

A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol

Salahaden R. Sultan, Sophie A. Millar, Timothy J. England and Saoirse E. O'Sullivan*

Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK

Despite cannabidiol (CBD) having numerous cardiovascular effects in vitro, its haemodynamic effects in vivo are unclear. Nonetheless, the clinical use of CBD (Epidiolex) is becoming more widespread. The aim of this systematic review was to establish whether CBD is associated with changes in haemodynamics in vivo. Twenty-five studies that assessed the haemodynamic effects of CBD (from PubMed, Medline and EMBASE) were systematically reviewed and meta-analyzed. Data on blood pressure (BP), heart rate (HR), and blood flow (BF) were extracted and analyzed using random effects models. Twenty-two publications assessed BP and HR among 6 species (BP n = 344 and HR n = 395), and 5 publications assessed BF in 3 species (n = 56) after acute dosing of CBD. Chronic dosing was assessed in 4 publications in 3 species (total subjects BP, n = 6; HR, n = 27; BF, n = 3). Acute CBD dosing had no effect on BP or HR under control conditions. Similarly, chronic dosing with CBD had no effect on HR. In models of stress, acute CBD administration significantly reduced the increase in BP and HR induced by stress (BP, mean difference (MD) -3.54, 95% CI -5.19, -1.9, p < 0.0001; HR, MD -16.23, 95% Cl -26.44, -6.02, p = 0.002). In mouse models of stroke, CBD significantly increased cerebral blood flow (CBF, standardized mean difference (SMD) 1.62, 95% CI 0.41, 2.83, p = 0.009). Heterogeneity among the studies was present, there was no publication bias except in HR of control and stressful conditions after acute CBD dosing, and median study quality was 5 out of 9 (ranging from 1 to 8). From the limited data available, we conclude that acute and chronic administration of CBD had no effect on BP or HR under control conditions, but reduces BP and HR in stressful conditions, and increases cerebral blood flow (CBF) in mouse models of stroke. Further studies are required to fully understand the potential haemodynamic effects of CBD in humans under normal and pathological conditions.

Keywords: cannabidiol, Epidiolex, CBD, cardiovascular system, haemodynamic, blood pressure, heart rate, blood flow

INTRODUCTION

Cannabidiol (CBD) is the second most abundant phytocannabinoid, after Δ^9 -tetrahydrocannabinol (THC) (Pertwee, 2006; Tambaro and Bortolato, 2012) and was first isolated from the cannabis extract in 1940 (Adams et al., 1940). The pharmacological actions of CBD are complex; CBD has a low affinity to the cannabinoid receptor 1 (CB₁) and cannabinoid

OPEN ACCESS

Edited by:

Adolfo Andrade-Cetto, National Autonomous University of Mexico, Mexico

Reviewed by:

Subhalakshmi Ghosh, Jadavpur University, India Ouyang Chen, Second Military Medical University, China

> *Correspondence: Saoirse E. O'Sullivan

mbzso@nottingham.ac.uk

Specialty section:

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

Received: 29 November 2016 Accepted: 08 February 2017 Published: 24 February 2017

Citation:

Sultan SR, Millar SA, England TJ and O'Sullivan SE (2017) A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol. Front. Pharmacol. 8:81. doi: 10.3389/fphar.2017.00081

1

receptor 2 (CB₂) (Thomas et al., 2007; Pertwee, 2008), and targets a wide range of other receptors including 5-hydroxytryptamine (5-HT_{1a}), transient receptor potential vanilloid receptor 1 (TRPV1), peroxisome proliferator-activated receptors (PPARs) and G protein-coupled receptor 55 (GPR55) (Pertwee, 2008; Stanley et al., 2013a). It is suggested that CBD may have therapeutic effects in a variety of disorders including diabetes, gastrointestinal disturbances, cancer, oxidative stress, inflammation and in cardiovascular disease (Russo and Guy, 2006; Capasso et al., 2008; Zuardi, 2008; Iuvone et al., 2009; Booz, 2011). CBD may also have desirable effects in multiple neurological and psychological disorders, including dystonia, schizophrenia, epilepsy and Parkinson's disease (Consroe et al., 1986; Leweke et al., 2012; Chagas et al., 2014; Devinsky et al., 2016). In a recent open-label trial investigating the effects of CBD (Epidiolex, 2-50 mg/kg) on 214 young patients with treatment-resistant epilepsy, CBD reduced seizure frequency and demonstrated an acceptable safety profile (Devinsky et al., 2016). Epidiolex was also safe and well tolerated in refractory epilepsy secondary to tuberous sclerosis and for epileptic spasms, highlighting its potential as a new treatment for refractory epilepsy (Abati et al., 2015; Geffrey et al., 2015).

Pre-clinical studies on the effects of CBD on the cardiovascular system have shown that CBD causes endotheliumand nitric oxide-dependent vasorelaxation of isolated human mesenteric arteries (Stanley et al., 2015) and PPARy-dependent vasorelaxation of the rat aorta (O'Sullivan et al., 2009). CBD also improves vasorelaxation in the femoral arteries of Zucker diabetic fatty rats via enhanced production of vasodilator COX-1/2-derived products acting at EP4 receptors (Stanley et al., 2013b; Wheal et al., 2014). CBD also decreases myocardial infract size in a rat model of ischaemia/reperfusion injury (Durst et al., 2007), attenuates myocardial dysfunction and inflammation in an animal model of diabetes (Rajesh et al., 2007), and attenuates inflammatory and oxidative stress changes induced by high glucose in human coronary artery cells (Rajesh et al., 2010). CBD also reduces cerebral vascular inflammation and associated dilatation induced by lipopolysaccharide in mice (Ruiz-Valdepenas et al., 2011), infarct size in animal models of stroke (England et al., 2015) and reduced blood brain barrier permeability (Hind et al., 2016). These effects on the cerebral vasculature appear to involve 5HT1A and PPARy. Together, these pre-clinical studies might suggest that the cardiovascular system is a therapeutic target for CBD (Stanley et al., 2013a). However, despite these many vascular effects of CBD, it is not yet clear whether CBD administration alters haemodynamics under control or pathological situations.

Given the increasing clinical use of CBD, and the numerous effects of CBD in the cardiovascular system, the aim of the present study was to systematically review and analyse *in vivo* studies evaluating the effects of CBD on alterations in haemodynamics.

MATERIALS AND METHODS

Search Strategy

All studies potentially investigating the haemodynamic effect of CBD (including BP, HR, and BF) were searched (until

November 2016) in Medline, EMBASE, and PubMed. Search keywords included: Cannabidiol, Epidiolex, cardiovascular, blood pressure (BP), systolic, diastolic, hypertension, hypotension, heart rate (HR), tachycardia, bradycardia, blood flow (BF), haemodynamic, vasodilatation, vasorelaxation, and vasoconstriction. References from included studies were also hand searched. Initially, the National Institute for Health and Excellent Care platform was used in which two databases (EMBASE and Medline) were used for searching. Then, a separate search was conducted using PubMed. Pre-specified inclusion and exclusion criteria were used to prevent bias; studies had to be in vivo, assess haemodynamics (BP, HR, or BF), be original articles, and be a controlled study. The exclusion criteria were: in vitro studies, mixtures of CBD with other cannabis extracts, studies not assessing haemodynamics (BP, HR, or BF), review articles and editorials, or uncontrolled studies.

Data Acquisition

Data on BP, HR, and BF were extracted from the included papers, and the changes in haemodynamics at 2 h post-drug after acute CBD dosing were used for analysis. A standardized time point of 2 h was decided as this was commonly available throughout the articles and CBD has been previously shown to peak at 2 h in plasma (Nadulski et al., 2005a,b). If there were no measurements taken at this time point (2 h post-drug) the closest time point to 2 h was used for analysis. In chronic studies, the mean of total measurements or measurements taken at the end of the study were used for analysis depending on data provided. If the exact number of animals used in each drug group were not available, the authors were contacted. If the authors were not able to provide the necessary information, the lowest number of animals within the range given was used for the experimental group CBD, and the highest number was used for the control group. If a crossover design was used in a study, the total number of humans was distributed equally to the drug groups. Grab application (version 1.5) was used to extract values from figures given in published articles if no values were stated within the text. If published articles used multiple groups (e.g., to assess dose-dependent effects) with one control group, then the number of humans or animals per control group was divided into the number of comparison groups. For the dose-response analysis, the total dose of the drug administrated to species up to the time in which the haemodynamics were measured was used.

Quality

The methodological quality was assessed to identify risk of bias using six-point criteria derived from the Cochrane collaborations tool for assessing risk of bias (Higgins et al., 2011) and Stroke Therapy Academic Industry Recommendations (STAIR) (Stroke Therapy Academic Industry Roundtable, 1999). Each of the following criteria was equal to 1 point: randomisation, allocation concealment, blinding of outcome assessment, blinding of personnel and participant, assessment of more than one outcome, dose-response relationship, therapeutic time window, assessment of outcome >24 h and incomplete outcome data.

Data Analysis

Studies were divided into two groups (i.e., acute and chronic). Data were grouped before analysis according to model (nonstress and stress), and then sub-grouped by species (human, mice, rats, etc.). For the CBD dose-response analysis, data were grouped according to endpoint (BP, HR, or BF), and then subgrouped according to dose. Data from each group were analyzed as forest plots using the Cochrane Review Manager software (Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014), and as funnel plots using Stata (StataCorp. 2009. Stata Statistical Software: Release 11. College Station, TX, USA). Funnel plot asymmetry (publication bias) was tested by Egger's test (Egger et al., 1997). Stata was also used for meta-regression that described the relationship between CBD dose and effect size. PRISM 7 (GraphPad, Software, La Jolla, CA, USA) was used to produce figures of dose-response. Since heterogeneity was expected between study protocols (different species, models, dose and time) random-effect models were used. The results of continuous data on BP and HR are expressed as mean difference (MD), and as standardized mean difference on BF with 95% confidence intervals (CIs) due to the different scales used in assessing BF. Studies were weighted by sample size and statistical significance was set at p < 0.05.

RESULTS

From the initial 1016 search results, 277 relevant publications were identified from three databases (Medline, EMBASE, and PubMed). Of these, 25 articles met the inclusion criteria (see **Figure 1**). A summary of the data extracted from included studies is shown in **Table 1**.

Blood Pressure and Heart Rate

Ten publications assessed the acute effect of CBD administration on BP, and 15 publications assessed the effect of CBD administration on HR in 5 species, including humans, mice,

TABLE 1 | Summary of included studies in chronological order.

