in Pharmacology | www.frontiersin.org 6 February 2017 | Volume 8 | Article 57

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00057 February 7, 2017 Time: 14:13 # 7

Iha et al. Mechanisms for Nicotine-Induced Seizures

FIGURE 6 | Effects of electrical lesionings on nicotine-induced seizures in rats. Panels show the effects of nicotine (4 mg/kg, i.p.) on seizure generation in
rats after electrical lesionings at the PirC (A), thalamus (Th, B), MHb (C), and amygdala (AMG, D). Right panels illustrate the electrical lesion sites in Pir, Th, MHb, and
AMG. Behavioral scores (left graph) are expressed as the mean ± S.E.M. of four or five animals. Seizure incidence (right graph) represents the percentage of
animals, which showed convulsive seizures (score 4 or 5), against total animals examined. ∗P < 0.05 and ∗∗P < 0.01; significantly different from the Sham group.

that the amygdala is responsible for generation of nicotine
seizures.

Microinjection
To further confirm the causative role of the amygdala, we
performed a microinjection study with nicotine into the

amygdala. Under a freely moving condition, 100 and 300 µg/side
of nicotine were injected into the bilateral amygdala. As shown
in Figure 7, nicotine caused motor excitement (100 µg/side;
χ2
= 13.602, df= 2, P= 0.0136, 300 µg/side; χ2

= 13.602, df= 2,
P = 0.005) and seizure generation (300 µg/side; χ2

= 5.76,
P = 0.016) in a dose-related manner (Figure 7).
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FIGURE 7 | Effects of nicotine microinjected into the amygdala (AMG) on convulsive seizure induction in rats. Nicotine (100 or 300 µg/side) was locally
injected into the bilateral AMG. (A) Behavioral scores (left graph) are expressed as the mean ± S.E.M. of 4–6 animals. Seizure incidence (right graph) represents the
percentage of animals, which showed convulsive seizures (score 4 or 5), against total animals examined. ∗P < 0.05 and ∗∗P < 0.01; Significantly different from the
control group treated with vehicle alone (Vehicle). (B) The injected sites of nicotine in the AMG.

DISCUSSION

Nicotine has proconvulsive actions and, when overdosed, induces
convulsive seizures both in humans and animals (Singer and Janz,
1990; Murphy et al., 2006; Rong et al., 2014). We confirmed that
nicotine dose-dependently caused convulsive seizures in rodents
(ddY mice and SD rats). The dosage (3–4 mg/kg, i.p.) of nicotine
that caused convulsions was similar to those in previous reports
(Miner et al., 1985; Miner and Collins, 1989), where various
mouse strains were evaluated for nicotine-induced seizure
sensitivity (more sensitive ST/bj mice ED50= 2.34, mg/kg, i.p.
and less sensitive DB mice ED50= 6.16 mg/kg, i.p.).

Although several studies suggest that proconvulsive action
of nicotine is mediated by α7 nACh receptors (Damaj et al.,
1999; Gil et al., 2002; Dobelis et al., 2003), nACh receptors
subtypes involved in nicotine-induced seizures are still uncertain.
Here, nicotine-induced seizures were completely blocked by
MEC, illustrating nACh receptor mediation. In addition, MLA
(α7 nACh antagonist) was considerably more potent than DHβE
(α4β2 nACh antagonist) in inhibiting nicotine-induced seizures.
These results are consistent with previous studies (Damaj et al.,
1999; Gil et al., 2002; Dobelis et al., 2003) and suggest that α7
nACh receptors play a major role in inducing nicotine seizures.
We have previously reported that kinetic tremors induced by a
low dose (1 mg/kg, i.p.) of nicotine are mediated by α7 nACh
receptors, whereas α4β2 nACh receptors are negligibly involved
in tremor induction (Kunisawa et al., 2016). Therefore, α7 nACh
receptors are likely to play a key role in producing motor
excitations (e.g., tremor and seizure generation) with nicotine.
However, we cannot completely deny a possibility that α4β2
nACh receptors are partly involved in nicotine-induced seizures
since DHβE slightly reduced the seizure induction, which is
consistent with the previous finding that i.c.v. injection of DHβE
reduced nicotine seizures by about 15% (Damaj et al., 1999).

