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Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca
alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-
induced peripheral neuropathy (CIPN). The health consequences of CIPN remain
worrying as it is associated with several comorbidities and affects a specific population
of patients already impacted by cancer, a strong driver for declines in older adults.
The purpose of this review is to present a comprehensive overview of the long-term
effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and
risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet
fully understood but involve neuronopathy and/or axonopathy, mainly associated with
DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the
neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral
neuropathy with a “stocking and glove” distribution characterized by sensory loss,
paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain
in the most serious cases. Several risk factors can promote CIPN as a function of the
anticancer drug considered, such as cumulative dose, treatment duration, history of
neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent
in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of
patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain
questionable, notably in the case of platinum-based anticancer drugs and taxanes, for
which CIPN may last several years after the end of anticancer chemotherapies. These
long-term effects are associated with comorbidities such as depression, insomnia, falls
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and decreases of health-related quality of life in cancer patients and survivors. However,
it is noteworthy that these long-term effects remain poorly studied, and only limited data
are available such as in the case of bortezomib and thalidomide-induced peripheral
neuropathy.

Keywords: chemotherapy-induced peripheral neuropathy, long-term effects, pathophysiological mechanisms,
risk factors, anticancer drugs

INTRODUCTION

Platinum-based anticancer drugs (i.e., cisplatin, oxaliplatin),
proteasome/angiogenesis inhibitors (bortezomib/thalidomide),
vinca alkaloids (i.e., vincristine, vinorelbine) and taxanes (i.e.,
paclitaxel, docetaxel) are the most common anticancer drugs
used as first-line chemotherapy for several cancers, including
colorectal, gastric, breast and lung cancers, and multiple
myeloma. Despite their different action mechanisms, all these
anticancer drugs share a common adverse and disabling effect
for patients, namely CIPN (Balayssac et al., 2011). CIPN has
a considerable impact on cancer treatments and their related
symptoms severely affect patients’ daily activities and quality of
life. Thus CIPN is often the main adverse effect leading to the
reduction or discontinuation of chemotherapy. Moreover, these
symptoms may continue to develop and progress for several
months post-therapy (so called “coasting effect”) and may persist
over periods lasting from several months to years after ceasing
chemotherapy (Argyriou et al., 2012). Classic clinical symptoms
of CIPN involve the PNS and lead to peripheral neuropathy
with a “stocking and glove” distribution characterized by sensory
loss, paresthesia, dysesthesia, numbness, and tingling sometimes
associated with neuropathic pain in the most serious cases
(Balayssac et al., 2011; Jaggi and Singh, 2012). Today, the overall
incidence of CIPN is estimated at approximately 38% (possibly
up to 90% of patients treated with oxaliplatin) (Cavaletti and
Zanna, 2002; Balayssac et al., 2011). Unfortunately, there is no
preventive or curative treatment for CIPN at present (Hershman
et al., 2014). Finally, many of these neurotoxic anticancer drugs
are used in both adjuvant and palliative settings. These neurotoxic
drugs raise issues in the case of adjuvant settings, because CIPN
may last for a long time after the end of chemotherapy, with
very negative impacts on cancer survivors. These effects are well-
described for the use of adjuvant oxaliplatin-based chemotherapy
for colorectal cancer, for which patients may have long life
expectancy (Tofthagen, 2010; Stefansson and Nygren, 2016).
The health impacts of CIPN remain worrying, because CIPN
is associated with comorbidities such as psychological distress,
fall risk and sleep disorders (Hong et al., 2014). Moreover,
CIPN affects a specific population of patients already impacted
by cancer, which is a strong driver for declines in physical
functioning and increased risk of depression in older adults
(Leach et al., 2016). Finally, CIPN represents a heavy economic
burden. For example, in the USA, on average CIPNs increase
healthcare costs by $17,344 per year per patient (Pike et al., 2012).

Abbreviations: ABCB1, ATP binding cassette B1; AUC, area under the curve;
BCRP, breast cancer resistance protein; CIPN, chemotherapy-induced peripheral
neuropathy; CMT1A, Charcot-Marie-Tooth disease type 1A; DRG, dorsal root

The purpose of this review is to present a comprehensive
overview of the long-term effects of CIPN in cancer patients and
survivors. Pathophysiological mechanisms and risk factors are
also presented.

PLATINUM-BASED ANTICANCER
DRUGS

Platinum-based anticancer drugs are composed of cisplatin,
carboplatin and oxaliplatin, which are the main authorized
anticancer drugs. Platinum-based anticancer drugs act through
DNA platination which interferes with cell viability and division
(Dilruba and Kalayda, 2016). Cisplatin and carboplatin are
indicated in several solid cancers such as of the lung, ovary,
testes and uterus, whereas oxaliplatin is indicated for tumors
of the digestive tract, mainly in advanced colorectal cancers
(Brenner et al., 2014) but also of the esophagus, stomach, liver,
and pancreas (Javle and Hsueh, 2010). Cisplatin and oxaliplatin
are probably more neurotoxic than carboplatin (McWhinney
et al., 2009).