Reference	Species	Model	Dose (CBD)	Route	Time of CBD administration	Time of haemodynamic measurements	Finding
Borgen and Davis, 1974	Rabbits	Anaesthetised	25 mg/kg	i.v.	Pre-test	Pre-drug and hourly interval to 7 h post-drug	No changes on HR
Bright et al., 1975	Dogs	Anaesthetised	0.5 or 1 mg/kg	i.v.	Pre-test	During 30 min post-drug.	↑MBP and HR
Belgrave et al., 1979	Humans	Healthy volunteers	320 µg/kg	Oral	Pre-test	Pre-drug and at 1.5, 2.5 and 3.5 h post-drug	No changes on HR
Gong et al., 1984	Human	Healthy volunteers	100, 600 or 1200 mg	Oral	Pre-test	Hourly interval to 6 h post-dru	No changes on SBP, DBP or HR
			1200 mg		Pre-test	Hourly interval to 6 h post-drug	
			1200 mg		Single dose per day for 20 days	Hourly interval to 6 h post-drug and on days 5, 12 and 19	
Consroe et al., 1991	Human	Patients with Huntington disease	10 mg/kg	Oral	Single dose per day for 6 weeks	Pre-drug, during and post-drug	No changes on MBP or HR
Zuardi et al., 1993	Human	Healthy volunteers	300 mg	Oral	Pre-test	Pre-drug and Post drug at 80 min (pre-stress), 85 min (during stress) and 100 min (post-stress)	No changes on SBP or HR
Mishima et al., 2005	Mice	MCAO	3 mg/kg	i.p.	Pre and 3 h post-occlusion	MBP and HR: 2 h post-occlusion CBF: during 4 h	No changes on MBP or HR ↑CBF
-			10 1			post-occlusion	
Resstel et al., 2006	Rats	Stress (fear)	10 mg/kg	i.p.	Pre-test	Pre-stress and during 10 min post-stress	↓MBP and HR post-stress
Hayakawa et al., 2007a	Mice	MCAO	3 mg/kg	i.p.	Pre, 3 and 4 h post-occlusion, and 1 and 2 h post-reperfusion	MBP and HR: pre-reperfusio	No changes on MBP or HR
						CBF: during 4 h of occlusion and post-reperfusion	↑CBF
Hayakawa et al., 2007b	Mice	MCAO	3 mg/kg	i.p.	Pre-occlusion and 3 h post-occlusion and Single dose per day for 14 days	During 4 h and on day 14 post-occlusion	↑CBF
Durst et al., 2007	Rats	Myocardial infarction	5 mg/kg for 7 days	i.p.	Pre-ischaemia and post-ischaemia for 7 days	On day 1 and 7 post-ischaemia	No changes on HR
Alvarez et al., 2008	Piglets	Carotid occlusion and hypoxic ischaemia	0.1 mg/kg	i.v.	15 min and 4 h post-procedure	MBP and HR: pre-procedure and at 3 and 6 h post-procedure	Maintain MBP and HR after the fall post- hypoxic ischaemia
						CBF: pre-procedure and during 6 h post-procedure	↑CBF
Hayakawa et al., 2008	Mice	MCAO	3 mg/kg	i.p.	Pre-occlusion and 3 h post-occlusion	During 4 h post-occlusion	No changes on MBP or HR
Resstel et al., 2009	Rats	Stress (restraint)	1, 10, or 20 mg/kg	i.p.	Pre-stress	Pre-stress and during 1 hr post-stress	↓MBP and HR post-stress
Alves et al., 2010	Rats	Conscious	60 nmol	BNST	Post-ACSF	During 60 min post-drug	No changes on MBP or HR
Walsh et al., 2010	Rats	Myocardial infarction	10 or 50 μg/kg	i.v.	Pre-ischaemia and pre-reperfusion	Pre- ischaemia during 2.30 h post-ischaemia,	↓MBP
Granjeiro et al., 2011	Rats	Stress (restraint)	15, 30 or 60 nmol	intracisternal	Pre-stress	Pre-stress and during 1 hr post-stress	No change in MBP or HR
Hallak et al., 2011	Human	Healthy volunteers	600 mg	Oral	Pre-test	Pre-drug and at 30 min interval for 2.30 h post-drug	No change in SBP, DBP or HR

(Continued)

TABLE 1 | Continued

Reference	Species	Model	Dose (CBD)	Route	Time of CBD administration	Time of haemodynamic measurements	Finding
Gomes et al., 2012	Rats	Stress (fear)	15, 30 or 60 nmol	BNST	Pre-stress	Pre-stress and during 10 min post-stress	30 and 60 nmol ↓MBP and HR
Martin-Santos et al., 2012	Human	Healthy volunteers	600 mg	Oral	Pre-test	Pre-drug and Hourly interval for 3 h post-drug	No changes on BP or HR
Gomes et al., 2013	Rats	Stress (restraint)	15, 30 or 60 nmol	BNST	Pre-stress	Pre-stress and during 60 min post-stress	Enhanced the HR increase post-stress No changes on MBP
Pazos et al., 2013	Piglets	Hypoxic ischaemia	1 mg/kg	i.v.	Post-HI	Pre-drug, at 30 and 90 min post-HI	No changes on MBP
Gonca and Darici, 2015	Rats	Myocardial infarction	50 μg/kg	i.v.	Pre-ischaemia	Pre-ishaemia At 1, 5 and 11 min post-ischaemia	No changes on BP or HR
Feng et al., 2015	Rabbits	Myocardial infarction	100 µg/kg	i.v.	Pre-reperfusion	At 15, 30 and 45 min post-drug	↑ BF
Garberg et al., 2016	Piglets	Hypoxic ischaemia	1 mg/kg	i.v.	Post-HI	Immediately post HI and at 30, 210 and 570 min post-HI	No changes on BP or HR

ACSF, Artificial cerebrospinal fluid; BP, blood pressure; BNST, bed nucleus of the stria terminalis; CBD, Cannabidiol; HI, Hypoxic ischemia; HR, heart rate; h, hours; i.p., Intraperitoneal; i.v., intravenous; MBP, mean blood pressure; MCAO, middle cerebral artery occlusion; min, minutes; SBP, systolic blood pressure.

dogs, rats, piglets, and rabbits (n = 403). Chronic dosing was assessed in 3 publications in 2 species, including humans and rats (BP: one study, n = 6; HR: 3 studies, n = 27). CBD had no effect on BP or HR after acute dosing (BP, MD 3, 95% CI -1.81, 7.8, p = 0.22; HR, MD -0.05, 95% CI-2.68, 2.57, p = 0.97, **Figures 2A,B**) or chronic dosing (HR MD 0.3, 95% CI -3.97, 4.57, p = 0.89, **Figure 3**). Within species analysis revealed that acute CBD dosing significantly increased HR in rats (p = 0.004, **Figure 2B**). Heterogeneity was statistically significant for BP measurements after acute CBD dosing (p = 0.0006; $I^2 = 65\%$) and HR measurements after chronic CBD dosing (p = 0.05; $I^2 = 55\%$; **Figures 2, 3**).

Six publications assessed the effect of CBD administration on BP and HR in models of stress in rats and humans (n = 336). Overall, CBD administration significantly reduced the increase in BP (BP, MD: -3.54, 95% CI -5.19, -1.9, p < 0.0001, **Figure 4A**) and HR (HR, MD: -16.23, 95% CI -26.44, -6.02, p = 0.002, **Figure 4B**) induced by stress. Heterogeneity was statistically significant in both BP (p < 0.00001; $I^2 = 73\%$) and HR (p < 0.00001; $I^2 = 92\%$; **Figure 4**).

Blood Flow

Changes in BF after acute CBD dosing were assessed in 5 publications examining the effects of CBD in models of stroke or myocardial infarction in 3 species (mice, piglets and rabbits, n = 56). Overall, CBD had no effects on BF (SMD: 0.58, 95% CI -0.1, 1.26, p = 0.1). However, subgroup analysis showed that CBD significantly increased cerebral blood flow (CBF) in mouse models of stroke (p = 0.009, **Figure 5**); heterogeneity was not statistically significant (p = 0.27; $I^2 = 21\%$). As only one study assessed BF after chronic dosing, a meta-analysis was not applicable.

Route of Administration

We compared differences between local and systemic administration of CBD on haemodynamics. Local (intracisternal or intracerebral) administration of CBD was only used in studies on rats (4 out of 9 studies; 1 under control conditions and 3 under stressful situations). After systemic administration, there was a significant reduction in HR (p < 0.0001; 2 studies), but not after local (intracisternal or intracerebral) administration of CBD (p = 0.11; 3 studies).

CBD Dose-Response on Haemodynamics

The dose-response to CBD was analyzed to establish if there is a relationship between CBD dose and effect size. Doses ranging from 0.003 to 22800 mg were used in different species of different models. Overall, there was no relationship between drug dose and the size of the effect on haemodynamics (BP p = 0.81, HR p = 0.97, BF p = 0.97; **Figure 6**).

Quality

Among the 25 included publications, 9 publications used randomisation and allocation concealment in their design, 6 reported blinding assessment of outcome and blinding of outcome measurements, 20 publications assessed more than one outcome, 12 conducted dose-response relationships, 19 assessed a time window for intervention, 4 measured outcomes >24 h post-drug and 2 publications provided incomplete data due to subject withdrawal There was no significant relationship between quality score and any outcome except in BF (Spearman's rho coefficient of BP, -0.1, p = 0.54, HR, 0.06, p = 0.66 and BF, 0.87, p = 0.01).