Fos protein expression is widely used as a marker of
neural activation to explore the brain regions linked to disease
conditions (e.g., epilepsy, essential tremors) and drug responses
(Morgan et al., 1987; Kovacs, 1998; Hoffman and Lyo, 2002;

Ohno et al., 2008, 2009, 2011; Okuno, 2011; Tatara et al., 2015;
Iha et al., 2016). We previously demonstrated that a low dose
(1 mg/kg, i.p.) of nicotine, which reportedly induces cognitive
enhancement (Swan and Lessov-Schlaggar, 2007), antidepressant
effects (Vieyra-Reyes et al., 2008; Mineur and Picciotto, 2010)
and positive reinforcement (Harrington et al., 2016), as well
as kinetic tremor (Kunisawa et al., 2016), region-specifically
elevated Fos expression in four brain regions; the PirC, MHb, Sol,
and IO. In the present study, a convulsive dose (4 mg/kg, i.p.)
of nicotine further increased Fos expression in extended regions,
the amygdala and parts of the diencephalon (thalamus and
hypothalamus). Thus, these regions excited by nicotine seemed
to be related to seizure induction. In addition, an electrical
lesion study revealed that only the amygdala lesion, but not the
PirC, Th, or MHb lesions, suppressed nicotine-induced seizures,
suggesting that the amygdala is the causative site for the induction
of nicotine seizures. This possibility was further supported by
the fact that microinjected nicotine into the amygdala elicited
convulsive seizures. The amygdala is well known to be involved
in seizure generation and epileptogenesis (Gloor, 1992; Pitkanen
et al., 1998; Morimoto et al., 2004; Aroniadou-Anderjaska
et al., 2008). In addition, previous in situ hybridization and
autoradiography studies revealed that α7 nACh receptors are
highly expressed in the amygdala (Arimatsu et al., 1978; Han
et al., 2003; McCullumsmith et al., 2004; Terry et al., 2005; Gozzi
et al., 2006; Klein and Yakel, 2006; Weiss et al., 2007; Viel et al.,
2012; Mendez et al., 2013). Therefore, it is most likely that the
amygdala, especially the medial amygdala (e.g., MePD), is the
primary foci of seizure generation by nicotine. However, we
cannot limit the causative site to the medial amygdala in the
amygdala since other amygdaloid nuclei (e.g., BLP and BMP) also
showed considerably high Fos expression with nicotine and are
known to receive dense cholinergic input from the basal forebrain
(Woolf et al., 1984; Emre et al., 1993; Pidoplichko et al., 2013).

Although genetic polymorphisms of the gene (CHRNA7)
encoding the α7 nACh receptor subunit are known to be
involved in various epileptic disorders in humans, including
idiopathic generalized epilepsy, childhood absence epilepsy,
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juvenile myoclonic epilepsy and benign epilepsy of childhood
with centrotemporal spikes (Elmslie et al., 1997; Helbig et al.,
2009; Endris et al., 2010; Liao et al., 2011), functional role
and mechanisms of α7 nACh receptors in modulating seizure
generation and/or epileptogenesis are still unknown. A line
of studies showed that microdeletion of chromosome 15q13.3
including CHRNA7 causes severe mental retardation, seizures
and facial and/or digital dysmorphisms. This evidence implies
that α7 nACh receptors are involved in the pathogenesis of
mental illness (e.g., autism and schizophrenia) and negatively
regulate seizure generation (Sharp et al., 2008; Helbig et al.,
2009; Sinkus et al., 2015). Nonetheless, the present results
suggest that excessive stimulation of α7 nACh receptors elicits
convulsive seizures by activating the amygdala neurons, which
are implicated in seizure generation not only due to nicotine
intoxication, but also that caused by epileptic diseases. Therefore,
a gain-of-function mutation and/or copy number polymorphism
(e.g., duplication and triplication) of CHRNA7 may be associated
with epileptic disorders. Indeed, patients with duplication and
triplication of CHRNA7 (15q13.3 gains) have been shown to
exhibit neuropsychiatric phenotypes including epileptic seizures
(Miller et al., 2009; Soler-Alfonso et al., 2014; Gillentine and
Schaaf, 2015). Further studies are required to delineate the
role and clinical relevance of the α7 nACh receptor in the
pathogenesis of epileptic disorders.

CONCLUSION

We performed behavioral and Fos-immunohistochemical studies
in rodents to clarify the mechanisms underlying nicotine-
induced seizures. Treatment of animals with nicotine produced
motor excitement and elicited convulsive seizures at 3 and
4 mg/kg. MEC and an α7 nACh antagonist, MLA, effectively
blocked the nicotine seizures, but an α4β2 nACh antagonist,

DHβE, did so only weakly. In addition, Fos expression analysis
revealed that that a convulsive dose (4 mg/kg) of nicotine region-
specifically activated neurons in the PirC, amygdala, MHb, PT,
AH and Sol, among which electric lesioning of the amygdala
specifically inhibited nicotine seizure generation. Furthermore,
microinjections of nicotine into the amygdala evoked convulsive
seizures in a dose-related manner. The present results strongly
suggest that nicotine elicits convulsive seizures by activating
amygdalar neurons mainly via α7 nACh receptors.
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