Pathophysiological Mechanisms of CIPN
Associated to Platinum-Based
Anticancer Drugs
Platinum-based anticancer drugs reach the neurons of the
PNS and induce several types of toxic effects, among them
nuclear and mitochondrial DNA damage, oxidative stress and
ion channel disturbances. Platinum-based anticancer drugs
are alkylating drugs capable of causing nuclear damage. This
damage, such as to DNA cross-links, have been directly
correlated to electrophysiological abnormalities in peripheral
nerves (Dzagnidze et al., 2007). Such DNA damage may also
affect mitochondrial DNA. Cisplatin was observed to inhibit the

ganglia; EORTC, European Organisation for Research and Treatment of Cancer;
FACT/GOG-Ntx, functional assessment of chronic illness therapy/gynecologic
oncology group-neurotoxicity; GFAP, glial fibrillary acidic protein; GST,
glutathione-S-transferase; GTP, guanosine triphosphate; HCN, hyperpolarization-
activated cyclic nucleotide-gated; HRQOL, health-related quality of life; KCN,
potassium channel; MAPK, mitogen-activated protein kinase; MyD88, myeloid
differentiation primary response gene 88; NaV, voltage-gated sodium channel;
NF-kB, nuclear factor kappa B; OCT2, organic cation transporter 2; PNS,
peripheral nervous system; QLQ-C30, quality of life core questionnaire; QLQ-
CIPN20, quality of life questionnaire to assess chemotherapy-induced peripheral
neuropathy; SF-36, 36-item short form health survey; SNP, single nucleotide
polymorphism; TLR, toll-like receptor; TRAAK, TWIK-related arachidonic acid
activated K+ channel; TREK1, TWIK-related K+ channel 1; TRIF, toll/interleukin
1 receptor domain–containing adapter-inducing interferon-b; TRPM8, transient
receptor potential melastatin 8; TNFα, tumor necrosis factor alpha; TWIK, tandem
of P domains in a weak inward-rectifier K+ channel; VTD, Velcade Thalidomide
Dexamethasone.
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replication and transcription of mitochondrial DNA, and was
responsible for mitochondrial degradation (Podratz et al., 2011).
Lastly, cisplatin was seen to induce pro-apoptotic changes in the
sciatic nerves of cisplatin-treated mice (Sharawy et al., 2015).

Platinum derivatives are also responsible for oxidative stress
in PNS neurons. Oxaliplatin treatment has been observed to
increase protein carbonylation and lipid peroxidation in both
the sciatic nerves and the spinal cord. This oxidative stress was
reduced by antioxidants such as silibinin and α-tocopherol (Di
Cesare Mannelli et al., 2012). MnL4, a superoxide dismutase
mimetic compound, decreased superoxide anion production,
lipid peroxidation and intracellular calcium signals induced by
oxaliplatin in vitro. MnL4 decreased mechanical hyperalgesia,
and mechanical and cold allodynia induced by oxaliplatin in
rats (Di Cesare Mannelli et al., 2016). Oxidative stress has also
been observed in sciatic nerves in cisplatin-treated mice, with
an increase of malondialdehyde and a decrease of superoxide
dismutase and glutathione (Sharawy et al., 2015).

Ion channels are also a toxic target of platinum-based
anticancer drugs. These interactions with ion channels have
mainly been studied for oxaliplatin. A single administration
of oxaliplatin to mice induced neuronal hyperexcitability,
decreasing the expression of potassium channels, TREK1, and
TRAAK (TWIK refers to a tandem of P domains in a weak
inward-rectifier K+ channel), and increasing HCN channels in
DRG neurons (Descoeur et al., 2011). More specifically, several
ion channels act as thermal sensors which are involved with
oxaliplatin-induced thermal hyperesthesia. Oxaliplatin induced
cold hyperalgesia in rats through the activation of transient
receptor potential ankyrin 1 and p38 MAPK (p38 mitogen-
activated protein kinase) in DRG neurons (Yamamoto et al.,
2015). In trigeminal ganglion neurons, the inhibition of KCNQ
(potassium voltage-gated channel subfamily KQT) channels,
voltage-gated K+ channels mediating M-currents, suppressed
oxaliplatin-induced orofacial cold hyperalgesia in rats (Abd-
Elsayed et al., 2015). Disruption of the voltage-gated sodium
channel NaV1.9 in mice suppressed oxaliplatin-induced cold
allodynia and hyperalgesia (Lolignier et al., 2015). Oxaliplatin
induced an increase of the cool sensor TRPM8 expression
in DRG neurons in rats. Oxaliplatin-induced cold allodynia
was suppressed by TRPM8 inhibition (Gauchan et al., 2009).
Likewise, cisplatin seems to be able to interfere with ion
channels in the DRG neurons of rats, by decreasing voltage-
gated potassium and calcium channel currents (Tomaszewski and
Büsselberg, 2007) (Figure 1).

Symptoms and Long-Term Effects of
Oxaliplatin-Induced Peripheral
Neuropathy
Oxaliplatin has strong neurotoxicity which is qualitatively and
quantitatively different from other neurotoxic anticancer drugs
(Balayssac et al., 2011). Oxaliplatin is responsible for acute
neuropathic disturbances (paresthesia, dysesthesia of the hands,
feet and perioral area induced by cold stimuli) occurring in the
hours or days after chemotherapy infusion (Balayssac et al., 2011).
At the beginning of chemotherapy cycles, this acute neuropathy

usually resolved by itself within a week and disappeared for the
next chemotherapy cycle. But the repetition of chemotherapy
cycles induced chronic and invalidating CIPN for several patients
(Balayssac et al., 2011). This chronic CIPN is associated with
paresthesia, numbness, sensory ataxia and can lead to functional
deficits (Zedan et al., 2014). Cold hyperesthesia is characteristic
of acute oxaliplatin-induced peripheral neuropathy and may
augur severe chronic neuropathy (Attal et al., 2009). This CIPN
may be aggravated by cold external temperatures, such as in
Nordic countries (Altaf et al., 2014; Stefansson and Nygren, 2016)
(Table 1).