Publication Bias

Egger's test showed no bias present except in studies assessing for changes in HR in either control or stressful conditions after acute

CBD CBD Control Mean Difference Mean Difference 1.2.1 Humans Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI Halak (2011) 600mg 134.7 12.7 5 135 8 5 8.1% -0.30 [-13.46, 12.86] Subtotal (95% CI) Heterogeneity: Not applicable 5 5 8.1% -0.30 [-13.46, 12.86] Image: Control (13.46, 12.86)	
Hellak (2011) 6000mg 134.7 12.7 5 135 8 5 8.1% -0.30 [-13.46, 12.86] Subtotal (95% Cl) 5 5 8.1% -0.30 [-13.46, 12.86] Heterogeneity: Not applicable Test for overall effect: Z = 0.04 (P = 0.96)	
Subtotal (95% Cl) 5 5 8.1% -0.30 [-13.46, 12.86] Heterogeneity: Not applicable Test for overall effect: Z = 0.04 (P = 0.96) Test for overall effect: Z = 0.04 (P = 0.96)	
Test for overall effect: Z = 0.04 (P = 0.96)	
1.2.2 Mice Hayakawa (2007a) 3mg/kg 84.5 11.6 5 88.8 12 5 7.3% -4.30 [-18.93, 10.33]	
Hayakawa (2008) 3mg/kg 84.5 11.6 5 88.8 12 5 7.3% -4.30 [-18.93, 10.33]	
Mishima (2005) 3mg/kg 70.5 26.4 6 81.4 31.3 6 2.5% -10.90 [-43.66, 21.86] Subtotal (95% Cl) 16 16 17.2% -4.90 [-14.76, 4.97]	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.14, df = 2 (P = 0.93); l ² = 0% Test for overall effect: Z = 0.97 (P = 0.33)	
1.2.3 Piglets Alvarez (2008) 0.1mg/kg 64 7.6 8 64.1 5.9 8 11.7% -0.10 [-6.77, 6.57]	
Pazos (2013) 1mg/kg 78.8 6.6 10 59.6 8.7 8 11.4% 19.20 [11.91, 26.49]	
Subtotal (95% Cl) 18 16 23.1% 9.49 [-9.42, 28.41] Heterogeneity: Tau ² = 173.55; Chi ² = 14.67, df = 1 (P = 0.0001); P = 93%	
Test for overall effect: Z = 0.98 (P = 0.33)	
1.2.4 Rats	
Alves (2010) 60 nmol 97 9.7 6 102 6 9 10.5% -5.00 [-13.70, 3.70] Gonca (2015) 50 µg/kg 97 18 9 101 12.6 10 7.6% -4.00 [-18.12, 10.12]	
Walsh (2010) PI 10µg/kg 99 15.6 5 98 7.3 6 7.2% 1.00 [-13.87, 15.87]	
Walsh (2010) PI 50µg/kg 112 9.4 10 98 7.3 6 10.8% 14.00 [5.75, 22.25] Walsh (2010) PR 50µg/kg 108 10.5 7 98 7.3 6 9.9% 10.00 [0.27, 19.73]	
Subtotal (95% Cl) 37 37 46.1% 3.81 [-4.59, 12.21]	
Heterogeneity: Tau ² = 60.42; Chi ² = 12.50, df = 4 (P = 0.01); i ² = 68% Test for overall effect: Z = 0.89 (P = 0.37)	
1.2.5 Dogs Bright (1975) 0.5mg/kg 140 12 6 127 17 2 3.7% 13.00 [-12.44, 38.44]	
Bright (1975) 1mg/kg 125 39 6 127 17 2 1.9% -2.00 [-41.10, 37.10]	
Subtotal (95% Cl) 12 4 5.6% 8.54 [-12.79, 29.86] Heterogeneity: Tau ² = 0.00; Chi ² = 0.40, df = 1 (P = 0.53); l ² = 0%	
Test for overall effect: Z = 0.78 (P = 0.43)	
Total (95% Cl) 88 78 100.0% 3.44 [-2.33, 9.20]	
Heterogeneity: Tau ² = 62.38; Chi ² = 34.47, df = 12 (P = 0.0006); l ² = 65% Test for overall effect: Z = 1.17 (P = 0.24) -50 -25 0 25 50 -50 -25 0 25 50	
Test for subrou differences. Chi ² = 3.0, <i>q</i> = 4 (P = 0.54), <i>l</i> ² = 0% CBD increases BP CBD increases BP	
B CBD Control Mean Difference Mean Difference	
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI	
1.4.1 Humans Belgrave (1979) 320 μg/kg 81.33 8.4 7 78.9 6.8 7 9.0% 2.43 [-5.58, 10.44]	
Gong (1984) S1 G1 100mg -1 8.4 4 2.7 2.1 1 7.1% -3.70 [-12.90, 5.50]	
Gong (1984) S1 G2 600mg 4.7 3 4 2.7 2.1 1 18.3% 2.00 [-3.06, 7.06] Gong (1984) S1 G3 1200mg -0.8 6.2 4 2.7 2.1 1 10.4% -3.50 [-10.84, 3.84]	
Gong (1984) S2 1200mg -1.3 2.6 6 0.4 0.4 6 41.8% -1.70 [-3.80, 0.40]	
Hallak (2011) 600mg 78.3 34.4 5 76.4 16.8 5 0.6% 1.90 [-31.66, 35.46] Martin-Santos (2012) 600mg -7.2 14.4 8 -4.3 3.9 8 5.8% -2.90 [-13.24, 7.44]	
Subtotal (95% CI) 38 29 93.1% -1.25 [-3.02, 0.51] Heterogeneity: Tau ^a = 0.00; Chi ^a = 3.34, df = 6 (P = 0.77); l ^a = 0%	
Test for overall effect: Z = 1.39 (P = 0.16)	
1.4.2 Mice	
Hayakawa (2007a) 3mg/kg 552.2 22.8 5 529.7 35.1 5 0.5% 22.50 [-14.19, 59.19]	
Mishima (2005) 3mg/kg 511.8 30.8 6 496.6 105.3 6 0.1% 15.20 [-72.59, 102.99]	
Subtotal (95% CI) 16 16 1.1% 21.91 [-2.96, 46.79] Heterogeneity: Tau ² = 0.00; Chi ² = 0.02, df = 2 (P = 0.99); P = 0%	
Test for overall effect: Z = 1.73 (P = 0.08)	
1.4.3 Piglets	
Alvarez (2008) 0.1mg/kg 242 22.6 8 252 33.9 8 0.8% -10.00 [-38.23, 18.23]	
Subtotal (95% Cl) 20 20 0.9% -9.93 [-37.82, 17.97]	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.00, df = 1 (P = 0.97); I ² = 0% Test for overall effect: Z = 0.70 (P = 0.49)	
1.4.4 Rats	
Alves (2010) 60 nmol 380 19.5 6 360 24 9 1.4% 20.00 [-2.12, 42.12]	
Gonca (2015) 50 µg/kg 398 36 9 391 98 10 0.2% 7.00 [-58.13, 72.13] Walsh (2010) Pl 10µg/kg 426 60.3 5 380 26.9 6 0.2% 46.00 [-11.07, 103.07]	
Walsh (2010) PI 50µg/kg 389 56.9 10 380 26.9 6 0.4% 9.00 [-32.32, 50.32]	
Subtotal (95% Cl) 37 37 2.8% 23.16 [7.48, 38.83]	
Heterogeneity: Tau ² = 0.00; Chi ² = 1.95, df = 4 (P = 0.74); P = 0% Test for overall effect: Z = 2.90 (P = 0.004)	
1.4.5 Dogs	
Bright (1975) 0.5mg/kg 181 13 6 156 22 2 0.7% 25.00 [-7.22, 57.22]	
Bright (1975) tmg/kg 155 21 6 156 22 2 0.0% -1.00[-35.81, 33.81] Subtota(195% Ci) 12 4 1.2% 12.87[-12.58, 32.9] ↔	
Heterogeneity: Tau ² = 45.17; Chi ² = 1.15, df = 1 (P = 0.28); l ² = 13%	
Test for overall effect: Z = 0.99 (P = 0.32)	
1.4.6 Rabbits Borgen (1974) 25 mg/kg 248.2 23.4 4 257.7 12.6 4 1.0% -9.50 [-35.54, 16.54]	
Borgen (1974) 25 mg/kg 248.2 23.4 4 257.7 12.6 4 1.0% -9.50 [-35.54, 16.54] Subtotal (95% Ct) 4 4 1.0% -9.50 [-35.54, 16.54]	
Heterogeneity: Not applicable	
Test for overall effect: Z = 0.71 (P = 0.47)	
Test for overall effect: Z = 0.71 (P = 0.47) Total (05% Cl) 127 110 100.0% -0.05 [-2.68, 2.57] Hotoropenduc Taule 3 13: Chill = 21 05; df = 10 (P = 0.33); B = 105;	
Test for overall effect: Z = 0.71 (P = 0.47) Total (95% CI) 127 110 100.0% -0.05 [-2.68, 2.57] Heterogeneity: Tau ^a = 3.13; Chi ^a = 21.05, df = 19 (P = 0.33); P ^a = 10% Test for overall effect: Z = 0.04 (P = 0.97) Test for overall effect: Z = 0.04 (P = 0.97)	
Test for overall effect: Z = 0.71 (P = 0.47) Total (95% Cl) 127 110 100.0% -0.05 [-2.68, 2.57] Heterogeneity: Tau ² = 3.13; Ch ² = 21.05; df = 19 (P = 0.33); l ² = 10% Test for wave effects Z = 0.04 (P = 0.03) = 19 (P = 0.33); l ² = 10% -200 -100 0 100 200	
Test for overall effect: Z = 0.71 (P = 0.47) Total (95% Cl) 127 110 100.0% -0.05 [-2.68, 2.57] Heterogeneity: Tau ² = 3.13; Chi ² = 21.05, df = 19 (P = 0.33); P = 10% Test for overall effect: Z = 0.04 (P = 0.97) Test for overall effect: Z = 0.04 (P = 0.97)	

administration of CBD (HR control p = 0.01; HR stress p = 0.049; Figure 7).

DISCUSSION

The aim of this study was to determine whether CBD alters haemodynamics *in vivo*. Our analysis has shown that acute and chronic dosing of CBD had no effect on BP, HR, or BF under control conditions. However, in stressful situations, CBD reduces the increase in MBP and HR observed in rats. Subgroup analysis revealed that acute CBD administration increases HR in mice and rats, and increases CBF in mouse models of stroke. Our analysis has highlighted the limited amount of human research carried out to date, and suggests that further work is required to assess the haemodynamic and regional BF impact of acute and chronic CBD administration in healthy volunteers and patients.

Overall, our meta-analysis showed that acute and chronic dosing of CBD had no effect on BP, HR, or BF under control conditions. However, there was significant heterogeneity with regards to species and model, dose and route of administration, and method and time of endpoint measurement (see Table 1) which makes it difficult to compare studies. It is possible that species differences may play a role. For example, Bright et al. found a significant increase in HR and BP with CBD (0.5 and 1 mg/kg) in anesthetized dogs (Bright et al., 1974, 1975), however, no changes were seen with CBD (25 mg /kg) in the HR of anesthetized rabbits (Borgen and Davis, 1974). It is also worth noting that most of the human data reviewed did not show any significant effects of CBD while significant effects were observed in animal studies. The time of cardiovascular measurements is also very important. For example, in a study that examined the cardioprotective effect of CBD ($50 \mu g/kg$ i.v.) in rats showed that BP was significantly reduced post-CBD treatment compared to control two and a half hours post-ischaemia (Walsh et al., 2010). However, another study assessing CBD at the same dose and route of administration on cardiac arrhythmia (Gonca and Darici, 2015) found no change in BP, although this was only measured 11 min post-ischaemia, thus any potential later changes in haemodynamics are not reported. A greater number of homogenous studies are required to assess the haemodynamic effects of CBD under control conditions.

Our systematic review has highlighted that there are a limited number of studies examining changes in regional BF with CBD, with studies to date only examining changes in cerebral or myocardial BF. From the limited studies available, our analysis showed there were no significant changes in BF overall post-CBD administration. However, in mice and piglet models of stroke, either intraperitoneal or intravenous administration of CBD (3 mg/kg or 0.1 mg/kg, respectively) significantly reduced the infarct volume and increased the CBF after acute and chronic dosing (Mishima et al., 2005; Hayakawa et al., 2007a,b; Alvarez et al., 2008). Similarly, in a rabbit model of myocardial infarction, CBD treatment of 100 µg/kg modestly reduced the size of myocardial ischaemic injury and increased myocardial BF (Feng et al., 2015). Together, this suggests that further investigation on the effects of CBD on regional BF, particularly in pathological situations, is warranted.

There was no relationship found between the dose of CBD and the effect size. However, in conscious monkeys, toxicology studies showed that very large doses of CBD (150–300 mg/kg) caused bradycardia, and CBD doses >200 mg/kg caused heart failure and death (Rosenkrantz et al., 1981). However, it is worth noting that this would be equivalent to a dose of 14,000 mg in a 70 kg human. Intracisternal administration of CBD had no effect on the increase in BP or HR induced by acute restraint stress in rats while systemic administration did (Granjeiro et al., 2011). Similarly, no effect was seen in BP after intracerebral