Oxaliplatin is probably the most neurotoxic anticancer drug
since more than 90% of patients developed acute neuropathy and
30–50% of patients developed chronic neuropathy (Tofthagen,
2010; Beijers A.J. et al., 2014). Grade severity and symptom
duration vary between studies (Beijers A.J. et al., 2014). Although
symptoms decrease with time, long-term clinical studies seem
to demonstrate the persistence of neuropathy after 24 months
(Beijers A.J. et al., 2014): 25 months, 37.5% of grade 1, 29.2%
of grade 2 and 0.7% of grade 3 (Park et al., 2011); 48 months,
11.9% of grade 1, 2.8% of grade 2 and 0.7% of grade 3 (André
et al., 2009); 8 years, 30.4% of grade 2+ (Yothers et al., 2011).
Consequently, the reversibility of this CIPN remains equivocal
(Park et al., 2011). Moreover, some authors have suggested
that oxaliplatin-induced peripheral neuropathy could be more
frequent and more severe in the long-term than expected, lasting
more than 12 months (Vatandoust et al., 2014); however, these
patients represent a third of the population of cancer survivors
(Ganz, 2003).

In colorectal cancer survivors, CIPN has a strong negative
impact on HRQOL, associated with depression and sleep
disorders (Mols et al., 2013; Tofthagen et al., 2013). More
worrying, some cancer survivors may feel “poisoned” by
chemotherapy, for more details see the patient’s comments in
Tofthagen (2010).

Symptoms and Long-Term Effects of
Cisplatin-Induced Peripheral Neuropathy
In clinical practice, cisplatin induced neuropathy is similar to
chronic oxaliplatin-induced peripheral neuropathy; it remains a
sensory axonal neuropathy with abnormal nerve conduction and
no remarkable vegetative disturbances (Earl et al., 1998; Balayssac
et al., 2011).

The prevalence and long-term effects of this CIPN have been
assessed in several studies and in different types of cancer. In
the case of ovarian cancer, it has been reported that 50% of
patients treated with cisplatin-based chemotherapy complained
of peripheral sensory neuropathy after a median of 5.7 years
(minimum: 5 months, maximum: 17 years) (Engelen et al., 2009).
In the case of adolescents and young adults treated for bone
and soft tissue sarcomas, approximately half of the patients
presented a CIPN after an 8-month median (minimum: 1 month,
maximum: 54 months) (Earl et al., 1998). In the case of testicular
cancer, about 38% of patients had non-symptomatic neuropathy
at a median of 15 years after cisplatin-based chemotherapy
(minimum: 13, maximum: 17 years), 28% had symptomatic
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FIGURE 1 | Mechanisms of chemotherapy-induced peripheral neuropathy. Pathophysiological alterations triggered by platinum, taxanes, vinca-alkaloids, and
bortezomib/thalidomide in the peripheral nervous system, dorsal root ganglia and spinal cord. 5-HT, 5-hydroxytryptamine; ATF-3, cyclic AMP-dependent
transcription factor 3; EM2, endomorphin-2; HCN, potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel; Il-1β, interleukin-1β; Il-10,
interleukin-10; Il-4, interleukin-4; KCNQ, potassium channel, subfamily Q; MAPK, mitogen-activated protein kinase; MYD88, myeloid differentiation primary response
gene 88; Nav1.9, voltage-gated sodium channel member 1.9; NMDA, N-methyl-D-aspartate; NF-κB, nuclear factor-kappa B; OCT2, solute carrier family 22 member
2 (organic cation transporter); ROS, reactive oxygen species; SOD, superoxide dismutase; TLR4, toll-like receptor 4; TNF, tumor necrosis factor; TRAAK,
TWIK-related arachidonic acid activated K+ channel; TREK1, TWIK1-related K+ channel 1; TRIF, TIR-domain-containing adapter-inducing interferon-β; TRPA1,
transient receptor potential cation channel, subfamily A, member 1; TRPM8, transient receptor potential cation channel subfamily M member 8; TRPV1, transient
receptor potential vanilloid 1.

neuropathy and 6% had a disabling polyneuropathy (Strumberg
et al., 2002). In another study, 29% of patients had paresthesia
in their hands and feet 10.7 years after the end of cisplatin-
based chemotherapy (minimum: 4, maximum: 21 years) (Brydoy
et al., 2009). Glendenning et al. (2010) found that after a median
of 11 years (minimum: 3 years, maximum: 19 years), 21.7% of
testicular cancer survivors presented a peripheral neuropathy. In
adult survivors of childhood extracranial solid tumors, sensory
and motor neuropathies were detected in 20 and 17.5% of
patients respectively, after a median time since cancer diagnosis
of 25.2 years (minimum: 10.7 years, maximum: 48.2 years).
In these patients who had received several lines of different
chemotherapies, motor impairment was related to vinca alkaloid
whereas sensory impairment was related to platinum-based drug
exposure. Sensory neuropathy was associated with a decrease of
endurance and mobility (Ness et al., 2013).

CIPN Risk Factors Associated to
Platinum-Based Anticancer Drugs
Several risk factors have been identified for these platinum-based
anticancer drug-associated CIPN. Cumulative dose is the main
risk factor for platinum-based drugs, >850 mg/m2 for oxaliplatin
(Beijers A.J. et al., 2014) and >200–300 mg/m2 for cisplatin
(Earl et al., 1998; Glendenning et al., 2010). Pre-treatment

anemia, hypoalbuminemia and hypomagnesaemia and alcohol
consumption have been identified as risk factors for oxaliplatin-
induced peripheral neuropathy (Vincenzi et al., 2013). Gender,
hypocalcaemia, diabetes, and chronic renal failure were not
associated with CIPN (Vincenzi et al., 2013). Radiotherapy
may increase the neurological symptoms for cisplatin-induced
peripheral neuropathy (Brydoy et al., 2009).