A	Study or Subgroup	Mean	CBD SD	Total	Co Mean	ontrol SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
	1.1.1 Rats									
	Gomes (2012) E1-CG1 15nmol	15.1	1.7	6	16	1.3	1	6.6%	-0.90 [-3.79, 1.99]	+
	Gomes (2012) E1-CG2 30nmol	7.1	1.4	6	16	1.3	1	6.7%	-8.90 [-11.68, -6.12]	-
	Gomes (2012) E1-CG3 60nmol	0	26.2	6	16	1.3	1	0.6%	-16.00 [-37.12, 5.12]	
	Gomes (2012) E1-UCG1 15nmol	6.2	1.8	4	7.2	1.1	1	6.7%	-1.00 [-3.79, 1.79]	+
	Gomes (2012) E1-UCG2 30nmol	7.8	2	4	7.2	1.1	1	6.6%	0.60 [-2.31, 3.51]	+
	Gomes (2012) E1-UCG3 60nmol	4.6	1.2	4	7.2	1.1	1	7.0%	-2.60 [-5.06, -0.14]	-
	Gomes (2012) E2 30nmol	6.2		5	16.2	6.2	5	4.2%		
	Gomes (2013) E1 15 nmol	17.3		6	13.4	9.3	2		3.90 [-10.98, 18.78]	
	Gomes (2013) E1 30 nmol	17.3	9.3	6	13.4	9.3	2	1.1%	3.90 [-10.98, 18.78]	
	Gomes (2013) E1 60 nmol	18		6		9.3	2		4.60 [-10.28, 19.48]	
	Gomes (2013) E2 30 nmol	12		6		7.8	6	3.8%	-4.80 [-11.07, 1.47]	
	Granjeiro (2011) G1 15nmol	11		6		1.5	2		-0.10 [-2.93, 2.73]	+
	Granjeiro (2011) G2 30nmol	4.3		6	11.1	1.5	2		-6.80 [-10.04, -3.56]	-
	Granjeiro (2011) G3 60nmol	9		6	11.1	1.5	2		-2.10 [-4.58, 0.38]	-
	Resstel (2006) CG 10mg/kg	6.2		5		2.6	5		-8.20 [-14.09, -2.31]	
	Resstel (2006) UCG 10mg/kg	8.2		5		5.8	5	2.2%	-3.20 [-12.81, 6.41]	
	Resstel (2009) E1-G1 1mg/kg	11.6		5	10.8	1.4	2		0.80 [-1.37, 2.97]	+
	Resstel (2009) E1-G2 10mg/kg	6		5	10.8	1.4	2	7.2%	-4.80 [-7.05, -2.55]	-
	Resstel (2009) E1-G2 Torng/kg Resstel (2009) E1-G3 20mg/kg	0 4.4		5	10.8	1.4	2	6.9%	-4.80 [-7.05, -2.55] -6.40 [-9.01, -3.79]	-
	Resstel (2009) E1-G3 20mg/kg Resstel (2009) E2 10mg/kg	4.4		5	10.8	4.8	2	5.0%	-5.50 [-10.11, -0.89]	
	Subtotal (95% CI)	4.0	2.9	5 107	10.3	4.0	51	98.1%	-3.49 [-5.16, -1.82]	•
	Heterogeneity: Tau ² = 8.57; Chi ² =	70.00	+f - 10		00001)-	12 - 74		00.170	0.40 [0.10, 1.02]	·
	Test for overall effect: Z = 4.09 (P			(1 < 0.	00001),	1 - 74	70			
	1.1.2 Humans									
	Zuardi (1993) 300mg	103.3	13.2	10	110	10.7	10	1.9%	-6.70 [-17.23, 3.83]	
	Subtotal (95% CI)			10			10	1.9%	-6.70 [-17.23, 3.83]	◆
	Heterogeneity: Not applicable									
	Test for overall effect: Z = 1.25 (P	= 0.21)								
	Total (95% CI)			117			61	100.0%	-3.54 [-5.19, -1.90]	•
		72.74. 0	f = 20		00001):	² = 73		100.0%	-3.54 [-5.19, -1.90]	· · · · · · · · · · · · · · · · · · ·
	Heterogeneity: Tau ² = 8.44; Chi ² =				00001);	l² = 73		100.0%	-3.54 [-5.19, -1.90] -	-50 -25 0 25 50
		< 0.0001	1)	(P < 0.				100.0%	-3.54 [-5.19, -1.90] -	-50 -25 0 25 50 CBD reduces BP CBD increases BP
•	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi	< 0.0001 ² = 0.35,	1) df = 1 CBD	(P < 0.) (P = 0.)	55), l² = Co	0% ntrol	%		Mean Difference	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup	< 0.0001 ² = 0.35,	1) df = 1 CBD	(P < 0.	55), l² = Co	0% ntrol	%	100.0% Weight		CBD reduces BP CBD increases BP
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats	< 0.0001 ² = 0.35, Mean	1) df = 1 CBD SD	(P < 0.) (P = 0.) Total	55), I² = Co Mean	0% ntrol <u>SD T</u>	%	Weight	Mean Difference IV, Random, 95% Cl	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7	1) df = 1 CBD SD 12	(P < 0. (P = 0. <u>Total</u>	55), I ² = Co <u>Mean</u> 81	0% ntrol <u>SD T</u> 8.1	% ⁻ otal	Weight 4.7%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7 40	1) df = 1 CBD SD 12 14.2	(P < 0.1 (P = 0.1 <u>Total</u> 6 6	55), I ² = Co <u>Mean</u> 81 81	0% ntrol SD T 8.1 8.1	% [•] otal 1 1	Weight 4.7% 4.7%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7 40 43.2	1) df = 1 CBD SD 12 14.2 8.8	(P < 0.4 (P = 0.4 Total 6 6 6	55), I ² = Co <u>Mean</u> 81 81 81	0% ntrol SD T 8.1 8.1 8.1	% [•] otal 1 1 1	Weight 4.7% 4.7% 4.8%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG1 15nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7 40 43.2 24.7	1) df = 1 CBD SD 12 14.2 8.8 9	(P < 0.1 (P = 0.1 Total 6 6 6 4	55), ² = Co <u>Mean</u> 81 81 81 24.7	0% ntrol SD T 8.1 8.1 8.1 4.5	% [•] otal 1 1 1 1	Weight 4.7% 4.8% 5.2%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG1 15nmol Gomes (2012) E1-UCG1 30nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7 40 43.2 24.7 20.7	1) df = 1 CBD SD 12 14.2 8.8 9 4.4	(P < 0.) (P = 0.) Total 6 6 6 4 4	55), l ² = Co <u>Mean</u> 81 81 81 24.7 24.7	0% SD T 8.1 8.1 8.1 4.5 4.5	% Total 1 1 1 1 1	Weight 4.7% 4.7% 4.8% 5.2% 5.3%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 15nmol Gomes (2012) E1-UCG3 50nmol	< 0.0001 ² = 0.35, ² = 0.35, ⁴ Mean 56,7 40 43,2 24,7 20,7 14,8	1) df = 1 CBD SD 12 14.2 8.8 9 4.4 4.4	(P < 0.) (P = 0.) Total 6 6 6 4 4 4	55), l ² = Co <u>Mean</u> 81 81 81 24.7 24.7 24.7	0% SD T 8.1 8.1 4.5 4.5 4.5	% 1 1 1 1 1 1	Weight 4.7% 4.8% 5.2% 5.3% 5.3%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 60nmol	< 0.0001 ² = 0.35, ² = 0.35, ⁴ ⁶ ⁴ ⁶ ⁷ ⁶ ⁷ ⁴⁰ ^{43,2} ^{24,7} ^{20,7} ^{14,8} ^{25,5}	1) df = 1 CBD SD 12 14.2 8.8 9 4.4 4.4 4.4 10	(P < 0. (P = 0. Total 6 6 6 4 4 4 5	55), l ² = Co <u>Mean</u> 81 81 81 24.7 24.7 24.7 49.9	0% SD T 8.1 8.1 4.5 4.5 4.5 13.4	% Total 1 1 1 1 1 1 5	Weight 4.7% 4.8% 5.2% 5.3% 5.3% 5.3% 5.0%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG3 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG1 15nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 15nmol Gomes (2012) E1-UCG3 10nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UGG3 30nmol Gomes (2012) E1-UG3 30nmol	< 0.0001 ² = 0.35, ² = 0.35, ⁴ 0 43.2 24.7 20.7 14.8 25.5 83	1) df = 1 CBD 5D 12 14.2 8.8 9 4.4 4.4 4.4 10 5.1	(P < 0. (P = 0. Total 6 6 6 4 4 4 5 6	55), l ² = Co <u>Mean</u> 81 81 81 24.7 24.7 24.7 49.9 83	0% SD T 8.1 8.1 4.5 4.5 4.5 13.4 3.3	% Total 1 1 1 1 1 1 5 2	Weight 4.7% 4.8% 5.2% 5.3% 5.3% 5.0% 5.5%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG3 30nmol Gomes (2012) E1-CG3 00nmol Gomes (2012) E1-UCG3 15nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 30nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 30 nmol	< 0.0001 ² = 0.35, ² = 0.35, ⁴ 0 43.2 24.7 20.7 14.8 25.5 83 106.1	1) df = 1 CBD SD 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4	(P < 0.) (P = 0.) Total 6 6 6 4 4 4 5 6 6 6	55), I ² = Co <u>Mean</u> 81 81 81 24.7 24.7 24.7 49.9 83 83	0% SD T 8.1 8.1 4.5 4.5 13.4 3.3 3.3	% fotal 1 1 1 1 1 1 5 2 2 2	Weight 4.7% 4.8% 5.2% 5.3% 5.3% 5.5% 4.6%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1 51-UCG3 00nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 60 nmol	< 0.0001 ² = 0.35, ¹ ² = 0.35, ¹ ² = 0.35, ¹ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	1) df = 1 CBD 5D 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2	(P < 0. (P = 0. Total 6 6 6 4 4 4 5 6 6 6 6	55), I ² = Co Mean 81 81 24.7 24.7 24.7 49.9 83 83 83 83	0% sp r 8.1 8.1 4.5 4.5 4.5 4.5 3.3 3.3 3.3	% fotal 1 1 1 1 1 1 5 2 2 2 2 2	Weight 4.7% 4.7% 5.2% 5.3% 5.3% 5.3% 5.5% 4.6% 5.4%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG1 15nmol Gomes (2012) E1-UCG1 15nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 30 nmol	< 0.0001 ² = 0.35, ¹ ² = 0.35, ¹ ² = 0.35, ¹ ⁴ ² ⁴ ⁴ ⁴ ⁴ ⁴ ² ⁴ ⁴ ⁴ ⁴ ² ⁴ ⁴ ⁴ ⁴ ² ⁴ ⁴ ⁴ ⁴ ² ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	1) df = 1 CEBD 5D 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2 17.1	(P < 0. (P = 0. Total 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6	55), I ² = Co Mean 81 81 81 24.7 24.7 24.7 49.9 83 83 83 91	0% sp T 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3	% fotal 1 1 1 1 1 1 1 1 1 1 1 5 2 2 2 2 6	Weight 4.7% 4.7% 4.8% 5.2% 5.3% 5.0% 5.5% 4.6% 5.4%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 60 nmol Gomes (2013) E1 80 nmol Gomes (2013) E1 20 nmol Gomes (2013) E1 20 nmol Gomes (2013) E1 20 nmol Gomes (2013) E1 30 nmol	< 0.0001 ² = 0.35, ¹ ⁴ ⁴ ⁴ ⁴ ² ⁴ ² ⁴ ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ⁴ ² ² ² ² ⁴ ³ ² ² ⁴ ³ ² ² ⁴ ³ ² ² ⁴ ³ ² ² ⁴ ³ ² ⁴ ³ ² ⁴ ³ ² ⁴ ³ ² ⁴ ³ ² ⁴ ³ ² ⁴ ³ ⁴ ³ ² ⁴ ³ ⁴ ³ ⁴ ⁴ ³ ² ⁵ ⁵ ⁸ ³ ¹ ¹ ⁶ ⁵ ⁶ ⁷ ⁴ ⁴ ³ ² ⁴ ⁴ ³ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁵ ⁵ ⁶ ⁶ ⁷ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	1) df = 1 CBD SD 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2 17.1 5.1	(P < 0. (P = 0. Total 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6	Co 81 81 81 24.7 24.7 24.7 383 83 91 40	0% spl 1 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9	% fotal 1 1 1 1 1 1 1 1 1 1 1 5 2 2 2 2 6 2	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.5% 4.6% 5.4% 4.6% 5.4%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 60 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 50 nmol Gornes (2013) E1 30 nmol Gomes (2013) E2 30 nmol	< 0.0001 ² = 0.35, <u>Mean</u> 56.7 40, 43.2 24.7 14.8 25.5 83 106.1 116.5 67 42.4 21.2	1) df = 1 2 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2 17.1 5.1 19.8	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6	Co Mean 81 81 81 24.7 24.7 24.7 24.7 24.7 83 83 83 91 40 40	0% sp 1 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9	% Total 1 1 1 1 1 1 1 1 1 1 1 2 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2	Weight 4.7% 4.8% 5.2% 5.3% 5.3% 5.6% 4.6% 5.4% 4.8%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 30 nmol Gomes (2013) E2 30 nmol Granjeiro (2011) G1 15nmol Granjeiro (2011) G3 60nmol	 < 0.0001 ² = 0.35, Mean 56,7 40 43,2 24,7 20,7 14,8 25,5 83 106,1 116,5 67 42,4 21,2 37,6 	1) df = 1 SD 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2 17.1 5.1 19.8 15.4	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6	Co 81 81 81 24.7 24.7 83 83 91 40 40	0% SD T 8.1 8.1 4.5 4.5 13.4 3.3 3.3 3.3 18.3 5.9 5.9 5.9	% Total 1 1 1 1 1 1 1 1 1 1 2 2 2 6 2 2 2 2 2 2	Weight 4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.4% 5.0%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1 30nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2011) G1 15nmol Granjeiro (2011) G3 30nmol Granjeiro (2011) G3 30nmol Resstel (2006) CG 10mg/kg	< 0.0001 2 = 0.35, 56.7 40 43.2 24.7 20.7 20.7 20.7 20.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 22.4 23.7.6 -12.8	1) df = 1 SD 12 14.2 8.8 9 4.4 4.4 10 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6 6 5	Solution Solution 81 81 81 81 81 24.7 24.7 24.7 24.7 24.7 49.9 83 83 83 91 40 40 72.6	0% SD T 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9 5.9 5.9 22.8	% Total 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.4% 4.6% 5.4% 4.8% 5.4% 5.5% 4.6% 5.4% 5.6% 5.6% 5.6% 5.6% 5.6% 5.0% 4.5%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-67.4, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Granjeiro (2011) G1 15nmol Granjeiro (2011) G2 30nmol Granjeiro (2011) G3 00nmol Resstel (2006) UCG 10mg/kg	< 0.0001 2 = 0.35. 56.7 40 43.2 24.7 7 20.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 23.7 6 -12.8 26	I) I) df = 1 I CBD SD 12 14.2 8.8 9 4.4 10 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7 12 12	(P < 0.) (P = 0.) Total 6 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6 6 5 5	Solution Solution 81 81 81 81 81 24.7 24.7 24.7 24.7 24.7 49.9 83 83 83 91 40 40 72.6 33.2 33.2	0% spl 1 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9 5.9 5.9 22.8 25.4	% fotal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.7% 5.2% 5.3% 5.3% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.4% 4.8% 5.0% 4.8% 5.0% 4.8% 5.0% 4.8% 5.0% 4.8% 5.0% 4.8%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-41.44, -3.96] 2.4.0 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32] -7.20 [-31.82, 17.42]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 30 nmol Gomes (2011) G1 50nmol Gomes (2011) G1 500nmol Gomes (2011) E1 30 nmol Gomes (2011) E1 30 nmol Gomes (2011) E1 30 nmol Gomes (2011) G1 500nmol Granjeiro (2011) G3 60nmol Granjeiro (2010) UCG 10mg/kg Resstel (2006) UCG 10mg/kg	< 0.0001 2 = 0.35, 56.7 0 40.2 24.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 21.2 37.6 -12.8 26 52	I) I) df = 1 I CBD SD 12 14.2 8.8 9 4.4 4.4 10.2 5.1 224.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 13.4	(P < 0.) (P = 0.) Total 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5	55), l ² = Co Mean 81 81 81 24.7 24.7 24.7 49.9 83 83 83 91 40 40 40 72.6 33.2 2 64	0% split 1 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	% Total 1 1 1 1 1 1 1 1 1 2 2 2 2 6 2 2 5 5 2	4.7% 4.7% 4.7% 5.3% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.0% 5.0% 5.0% 4.8% 5.0% 5.0% 5.0%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-10.748, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1 30 nmol Gomes (2013) E1 30 nmol Granjeiro (2011) G1 15mol Granjeiro (2011) G1 30 nmol Granjeiro (2011) G2 30nmol Granjeiro (2011) G2 60nmol Resstel (2006) GC 10mg/kg Resstel (2006) UCG 10mg/kg Resstel (2009) E1-G1 1mg/kg Resstel (2009) E1-G2 10mg/kg	< 0.0001 2 = 0.35, 56,7 40 43,2 24,7 20,7 14,8 25,5 83 106,1 116,5 67 42,4 21,2 37,6 67 42,4 21,2 37,6 67 42,2 37,6 52 33	I) I) df = 1 I CBD SD 12 14.2 8.8 9 4.4 10 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7 12 12	(P < 0.) (P = 0.) Total 6 6 6 6 6 4 4 4 5 6 6 6 6 6 6 6 6 6 6 5 5	55), l ² = Co Mean 81 81 81 24.7 24.7 24.7 24.7 49.9 83 83 83 83 91 40 40 40 72.6 2 64 64	0% sp T 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9 5.9 5.9 5.9 22.8 6.3 6.3	% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.0% 5.4% 4.6% 5.4% 4.5% 5.0% 5.0%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-44.04, -3.96] 2.40 [-44.04, -3.96] 2.40 [-47.11, 54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64] -31.00 [-40.97, -21.03]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 20 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E2 30 nmol Granjeiro (2011) G3 15nmol Granjeiro (2011) G1 50nmol Granjeiro (2011) G3 60nmol Resstel (2006) CG 10mg/kg Resstel (2009) E1-G1 1mg/kg Resstel (2009) E1-G3 10mg/kg	< 0.0001 2 = 0.35, 56.7 0 40.2 24.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 21.2 37.6 -12.8 26 52	I) I) df = 1 I CBD SD 12 14.2 8.8 9 4.4 4.4 10.2 5.1 224.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 13.4	(P < 0.) (P = 0.) Total 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5	55), l ² = Co Mean 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 49.9 83 83 83 91 40 40 40 40 40 64 64 64	0% spin 1 8.1 8.1 4.5 4.5 13.4 3.3 3.3 18.3 5.9 5.9 5.9 5.9 22.8 6.3 6.3 6.3	% Total 1 1 1 1 1 1 1 1 1 2 2 2 2 6 2 2 5 5 2	4.7% 4.7% 4.7% 5.3% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.0% 5.0% 5.0% 4.8% 5.0% 5.0% 5.0%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-10.748, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64]	CBD reduces BP CBD increases BP Mean Difference
в	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Granjeiro (2011) G1 15nmol Granjeiro (2011) G3 30nmol Granjeiro (2011) G3 00nmol Resstel (2006) CG 10mg/kg Resstel (2009) E1-G1 1mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg	< 0.0001 2 = 0.35, 56.7 40 43.2 24.7 20.7 14.8 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 105.5 67 42.4 21.5 83 105.5 67 40 40 40 40 40 40 40 40 40 40	1) df = 1 12 14.2 8.8 9 4.4 4.4 100 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 5.5 8.9 6.7	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 4 4 5 6 6 6 6 6 6 6 6 5 5 5 5	55), I ² = Co Mean 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	0% sp 1 8.1 8.1 8.1 8.1 4.5 4.5 4.5 13.4 3.3 3.3 3.3 3.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	Sector 1 1 1 1 1 1 1 1 2 2 2 6 2 2 5 2 2 5 2 2 2 5 2 2 2 5 2 2 2 5 2 2 6 51 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.5% 4.6% 5.4% 4.8% 5.0% 5.4% 4.6% 5.4% 4.5% 5.0% 5.0%	Mean Difference IV, Random, 95% CI -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-44.04, -3.96] 2.40 [-44.04, -3.96] 2.40 [-47.11, 54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64] -31.00 [-40.97, -21.03]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup differences: Chi Study or Subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1-UCG3 60nmol Gomes (2012) E1 30nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Gomes (2013) E1 30 nmol Granjeiro (2011) G1 15nmol Granjeiro (2011) G3 00nmol Granjeiro (2011) G3 00nmol Resstel (2006) CG 10mg/kg Resstel (2009) E1-G1 1mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg	< 0.0001 Mean 56.7 40 55.7 14.8 22.4 7 20.7 14.8 22.5 5 3 106.1 116.5 67 42.4 21.2 37.6 52 33 19.5 33 19.5 33	1) df = 1 12 14.2 8.8 9 4.4 4.4 100 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 5.5 8.9 6.7	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 4 4 5 6 6 6 6 6 6 6 6 5 5 5 5	55), I ² = Co Mean 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	0% sp 1 8.1 8.1 8.1 8.1 4.5 4.5 4.5 13.4 3.3 3.3 3.3 3.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	Sector 1 1 1 1 1 1 1 1 2 2 2 6 2 2 5 2 2 5 2 2 2 5 2 2 2 5 2 2 2 5 2 2 6 51 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.5% 4.6% 5.5% 4.6% 5.4% 4.6% 5.4% 4.6% 5.4% 5.3% 5.3% 5.3% 5.3% 5.3% 5.2% 5.2%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-40.67, -21.03] -44.50 [-56.21, -32.79] -29.50 [-42.58, -16.42]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-CG3 60nmol Gomes (2012) E1-UG3 60nmol Gomes (2012) E1-UG3 00nmol Gomes (2012) E1-UG3 00nmol Gomes (2012) E1-UG3 00nmol Gomes (2013) E1 15 nmol Gomes (2013) E1 30 nmol Granjeiro (2011) G2 30 nmol Granjeiro (2011) G3 60 nmol Granjeiro (2011) G3 60 nmol Granjeiro (2011) G3 60 nmol Granjeiro (2010) E1-G1 1mg/kg Resstel (2006) E1-G1 1mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg	< 0.0001 Mean 56.7 40 55.7 14.8 22.4 7 20.7 14.8 22.5 5 3 106.1 116.5 67 42.4 21.2 37.6 52 33 19.5 33 19.5 33	1) df = 1 12 14.2 8.8 9 4.4 4.4 100 5.1 24.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 5.5 8.9 6.7	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 4 4 5 6 6 6 6 6 6 6 6 5 5 5 5	55), I ² = Co Mean 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	0% sp 1 8.1 8.1 8.1 8.1 4.5 4.5 4.5 13.4 3.3 3.3 3.3 3.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	% otal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.5% 4.6% 5.5% 4.6% 5.4% 4.6% 5.4% 4.6% 5.4% 5.3% 5.3% 5.3% 5.3% 5.3% 5.2% 5.2%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-41.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64] -31.00 [-40.97, -21.03] -44.50 [-56.21, -32.79] -29.50 [-42.58, -16.42] -16.23 [-26.44, -6.02]	CBD reduces BP CBD increases BP Mean Difference
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 60 nmol Gomes (2013) E1 60 nmol Gomes (2013) E1 30 nmol Gomes (2013) E2 30 nmol Granjeiro (2011) G3 00nmol Granjeiro (2011) G3 00nmol Resstel (2006) UCG 10mg/kg Resstel (2009) E1-G2 10mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E2 10mg/kg Resstel (2009) E2 10mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20m	< 0.0001 Mean 56.7 40 43.2 24.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 21.2 37.6 -12.8 26 52 33 19.5 33 29.5 33 29.5 33 29.5 33 29.5 33 33 29.5 33 33 29.5 33 33 33 29.5 33 33 35 35 35 35 35 35 35 3	1) df = 1 22 14.2 8.8 9 4.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 10.7 12 13.4 10.7 12 13.4 6, df =	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 4 5 6 6 6 6 6 6 6 6 6 5 5 5 5	55), I ² = Co Mean 81 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	0% SD T 8.1 8.1 4.5 4.5 4.5 13.4 3.3 3.3 3.3 5.9 5.9 5.9 5.9 5.9 22.8 6.3 6.3 14.6 1); F = 5	% fotal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.0% 4.8% 5.0% 5.3% 5.2% 5.2% 5.2% 100.0%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-44.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-17.19, 12.39] 85.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-40.67, -21.03] -44.50 [-56.21, -32.79] -29.50 [-42.58, -16.42]	CBD reduces BP CBD increases BP
3	Heterogeneity: Tau ² = 8.44; Chi ² = Test for overall effect: Z = 4.23 (P Test for subgroup 1.3.1 Rats Gomes (2012) E1-CG1 15nmol Gomes (2012) E1-CG1 30nmol Gomes (2012) E1-CG2 30nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2012) E1-UCG3 00nmol Gomes (2013) E1 50 nmol Gomes (2013) E1 30 nmol Gomes (2013) E2 30 nmol Granjeiro (2011) G3 00nmol Granjeiro (2011) G3 00nmol Granjeiro (2011) G3 00nmol Resstel (2006) CG 10mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E1-G3 20mg/kg Resstel (2009) E2 10mg/kg Resstel (2009) E2 10mg/kg	< 0.0001 Mean 56.7 40 43.2 24.7 20.7 14.8 25.5 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 42.4 21.2 83 106.1 116.5 67 21.2 83 21.5 21	1) df = 1 22 14.2 8.8 9 4.4 10.2 17.1 5.1 19.8 15.4 10.7 12 13.4 10.7 12 13.4 10.7 12 13.4 6, df =	(P < 0.) (P = 0.) Total 6 6 6 6 4 4 4 4 5 6 6 6 6 6 6 6 6 6 5 5 5 5	55), I ² = Co Mean 81 81 81 81 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	0% SD T 8.1 8.1 4.5 4.5 4.5 13.4 3.3 3.3 3.3 5.9 5.9 5.9 5.9 5.9 22.8 6.3 6.3 14.6 1); F = 5	% fotal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7% 4.7% 4.8% 5.2% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3% 5.0% 4.8% 5.0% 5.3% 5.2% 5.2% 5.2% 100.0%	Mean Difference IV, Random, 95% Cl -24.30 [-42.85, -5.75] -41.00 [-60.52, -21.48] -37.80 [-55.17, -20.43] 0.00 [-12.47, 12.47] -4.00 [-13.82, 5.82] -9.90 [-19.72, -0.08] -24.40 [-39.06, -9.74] 0.00 [-6.13, 6.13] 23.10 [3.05, 43.15] 33.50 [24.14, 42.86] -24.00 [-41.04, -3.96] 2.40 [-6.74, 11.54] -18.80 [-36.63, -0.97] -2.40 [-107.48, -63.32] -7.20 [-31.82, 17.42] -12.00 [-26.64, 2.64] -31.00 [-40.97, -21.03] -44.50 [-56.21, -32.79] -29.50 [-42.58, -16.42] -16.23 [-26.44, -6.02]	CBD reduces BP CBD increases BP Mean Difference

FIGURE 4 | Changes in BP (A) and HR (B) induced by acute CBD dosing under stressful conditions.

CBD injection in rats (Gomes et al., 2013). This suggests that systemic administration of CBD is required to observe changes in haemodynamics.

Although CBD did not affect haemodynamics under control conditions, our analysis did reveal effects of CBD in pathological situations. For example, in piglet models of hypoxic injury, intravenous administration of CBD (0.1 mg/kg) maintained a stable BP after hypoxic injury compared to control animals where a reduction in BP was observed (Alvarez et al., 2008). Also, in rats conditioned to stress (i.e., restraint or fear), CBD reduced the increase in HR and MBP (Resstel et al., 2006, 2009; Gomes et al., 2012). However, in mouse models of stroke there was no significant change in MBP or HR post-CBD (Mishima et al., 2005; Hayakawa et al., 2007a, 2008). This suggests that CBD may regulate the

haemodynamics when they are altered at times of stress or acute illness.

Most of the identified relevant studies were pre-clinical, and data concerning the effects of CBD on haemodynamics in humans is limited (n = 36 for BP, n = 87 for HR). A single oral dose of CBD ($320 \mu g/kg$, 1 mg/kg, 100, 300, 600 or 1200 mg) had no effect on BP or HR in healthy volunteers under control or stressful situations (Belgrave et al., 1979; Zuardi et al., 1982, 1993; Gong et al., 1984; Borgwardt et al., 2008; Bhattacharyya et al., 2009, 2010; Fusar-Poli et al., 2009; Bergamaschi et al., 2011; Hallak et al., 2011; Winton-Brown et al., 2011; Martin-Santos et al., 2012). Likewise, after repeated CBD dosing of 1200 mg or 3 mg/kg for 20 or 30 days, respectively there were no apparent effects on HR, BP, or ECG compared with other treatment groups (Cunha

et al., 1980; Gong et al., 1984). In clinical trials, chronic administration of CBD 300 mg, 10 mg/kg or 800 mg for 41/2 months, 6 or 4 weeks, respectively, incurred no changes on the ECG, BP, or HR in patients of epilepsy, Huntington or schizophrenia disorders (Cunha et al., 1980; Consroe et al., 1991; Leweke et al., 2012). However, repeated oral dosing of CBD increasing from 100 to 600 mg/day over 6 weeks induced a reduction in standing BP by 10-20 mmHg in patients with dystonic movement disorders (Consroe et al., 1986). Conversely, a single dose of CBD (40 mg) given to patients with intraocular pressure increased systolic BP at 60 and 90 min post-sublingual administration (Tomida et al., 2006). Two studies of healthy volunteers and patients with social anxiety disorders showed CBD (400 mg) increased cerebral BF on the left parahippocampal and right posterior cingulate gyrus, respectively, but not in other brain regions when compared to control (Crippa et al., 2004, 2011). Bhattacharyya et al. (2010) suggested that the CBD effects on regional brain function during multi-tasking may be related to its effects on CBF (Bhattacharyya et al., 2010). Conversely, Borgwardt et al. (2008) suggested that the neural effects observed after CBD administration are unlikely to be a consequence of vascular effects, including CBF (Borgwardt et al., 2008). Together, this data would suggest that there are limited haemodynamic effects of CBD in humans, although further studies where this is the primary endpoint are warranted based on pre-clinical data reviewed in the present study.