Several studies have also assessed genetic predisposition to
or protection against CIPN, mainly through polymorphisms
affecting the pharmacokinetics of platinum-based anticancer
drugs. Thus cisplatin-induced peripheral neuropathy was less
frequent in patients with GST M1 (deletion) or GSTM3 intron
6 AGG/AGG genotypes (Khrunin et al., 2010). Conversely,
SNP affecting the GSTP1 (IIe105Val) and GSTM1 (deletion)
genotypes were significantly associated with a higher incidence
of oxaliplatin-associated CIPN (grade > 2) (Kumamoto et al.,
2013). SNPs affecting cyclin H and the BCRP were significantly
associated with a higher risk of severe oxaliplatin-induced
peripheral neuropathy (Custodio et al., 2014). Interestingly, NaV
polymorphisms could also be associated with both the severity
of acute oxaliplatin-induced neuropathy and the occurrence of
chronic neuropathy (Argyriou et al., 2013). However, although
several studies have been performed on this topic, the impact
of SNP on platinum-based anticancer drugs remains equivocal,
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TABLE 1 | Main symptoms associated with chemotherapy-induced peripheral neuropathy.

Platinum-based anticancer drugs

Oxaliplatin Acute CIPN (>90% of patients): paresthesia, dysesthesia of the hands, feet and perioral area induced by cold stimuli

Chronic CIPN (30–50% of patients): paresthesia, numbness, sensory ataxia, functional deficits, and pain

No vegetative disturbances

Coasting effect

Maximum duration in the literature: 8 years

Cisplatin Sensory neuropathy similar to oxaliplatin-induced chronic neuropathy (50% of patients)

Maximum duration in the literature: 25 years (adult survivors of childhood extracranial solid tumors)

Taxanes

Paclitaxel 80–97% of patients

Docetaxel Acute and chronic sensory neuropathy associated with paresthesia, numbness, tingling and burning, and mechanical
and cold allodynia

Rare motor symptoms with mild distal weakness and myalgia

Rare vegetative disturbances

Coasting effect

Maximum duration in the literature: 4.75 years

Vinca alkaloids

Vinblastine 35–45% of patients

Vinorelbine Sensory neuropathy in the hands and feet, leading to functional disability with fine motor tasks and walking, including
numbness and tingling

Vindesine Motor neuropathy with cramps and distal muscle weakness

Vincristine Vegetative neuropathy associated with postural hypotension, bladder and bowel disturbance

Coasting effect

Maximum duration in the literature: 7 years (cancer survivors of childhood hematological malignancies)

Proteasome inhibitor

Bortezomib 31–64% of patients

Sensory neuropathy associated with burning dysesthesia, coldness, numbness, hyperesthesia, and/or tingling in a
distal stocking-and-glove distribution over the hands and feet

Pain

Vegetative disturbances

Maximum duration in the literature: 2 years (little data in the literature)

Immunomodulatory

Thalidomide 10–55% of patients

Sensory peripheral neuropathy associated with tingling or painful paresthesia, and numbness in the lower limbs

Mild motor impairments

Vegetative disturbances including gastrointestinal (constipation, anorexia, and nausea) and cardiovascular (hypotension
and bradycardia) manifestations

Maximum duration in the literature: no clear information (little data in the literature)

since a meta-analysis was unable to find any association between
GSTP1 IIe105Val and oxaliplatin-induced peripheral neuropathy
(Peng et al., 2013). Furthermore, Terrazzino et al. (2015) did not
find any association between eight selected SNPs and oxaliplatin-
induced peripheral neuropathy (Table 2).

TAXANES

Taxane diterpenoids were isolated from the bark of the Pacific
yew tree (Taxus brevifolia and Taxus baccata for paclitaxel
and docetaxel, respectively) (Saloustros et al., 2008; Wani
and Horwitz, 2014). Taxanes have been approved by the US
Food and Drug Administration (FDA) since the mid-1990s
for the treatment of several cancers: breast, ovarian, non-
small cell lung, prostate, gastric, and head/neck (Qin et al.,
2012).

Taxanes are microtubule-stabilizing drugs, thus preventing
their depolymerization (Amos and Löwe, 1999; Zhang et al.,
2014). This stabilization promotes the formation of abnormal
bundles of microtubules in the cytoplasm, leading to mitotic
spindle disruption. Thus cells arrest their cell cycle in the G0/G1
and G2/M phases, leading to apoptosis in dividing cells (mainly
tumor cells) (Hornick et al., 2008).

Pathophysiological Mechanisms of CIPN
Associated to Taxanes
The pathogenesis of peripheral neuropathy induced by taxanes
has been investigated in numerous studies (Höke and Ray,
2014). Nevertheless, the primary site of pathogenesis of taxane-
associated CIPN has not yet been elucidated (Gornstein and
Schwarz, 2014). The increase of oxidative stress may contribute
to the potent neurotoxicity of taxanes through damage to
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TABLE 2 | Probable risk factors by type of anticancer drug.