Limitations

There are several factors that limit the interpretation of the results of these studies and the understanding of the CBD effects on haemodynamics. In general, the primary aim of the studies reviewed was not to assess the haemodynamic effects of CBD. Some studies did not include an impartial measurement of BP or HR which may lead to bias in their outcome, or did not state the method of measurement. Due to the presence of heterogeneity in publications, outcomes after acute and chronic dosing should be interpreted with caution. After acute dosing, changes in haemodynamics at 2 h or the closest time point available to 2 h post-drug were used for analysis, however, depending on the route of administration, the peak changes in plasma CBD and therefore associated cardiovascular changes, will be different. In chronic studies, the length of drug administration also varied. For the analysis of the relationship between drug dose and effect size, the total dose up to the time point in which the haemodynamic was measured was used in the analysis, this also may affect review conclusions. Only 9 out of 24 publications used randomisation and 6 reported blinding assessment of outcome, parameters that should impact on study quality. However, we found no relationship between quality and effect size. Finally, in some publications involving comparison of several doses, the number of animals per control group was divided into the number of comparison groups to avoid re-counting the same animal more than once, thus resulting in smaller sample sizes and broader estimates of the variance.

CONCLUSION

This meta-analysis and systematic review has highlighted the haemodynamic effects of CBD administration *in vivo*. The positive effects induced by CBD include maintaining the fall in BP after global hypoxia, reducing the increase in MBP and HR post-stress, and increasing BF in ischaemia-reperfusion models. It is possible that beneficial effects of CBD on haemodynamics occurs when the cardiovascular system is abnormally altered, suggesting that CBD may be used as a treatment for various cardiovascular disorders, such as hypertension, myocardial infarction and stroke. However, the findings from the reviewed studies were predominately preclinical and significant effects were only observed in animals. Data from human studies

REFERENCES

- Abati, E., Hess, E., Morgan, A., Bruno, P., and Thiele, E. (2015). "Cannabidiol treatment of refractory epileptic spasms: an open label study," in *American Epilepsy Society Annual Meeting, Poster* (Philadelphia).
- Adams, R., Hunt, M., and Clark, J. H. (1940). Structure of cannabidiol, a product isolated from the marihuana extract of minnesota wild hemp. J. Am. Chem. Soc. 62, 196–200. doi: 10.1021/ja01858a058
- Alvarez, F. J., Lafuente, H., Rey-Santano, M. C., Mielgo, V. E., Gastiasoro, E., Rueda, M., et al. (2008). Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. *Pediatr. Res.* 64, 653–658. doi: 10.1203/PDR.0b013e318186e5dd
- Alves, F. H., Crestani, C. C., Gomes, F. V., Guimaraes, F. S., Correa, F. M. and Resstel, L. B. (2010). Cannabidiol injected into the bed nucleus of the stria terminalis modulates baroreflex activity through 5-HT1A receptors. *Pharmacol Res.* 62, 228–236. doi: 10.1016/j.phrs.2010.05.003
- Belgrave, B. E., Bird, K. D., Chesher, G. B., Jackson, D. M., Lubbe, K. E., Starmer, G. A., et al. (1979). The effect of cannabidiol, alone and in combination with ethanol, on human performance. *Psychopharmacology (Berl)*. 64, 243–246. doi: 10.1007/BF00496070
- Bergamaschi, M. M., Queiroz, R. H., Chagas, M. H., de Oliveira, D. C., De Martinis, B. S., Kapczinski, F., et al. (2011). Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. *Neuropsychopharmacology* 36, 1219–1226. doi: 10.1038/npp.2011.6
- Bhattacharyya, S., Fusar-Poli, P., Borgwardt, S., Martin-Santos, R., Nosarti, C., O'Carroll, C., et al. (2009). Modulation of mediotemporal and ventrostriatal function in humans by Δ9-tetrahydrocannabinol: a neural basis for the effects of Cannabis sativa on learning and psychosis. Arch. Gen. Psychiatry 66, 442–451. doi: 10.1001/archgenpsychiatry.2009.17
- Bhattacharyya, S., Morrison, P. D., Fusar-Poli, P., Martin-Santos, R., Borgwardt, S., Winton-Brown, T., et al. (2010). Opposite effects of ∆-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. *Neuropsychopharmacology* 35, 764–774. doi: 10.1038/npp.2009.184
- Booz, G. W. (2011). Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. *Free Radic. Biol. Med.* 51, 1054–1061. doi: 10.1016/j.freeradbiomed.2011.01.007
- Borgen, L. A., and Davis, W. M. (1974). Cannabidiol interaction with delta9tetrahydrocannabinol. Res. Commun. Chem. Pathol. Pharmacol. 7, 663–670.
- Borgwardt, S. J., Allen, P., Bhattacharyya, S., Fusar-Poli, P., Crippa, J. A., Seal, M. L., et al. (2008). Neural basis of △-9-tetrahydrocannabinol and cannabidiol: effects during response inhibition. *Biol. Psychiatry* 64, 966–973. doi: 10.1016/j.biopsych.2008.05.011
- Bright, T. P., Farber, M. O., Brown, D. J., and Forney, R. B. (1974). Cardiopulmonary effects of cannabidiol in anesthetized dogs. *Pharmacologist* 16:516.
- Bright, T. P., Farber, M. O., Brown, D. J., Lewis, S. C., and Forney, R. B. (1975). Cardiopulmonary effects of cannabidiol in anesthetized mongrel dogs. *Toxicol. Appl. Pharmacol.* 31, 520–526. doi: 10.1016/0041-008X(75)90275-6

investigating the effects of CBD on haemodynamics is still very limited and we suggest that further research in humans under pathological conditions is required.

AUTHOR CONTRIBUTIONS

SO and TE: Substantial contributions to the conception or design of the work. All authors: The analysis and interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

- Capasso, R., Borrelli, F., Aviello, G., Romano, B., Scalisi, C., Capasso, F., et al. (2008). Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. *Br. J. Pharmacol.* 154, 1001–1008. doi: 10.1038/bjp.2008.177
- Chagas, M. H., Zuardi, A. W., Tumas, V., Pena-Pereira, M. A., Sobreira, E. T., Bergamaschi, M. M., et al. (2014). Effects of cannabidiol in the treatment of patients with Parkinson's disease: an exploratory doubleblind trial. *J. Psychopharmacol.* 28, 1088–1098. doi: 10.1177/02698811145 50355
- Consroe, P., Laguna, J., Allender, J., Snider, S., Stern, L., Sandyk, R., et al. (1991). Controlled clinical trial of cannabidiol in Huntington's disease. *Pharmacol. Biochem. Behav.* 40, 701–708. doi: 10.1016/0091-3057(91)90386-G
- Consroe, P., Sandyk, R., and Snider, S. R. (1986). Open label evaluation of cannabidiol in dystonic movement disorders. *Int. J. Neurosci.* 30, 277–282. doi: 10.3109/00207458608985678
- Crippa, J. A., Derenusson, G. N., Ferrari, T. B., Wichert-Ana, L., Duran, F. L., Martin-Santos, R., et al. (2011). Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. *J. Psychopharmacol.* 25, 121–130. doi: 10.1177/0269881110379283
- Crippa, J. A., Zuardi, A. W., Garrido, G. E., Wichert-Ana, L., Guarnieri, R., Ferrari, L., et al. (2004). Effects of cannabidiol (CBD) on regional cerebral blood flow. *Neuropsychopharmacology* 29, 417–426. doi: 10.1038/sj.npp.1300340
- Cunha, J. M., Carlini, E. A., Pereira, A. E., Ramos, O. L., Pimentel, C., Gagliardi, R., et al. (1980). Chronic administration of cannabidiol to healthy volunteers and epileptic patients. *Pharmacology* 21, 175–185. doi: 10.1159/000137430
- Devinsky, O., Marsh, E., Friedman, D., Thiele, E., Laux, L., Sullivan, J., et al. (2016). Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. *Lancet Neurol.* 15, 270–278. doi: 10.1016/S1474-4422(15)00379-8
- Durst, R., Danenberg, H., Gallily, R., Mechoulam, R., Meir, K., Grad, E., et al. (2007). Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 293, H3602–H3607. doi: 10.1152/ajpheart.00098.2007
- Egger, M., Davey Smith, G., Schneider, M., and Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ* 315, 629–634. doi: 10.1136/bmj.315.7109.629
- England, T. J., Hind, W. H., Rasid, N. A., and O'Sullivan, S. E. (2015). Cannabinoids in experimental stroke: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 35, 348–358. doi: 10.1038/jcbfm.2014.218
- Feng, Y., Chen, F., Yin, T., Xia, Q., Liu, Y., Huang, G., et al. (2015). Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated With 3.0T cardiac magnetic resonance imaging and histopathology. *J. Cardiovasc. Pharmacol.* 66, 354–363. doi: 10.1097/fjc.00000000000 00287
- Fusar-Poli, P., Crippa, J. A., Bhattacharyya, S., Borgwardt, S. J., Allen, P., Martin-Santos, R., et al. (2009). Distinct effects of Δ9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. *Arch. Gen. Psychiatry* 66, 95–105. doi: 10.1001/archgenpsychiatry.2008.519