Probable risk factors Platinum-based
anticancer drugs

Taxanes Vinca alkaloids Bortezomib
thalidomide

Chemotherapy regimen Cumulative dose
>850 mg/m2 (oxaliplatin)
>200–300 mg/m2

(cisplatin)

Dose intensity Cumulative dose
>2 mg/m2

>1 mg/m2

Induction therapy

Medical History Pre-treatment anemia
Hypoalbuminemia
Hypomagnesaemia
Radiotherapy
Pre-existing neuropathy

Pre-existing
neuropathy

CMT1A Pre-existing
neuropathy

Genetic factors (SNP) GSTP1 (IIe105Val)
GSTM1 (deletion)
cyclin H
BCRP
NaV channels

FGD4
EPHA5
FZD3
CYP2C8
CYP3A5∗3
CYP3A4∗22
ABCB1

CYP3A5 GLI1
CEP72

–

Demographic variables Age Age Age (children) –

Nav, voltage-gated sodium channel; GSTP1, glutathione S-transferase pi 1; GSTM1, glutathione S-transferase mu 1; BCRP, ATP-binding cassette sub-family G member 2
(ABCG2); FGD4, FYVE, RhoGEF and PH domain containing 4; EPHA5, ephrin type-A receptor 5; FZD3, Frizzled-3; CYP2C8, cytochrome P450 2C8; CYP3A5, cytochrome
P450 3A5; CYP3A4, cytochrome P450 3A4; ABCB1, ATP-binding cassette sub-family B member 1; CMT1A, Charcot-Marie-Tooth type 1A; CEP72, centrosomal
protein 72.

neuronal and non-neuronal cells in the PNS, macrophage
activation in the DRG and peripheral nerves, and microglial
activation in the spinal cord (Jimenez-Andrade et al., 2006;
Peters et al., 2007; Barrière et al., 2012; Doyle et al., 2012).
Overproduction of peroxynitrite contributes to increasing neuro-
excitatory and pro-inflammatory cytokines (TNF-alpha and
IL-1beta) and to decreasing anti-inflammatory cytokine (IL-
10 and IL-4) production (Ledeboer et al., 2007; Doyle et al.,
2012).

In vitro studies highlighted that taxanes induced neuropathic
symptoms by inhibiting anterograde fast axonal transport
(conventional kinesin-dependent) (LaPointe et al., 2013) in
the peripheral endings of sensory neurons and altering
neurotransmitter release (Carozzi et al., 2010; Gracias et al.,
2011; Gilardini et al., 2012). Taxane treatment revealed reversible
enlargement of the nucleoli of sensory neurons after a single-dose
of paclitaxel in rat (Jamieson et al., 2003). Furthermore, Jimenez-
Andrade et al. (2006) reported that a cumulative dose of 36 mg/kg
of paclitaxel in rat significantly increased the number of ATF-3
(a cell injury marker) neurons in trigeminal ganglia and DRG.
Mitochondrial alterations caused by the production of reactive
oxygen species in peripheral nerves were also shown to be closely
related to neuropathic effects (Barrière et al., 2012; Xiao and
Bennett, 2012). Other studies also recently reported an increase
of the toll-like receptor TLR4 and its immediate downstream
signaling molecules, myeloid differentiation primary response
gene 88 (MyD88), and TRIF, in DRG after paclitaxel treatment
in favor of a pro-inflammatory mechanism (Li et al., 2014, 2015).
The activation of TLR4 was associated with the sensitization
of transient receptor potential vanilloid subtype 1 (Hara et al.,
2013; Li et al., 2015) known to be involved in nociception
(Figure 1).

Symptoms and Long-Term Effects of
CIPN Associated to Taxanes
Few studies have reported the increased incidence of acute
and chronic toxicities with taxanes that could potentially lead
to dose reductions and treatment withdrawal (Tanabe et al.,
2013; Ho and Mackey, 2014). It is difficult to know whether
paclitaxel or docetaxel is the most neurotoxic as the scientific
literature on the topic is unclear and contradictory (Jones et al.,
2005; Shimozuma et al., 2012). Neurophysiological examinations
of patients with CIPN revealed a decrease in sensory nerve
conduction velocity and compound action potential amplitude
(Chaudhry et al., 1994; Dougherty et al., 2004). This CIPN is
a typical distal sensory neuropathy with a stocking-and-glove
distribution over the hands and feet. The patients can report
paresthesia, dysesthesia, numbness and altered proprioception.
Motor weakness of hands and feet are less frequent, such as
vegetative disturbances (De Iuliis et al., 2015). Taxane-associated
CIPN is considered to be a good predictor of neuropathic pain
after paclitaxel treatment, as 27% of those patients with CIPN
experienced neuropathic pain (Reyes-Gibby et al., 2009). These
complications are often the main reason for treatment cessation
(Tanabe et al., 2013). However, symptoms may aggravate after the
end of the chemotherapy (De Iuliis et al., 2015) (Table 1).

Among patients treated with adjuvant paclitaxel
chemotherapy, between 80 to 97% experienced symptoms
of neuropathy with a time range to CIPN onset of 1–101 weeks
(Chaudhry et al., 1994; Hershman et al., 2011; Tanabe et al.,
2013). These symptoms remained during a median follow-up
time of 57 months for 212 neuropathic patients (minimum: 5.3,
maximum: 95.5) (Tanabe et al., 2013). In a Multicenter Italian
Trial in Ovarian cancer (MITO-4), 22 out of 60 neuropathic
patients (37%) treated with carboplatin and paclitaxel reported
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complete recovery in the first 2 months after the end of the
chemotherapy (Pignata et al., 2006). Nevertheless, 15 patients
(25%) recovered between 2 and 6 months, and nine patients
(15%) after 6 months and more. Regarding a 46-patient cohort
(ACCRU pilot trial) treated with paclitaxel alone, similar results
were reported based on the sensory neuropathy scores of the
QLQ-CIPN20 of the EORTC (Shinde et al., 2016). In a study
conducted in the Netherlands, most of the patients complained
about neurotoxicity in the upper and lower extremities 6 months
after cessation of chemotherapy with oxaliplatin, paclitaxel, or
docetaxel (78.8 and 89.7%, respectively) (Beijers A. et al., 2014).
These neuropathies primarily included numbness and tingling in
hands, feet, suffering from cold feet, and trouble distinguishing
objects with the hands.

A significant correlation was found between scores on
emotional well-being and neuropathy symptoms with the
FACT/GOG-Ntx (Beijers A. et al., 2014). Another study
demonstrated that persistent limb pain linked to docetaxel
treatment was responsible for the deterioration of psychological
function (Ventzel et al., 2016). More recently, breast cancer
survivors with CIPN developed more severe insomnia, anxiety,
and depression than those without neuropathy (Bao et al.,
2016). Thornton et al. (2008) demonstrated that in the years
following chemotherapy, the taxane group had significantly
worse emotional distress and mental HRQOL throughout
adjuvant treatment. These outcomes were also associated with
rates of probable clinical depression during the first year.
The taxane cohort had a significantly slower psychological
recovery and required 2 years on average for emotional
recovery compared with 6–12 months for patients in the no
taxane comparison group (Thornton et al., 2008). Another
longitudinal study monitoring HRQOL parameters in a 6-
year study found similar results with a return to baseline
within 2 years and no change at 6 years (Hall et al.,
2014). Finally, 15% of breast cancer survivors reported CIPN
with a significant impact on HRQOL scales, from 1 to
3 years after a single docetaxel containing regimen (Eckhoff
et al., 2015). Interestingly, the relative tolerability of regimens
according to HRQOL assessment was equivalent between the
two single-agent docetaxel and paclitaxel treatments. However,
the mean neurotoxicity related subscale FACT/GOG-Ntx from
baseline to 1 year following the end of treatment were
significantly more severe for the paclitaxel-treated group
compared to the docetaxel-treated group (Shimozuma et al.,
2012).

CIPN Risk Factors Associated to
Taxanes
Although the severity of taxane-mediated CIPN differs as a
function of several demographic variables, it is very difficult
to predict which patients will develop this CIPN (Schneider
et al., 2015). Demographic variables such as health status,
obesity, and age are known to predispose to neuropathy
(Hershman et al., 2011; Schneider et al., 2012) and influence
CIPN duration (Tanabe et al., 2013). Indeed, patients with
pre-existing neuropathy (related to diabetes, alcohol or even

idiopathic) developed severe neuropathy after receiving taxane-
based chemotherapy (Rowinsky et al., 1993; Chaudhry et al.,
2003). Cumulative dose (135–1400 mg/m2) may be a risk of
CIPN, but this parameter remains a subject of debate in the
literature (van Gerven et al., 1994; Tanabe et al., 2013). Tanabe
et al. (2013) did not find any relation between neuropathy grade
and diabetes, or with radiotherapy, dose intensity and cumulative
dose. CIPN severity may differ depending on chemotherapy type
and protocol (Schneider et al., 2012; Shimozuma et al., 2012;
Tanabe et al., 2013). Indeed, the median time to neuropathy
onset seemed to be inversely correlated with the tighter
administration schedule, 35 and 21 days for weekly and tri-weekly
administration, respectively (Tanabe et al., 2013). Consequently,
the pharmacokinetics of taxanes impact their neurotoxicity and
a pharmacokinetic-based dosing algorithm has been proposed to
reduce paclitaxel-related neurotoxicity (Kraff et al., 2015).

The heterogeneity of taxane-induced neuropathy is probably
not only associated with demographic variables alone, suggesting
contributions of genetic variability. Investigations suggest a
possible genetic predisposition to the occurrence of taxane-
induced peripheral neuropathy (Frederiks et al., 2015). Recent
studies examined the effect of SNP in the congenital peripheral
neuropathy gene FGD4 as a genetic susceptibility to neuropathic
disorders (Baldwin et al., 2012). This SNP, and markers in
additional genes [including EPHA5 (rs7349683) and FZD3
(rs10771973)], were associated with the onset or severity
of paclitaxel-induced peripheral neuropathy. Additional
experiments examined the pharmacokinetic profiles of taxanes
to establish whether exposure to them is correlated with
the degree of neurotoxicity (Gréen et al., 2009; de Graan
et al., 2013). The pharmacokinetic profiles of docetaxel in
50 patients with 59 different SNPs (including tag-SNSps and
PXR/NR1I2, CAR/NR1I3, RXRα/NR2B1, HNF4α/NR2A1
genes) were characterized by marked interindividual variability,
with approximately four- to six-fold variations observed at
maximal concentration, AUC and plasma clearance (Chew
et al., 2013). Another clinical study found that docetaxel
clearance was also modulated in patients carrying the CYP3A∗1B
allele or GSTP1∗A/∗B and 3435TT genotypes (Tran et al.,
2006). Further works demonstrated that, among 13 relevant
polymorphisms in genes encoding paclitaxel metabolizing
enzymes, CYP2C8 haplotype C and CYP3A5∗3 were associated
with neuroprotection and the clearance of paclitaxel, and
conversely with an increased risk of neuropathy (Gréen et al.,
2009; Leskelä et al., 2011; Hertz et al., 2013). However a recent
study underlined a sexual dimorphism with CYP3A4: women
carrying the CYP3A4∗22 allele had increased risk of developing
severe neurotoxicity during paclitaxel treatment (de Graan
et al., 2013). Other studies demonstrated an involvement of
ABCB1 gene polymorphisms encoding for P-glycoprotein, a
primary protein involved in taxane elimination and distribution,
with neuropathy in metastatic breast cancer patients treated
with paclitaxel or docetaxel monotherapy. Patients treated with
docetaxel carrying another ABCB1 2677GG genotype had a
significantly longer time to neuropathy (Sissung et al., 2008).
Indeed patients heterozygous for G/A in position 2677 in ABCB1
had significantly higher toxic clearance than most other ABCB1
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variants (Gréen et al., 2009). Another study underlined that
patients carrying two reference alleles for ABCB1 3435CT
polymorphism tended toward a reduced risk of developing CIPN
compared to patients carrying only one allele (Sissung et al.,
2006) (Table 2).