- Garberg, H. T., Huun, M. U., Escobar, J., Martinez-Orgado, J., Loberg, E. M., Solberg, R., et al. (2016). Short-term effects of cannabidiol after global hypoxiaischemia in newborn piglets. *Pediatr Res.* 80, 710–718. doi: 10.1038/pr.2016.149
- Geffrey, G., Stephen, W., Alice, M., and Elizabeth, T. (2015). "Cannabidiol (CBD) treatment of refractory epilepsy in Tuberous Sclerosis Complex (TSC)," in *American Epilepsy Society Annual Meeting, Poster* (Philadelphia).
- Gomes, F. V., Alves, F. H., Guimaraes, F. S., Correa, F. M., Resstel, L. B., and Crestani, C. C. (2013). Cannabidiol administration into the bed nucleus of the stria terminalis alters cardiovascular responses induced by acute restraint stress through 5-HT₁A receptor. *Eur. Neuropsychopharmacol.* 23, 1096–1104. doi: 10.1016/j.euroneuro.2012.09.007
- Gomes, F. V., Reis, D. G., Alves, F. H., Corrêa, F. M., Guimarães, F. S., and Resstel, L. B. (2012). Cannabidiol injected into the bed nucleus of the stria terminalis reduces the expression of contextual fear conditioning via 5-HT₁A receptors. *J. Psychopharmacol.* 26, 104–113. doi: 10.1177/0269881110389095
- Gonca, E., and Darici, F. (2015). The effect of cannabidiol on ischemia/reperfusioninduced ventricular arrhythmias: the role of adenosine A₁ receptors. J. Cardiovasc. Pharmacol. Ther. 20, 76–83. doi: 10.1177/1074248414532013
- Gong, H. Jr., Tashkin, D. P., Simmons, M. S., Calvarese, B., and Shapiro, B. J. (1984). Acute and subacute bronchial effects of oral cannabinoids. *Clin. Pharmacol. Ther.* 35, 26–32. doi: 10.1038/clpt.1984.4
- Granjeiro, E. M., Gomes, F. V., Guimarães, F. S., Corrêa, F. M., and Resstel, L. B. (2011). Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress. *Pharmacol. Biochem. Behav.* 99, 743–748. doi: 10.1016/j.pbb.2011.06.027
- Hallak, J. E., Dursun, S. M., Bosi, D. C., de Macedo, L. R., Machado-de-Sousa, J. P., Abrão, J., et al. (2011). The interplay of cannabinoid and NMDA glutamate receptor systems in humans: preliminary evidence of interactive effects of cannabidiol and ketamine in healthy human subjects. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 35, 198–202. doi: 10.1016/j.pnpbp.2010.11.002
- Hayakawa, K., Mishima, K., Irie, K., Hazekawa, M., Mishima, S., Fujioka, M., et al. (2008). Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. *Neuropharmacology* 55, 1280–1286. doi: 10.1016/j.neuropharm.2008.06.040
- Hayakawa, K., Mishima, K., Nozako, M., Hazekawa, M., Irie, K., Fujioka, M., et al. (2007a). Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. J. Neurochem. 102, 1488–1496. doi: 10.1111/j.1471-4159.2007.04565.x
- Hayakawa, K., Mishima, K., Nozako, M., Ogata, A., Hazekawa, M., Liu, A. X., et al. (2007b). Repeated treatment with cannabidiol but not Delta9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance. *Neuropharmacology* 52, 1079–1087. doi: 10.1016/j.neuropharm.2006.11.005
- Higgins, J. P., Altman, D. G., Gotzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 343:d5928. doi: 10.1136/bmj.d5928
- Hind, W. H., England, T. J., and O'Sullivan, S. E. (2016). Cannabidiol protects an *in vitro* model of the blood-brain barrier from oxygen-glucose deprivation via PPARgamma and 5-HT₁A receptors. *Br. J. Pharmacol.* 173, 815–825. doi: 10.1111/bph.13368
- Iuvone, T., Esposito, G., De Filippis, D., Scuderi, C., and Steardo, L. (2009). Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci. Ther. 15, 65–75. doi: 10.1111/j.1755-5949.2008.00065.x
- Leweke, F. M., Piomelli, D., Pahlisch, F., Muhl, D., Gerth, C. W., Hoyer, C., et al. (2012). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. *Transl. Psychiatry* 2:e94. doi: 10.1038/tp.2012.15
- Martin-Santos, R., Crippa, J. A., Batalla, A., Bhattacharyya, S., Atakan, Z., Borgwardt, S., et al. (2012). Acute effects of a single, oral dose of d9-tetrahydrocannabinol (THC) and cannabidiol (CBD) administration in healthy volunteers. *Curr. Pharm. Des.* 18, 4966–4979. doi: 10.2174/138161212802884780
- Mishima, K., Hayakawa, K., Abe, K., Ikeda, T., Egashira, N., Iwasaki, K., et al. (2005). Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine_{1A} receptor-dependent mechanism. *Stroke* 36, 1077–1082. doi: 10.1161/01.STR.0000163083.59201.34
- Nadulski, T., Pragst, F., Weinberg, G., Roser, P., Schnelle, M., Fronk, E. M., et al. (2005a). Randomized, double-blind, placebo-controlled study about the effects

of cannabidiol (CBD) on the pharmacokinetics of Delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. *Ther. Drug Monit.* 27, 799–810. doi: 10.1097/01.ftd.0000177223.19294.5c

- Nadulski, T., Sporkert, F., Schnelle, M., Stadelmann, A. M., Roser, P., Schefter, T., et al. (2005b). Simultaneous and sensitive analysis of THC, 11-OH-THC, THC-COOH, CBD, and CBN by GC-MS in plasma after oral application of small doses of THC and cannabis extract. J. Anal. Toxicol. 29, 782–789. doi: 10.1093/jat/29.8.782
- O'Sullivan, S. E., Sun, Y., Bennett, A. J., Randall, M. D., and Kendall, D. A. (2009). Time-dependent vascular actions of cannabidiol in the rat aorta. *Eur. J. Pharmacol.* 612, 61–68. doi: 10.1016/j.ejphar.2009.03.010
- Pazos, M. R., Mohammed, N., Lafuente, H., Santos, M., Martinez-Pinilla, E., Moreno, E., et al. (2013). Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. *Neuropharmacology* 71, 282–291. doi: 10.1016/j.neuropharm.2013.03.027
- Pertwee, R. G. (2006). Cannabinoid pharmacology: the first 66 years. Br. J. Pharmacol. 147(Suppl. 1), S163–S171. doi: 10.1038/sj.bjp.0706406
- Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215. doi:10.1038/sj.bjp.0707442
- Rajesh, M., Mukhopadhyay, P., Bátkai, S., Haskó, G., Liaudet, L., Drel, V. R., et al. (2007). Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. Heart Circ. Physiol. 293, H610–H619. doi: 10.1152/ajpheart.00236.2007
- Rajesh, M., Mukhopadhyay, P., Batkai, S., Patel, V., Saito, K., Matsumoto, S., et al. (2010). Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. *J. Am. Coll. Cardiol.* 56, 2115–2125. doi: 10.1016/j.jacc.2010.07.033
- Resstel, L. B., Joca, S. R., Moreira, F. A., Corrêa, F. M., and Guimarães, F. S. (2006). Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. *Behav. Brain Res.* 172, 294–298. doi: 10.1016/j.bbr.2006.05.016
- Resstel, L. B., Tavares, R. F., Lisboa, S. F., Joca, S. R., Correa, F. M., and Guimaraes, F. S. (2009). 5-HT₁A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. *Br. J. Pharmacol.* 156, 181–188. doi: 10.1111/j.1476-5381.2008.00046.x
- Rosenkrantz, H., Fleischman, R. W., and Grant, R. J. (1981). Toxicity of short-term administration of cannabinoids to rhesus monkeys. *Toxicol. Appl. Pharmacol.* 58, 118–131. doi: 10.1016/0041-008X(81)90122-8
- Ruiz-Valdepenas, L., Martinez-Orgado, J. A., Benito, C., Millan, A., Tolon, R. M., and Romero, J. (2011). Cannabidiol reduces lipopolysaccharideinduced vascular changes and inflammation in the mouse brain: an intravital microscopy study. J. Neuroinflammation 8:5. doi: 10.1186/1742-2094-8-5
- Russo, E., and Guy, G. W. (2006). A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. *Med. Hypotheses* 66, 234–246. doi: 10.1016/j.mehy.2005.08.026
- Stanley, C. P., Hind, W. H., and O'Sullivan, S. E. (2013a). Is the cardiovascular system a therapeutic target for cannabidiol? *Br. J. Clin. Pharmacol.* 75, 313–322. doi: 10.1111/j.1365-2125.2012.04351.x
- Stanley, C. P., Hind, W. H., Tufarelli, C., and O'Sullivan, S. E. (2015). Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation. *Cardiovasc. Res.* 107, 568–578. doi: 10.1093/cvr/cvv179
- Stanley, C. P., Wheal, A. J., Randall, M. D., and O'Sullivan, S. E. (2013b). Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes. *Eur. J. Pharmacol.* 720, 376–382. doi: 10.1016/j.ejphar.2013. 10.002
- Stroke Therapy Academic Industry Roundtable (1999). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30, 2752–2758. doi: 10.1161/01.STR.30.12.2752
- Tambaro, S., and Bortolato, M. (2012). Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. *Recent Pat. CNS Drug Discov.* 7, 25–40. doi: 10.2174/157488912798842269
- Thomas, A., Baillie, G. L., Phillips, A. M., Razdan, R. K., Ross, R. A., and Pertwee, R. G. (2007). Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists *in vitro. Br. J. Pharmacol.* 150, 613–623. doi: 10.1038/sj.bjp.0707133

- Tomida, I., Azuara-Blanco, A., House, H., Flint, M., Pertwee, R. G., and Robson, P. J. (2006). Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study. J. Glaucoma 15, 349–353. doi: 10.1097/01.ijg.0000212260.04488.60
- Walsh, S. K., Hepburn, C. Y., Kane, K. A., and Wainwright, C. L. (2010). Acute administration of cannabidiol *in vivo* suppresses ischaemia-induced cardiac arrhythmias and reduces infarct size when given at reperfusion. *Br. J. Pharmacol.* 160, 1234–1242. doi: 10.1111/j.1476-5381.2010.00755.x
- Wheal, A. J., Cipriano, M., Fowler, C. J., Randall, M. D., and O'Sullivan, S. E. (2014). Cannabidiol improves vasorelaxation in Zucker diabetic fatty rats through cyclooxygenase activation. *J. Pharmacol. Exp. Ther.* 351, 457–466. doi: 10.1124/jpet.114.217125
- Winton-Brown, T. T., Allen, P., Bhattacharyya, S., Borgwardt, S. J., Fusar-Poli, P., Crippa, J. A., et al. (2011). Modulation of auditory and visual processing by delta-9-tetrahydrocannabinol and cannabidiol: an FMRI study. *Neuropsychopharmacology* 36, 1340–1348. doi: 10.1038/npp.2011.17
- Zuardi, A. W. (2008). Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. *Rev. Bras. Psiquiatr.* 30, 271–280. doi: 10.1590/S1516-44462008000300015

- Zuardi, A. W., Cosme, R. A., Graeff, F. G., and Guimaraes, F. S. (1993). Effects of ipsapirone and cannabidiol on human experimental anxiety. *J. Psychopharmacol.* 7, 82–88.
- Zuardi, A. W., Shirakawa, I., Finkelfarb, E., and Karniol, I. G. (1982). Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. *Psychopharmacology (Berl).* 76, 245–250. doi: 10.1007/BF00432554

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Sultan, Millar, England and O'Sullivan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.