VINCA ALKALOIDS

Vinca alkaloids are plant-derived microtubule assembly
inhibitors originally derived from the periwinkle Catharanthus
roseus (Liu et al., 2014). Vinca alkaloids are now produced
synthetically and are used in particular in the treatment
of acute lymphoblastic leukemia, Hodgkin’s disease, non-
Hodgkin lymphoma, and many cancers (rhabdomyosarcoma,
osteosarcoma, uterus, breast, lung, etc.). They may be used in
mono-chemotherapy and poly-chemotherapy treatments. The
vinca alkaloid family includes vinblastine, vinorelbine, vindesine,
and vincristine (Liu et al., 2014).

Pathophysiological Mechanisms of CIPN
Associated to Vinca Alkaloids
Vinca alkaloids block microtubule polymerization, by binding to
free tubulin dimers (β-α-tubulin heterodimers interface) close
to the GTP-binding sites (vinca domain) (Jordan and Kamath,
2007), inducing an increase of microtubule depolymerization and
inhibiting the hydrolysis of GTP, which stops the mitotic cycle
and initiates cell apoptosis (Jordan and Wilson, 2004; Liu et al.,
2014).

Due to their cytotoxic action, vinca alkaloids induce many
adverse effects of which neurotoxicity remains the most frequent.
This neurotoxicity affects the neuronal cytoskeleton which causes
axonal degeneration and the impairment of axonal transport. For
unknown reasons, the sensory fibers are reached earlier, more
frequently and more severely than the motor fibers. The complete
mechanism of vinca alkaloid-induced peripheral neuropathy
involves several actors:

- Endogenous opioids, which play a critical role in
nociception, such as endomorphin-2, are decreased in
the spinal cord and DRG of animals treated with
vincristine, without mu-opioid receptor expression change.
This contributes to the development of neuropathic
pain symptoms, leading to hypersensitivity of C-fiber
nociceptors and abnormal activity of the wide dynamic
range neurons (Yang et al., 2014). Oxidative stress,
generated after the impairment of mitochondrial function
and the overproduction of reactive oxygen species
following vinca alkaloid-based treatment, influences the
activity of serine protease, which inactivates endomorphins
in the spinal cord, thus suggesting that oxidative stress is a
key mechanism of this CIPN (Wang et al., 2008).

- Spinal synaptic plasticity involved in the maintenance
of neuropathic symptoms is also related to this CIPN.
C-Fos (a marker of neuronal activation) and Piccolo
(maintenance of synaptic plasticity) were increased in
the neurons of the spinal cord in CIPN animal models,

suggesting increased neuronal activity and a structural
reorganization of pre-synaptic elements (Ibi et al., 2010;
Thibault et al., 2013).

- Central glia (astrocytes and microglia) plays a critical role
in neuropathic symptoms and its inhibition remains a
potential strategy for alleviating these symptoms (Watkins
and Maier, 2005). In an animal model of vincristine-
induced peripheral neuropathy, astrocyte activation
participates in neuropathic symptoms through the up-
regulation of interleukin-1β and NMDA sensitization
(phosphorylation induced by interleukin-1β) (Ji et al.,
2013).

- Serotonin transporter null mice elicit reversed neuropathic
pain behavior in animal models of vincristine-associated
CIPN. Considering that serotonin has an influence on
pain transmission, also in CIPN animal models (Suzuki
et al., 2004), this impact on neuropathic symptoms may
be attributed to a lack of spinal serotonin. Furthermore,
tropisetron (a selective antagonist of serotonin receptor of
type 3) is able to ameliorate vincristine-induced peripheral
neuropathy in rat (Barzegar-Fallah et al., 2014).

- Vinca alkaloids can alter calcium homeostasis through the
dysregulation and structural modification of mitochondria,
decreasing the amount and rate of calcium uptake
and efflux (Tari et al., 1986). These changes induce
increased neuronal excitability and impaired glial function.
Moreover, neuropathic symptoms produced by vinca
alkaloids are alleviated by drugs that decrease the
extracellular and intracellular availability of calcium (Siau
and Bennett, 2006).

- Jaggi and Singh (2012) demonstrated a link between MAPK
and vincristine-induced peripheral neuropathy. In this
study, the antineuropathic effects of farnesyl thiosalicylic
acid (Ras inhibitor) and GW5074 (c-Raf1 kinase inhibitor)
in an animal model of vincristine-induced peripheral
neuropathy was demonstrated (Jaggi and Singh, 2012).
This result suggests that Ras and c-Raf-1 are potential
targets for preventing CIPN (Figure 1).

Symptoms and Long-Term Effects of
CIPN Associated to Vinca Alkaloids
Vinca alkaloids induce glove-and-stocking distribution
peripheral neuropathy in 35% to 45% of patients (Postma
et al., 1993; Verstappen et al., 2005). Sensory neuropathy
typically develops first in the hands and feet, leading to
functional disability with fine motor tasks and walking, including
numbness and tingling (Postma et al., 1993; Verstappen et al.,
2005; Boyette-Davis et al., 2013). These symptoms often develop
after several weeks of treatment but can occur after the first
dose. The coasting effect was also prominent in vinca alkaloid-
induced peripheral neuropathy, with 30% of patients subject
to worsening symptoms after stopping treatment (Haim et al.,
1994). In addition to sensory symptoms, motor and autonomic
neuropathies were also prominent. Neuropathic patients
experienced muscle cramps and distal muscle weakness (Haim
et al., 1994). Autonomic symptoms include heart rate variability
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reduction (Hirvonen et al., 1989), postural hypotension, bladder
and bowel disturbance, ocular palsies and vocal cord paralysis
(Hancock and Naysmith, 1975; Quasthoff and Hartung, 2002).
Vinca alkaloid treatment was also associated with acute motor
neuropathy, similar to the Guillain–Barré syndrome (González
Pérez et al., 2007). Vinca alkaloids are frequently used in pediatric
hematological malignancies. Lavoie Smith et al. (2015) made
an interesting assessment of the vincristine-induced peripheral
neuropathy in children treated for acute lymphocytic leukemia.
In these children, 78% developed a sensory-motor CIPN and
44% reported pain. Overall severity was low, but a subgroup of
children developed severe forms of CIPN. The main identified
symptoms were decrease of reflexes, vibration sensibility, and
strength (Lavoie Smith et al., 2015). In another study on children
and adolescents treated for non-CNS solid and hematological
malignancies, up to 85% of vincristine-treated children suffered
of CIPN during treatment and 40% at 6 months post-treatment.
Higher symptoms and deficits were found for patients treated
for lymphoma or solid tumors compared to acute lymphocytic
leukemia (Gilchrist et al., 2017) (Table 1).

Neuropathy has been described to be reversible and mainly
resolved within 2 months (Haim et al., 1994), although some
patients report lasting dysfunction with sensory symptoms
persisting longer than motor symptoms (Postma et al., 1993;
Boyette-Davis et al., 2013). Nevertheless, long-term follow-up of
patients who received vinca alkaloid treatment revealed that 32%
had sensory symptoms which persisted from 34 to 48 months
after treatment (Postma et al., 1993; Boyette-Davis et al., 2013)
and 14% had disabling sensory neuropathy 9 years after treatment
(Moser et al., 2005). Another study by Oerlemans et al. (2014)
demonstrated that patients with diffuse large B-cell lymphoma
present neuropathic symptoms for up to 5 years (tingling
hands/feet are described in 30% of patients). In comparison,
30–34% of children with acute lymphoblastic leukemia had
neuropathic symptoms from 3 to 7 years following vinca alkaloid
chemotherapy (Ramchandren et al., 2009; Jain et al., 2014).

Only two studies assessed the impact of this CIPN on
the HRQOL of patients. Both studies used either the SF-36
or the QLQ-C30 from the EORTC questionnaires to evaluate
HRQOL. In the study by Kim et al. (2010) patients with sensory
neuropathy following vinca alkaloid-based treatment (18 weeks)
reported a lower HRQOL than those without neuropathy. The
SF-36 questionnaire demonstrated that neuropathic patients
had impaired physical functions and lower vitality than non-
neuropathic patients. No change was observed for the other items
(bodily pain, general health, social function and general mental
health). In their study Liew et al. (2013) observed that global
health was similar to normative data 28 months after completing
vinca alkaloid-based chemotherapy, but leukemia survivors had
lower cognitive and social functions and reported more financial
difficulty. Fatigue and pain affected 83 and 53% of patients,
respectively, and both showed significant inverse correlation with
overall health and all functional scales. Nevertheless, although
therapy-related symptoms were persistent, long-term survivors
had a global HRQOL similar to that of the general population
(Liew et al., 2013). Overall, these studies indicated that persistent
neuropathy has a considerable impact on patients’ lives.

CIPN Risk Factors Associated to Vinca
Alkaloids
Antifungal treatment with azole-based agents may exacerbate
neuropathy via the inhibition of the cytochrome CYP3A involved
in vinca alkaloid metabolism (Moriyama et al., 2012). Thus the
relationship between genetic factors related to CYP3A, and CIPN
has been investigated by several studies. Egbelakin et al. (2011)
demonstrated that CYP3A5 expression was related to CIPN in
acute lymphoblastic leukemia in children. Indeed, a child with
CYP3A5 genotype develops less peripheral neuropathy compared
to CYP3A5 non-expressers. Another study demonstrated that
acute CIPN was related to the presence of SNPs of genes
involved in the cell cycle and cell proliferation, such as GLI1
(rs2228224 and rs2242578), and to the up-regulation of other
genes participating in the cell cycle and cell proliferation such
as aurora kinase A and the marker of proliferation Ki-67 (Broyl
et al., 2010). Moreover, the chronicity of neuropathic symptoms
was associated with SNPs in genes involved in absorption,
distribution, metabolism, and excretion (Broyl et al., 2010). In
addition, 17p11.2-12 duplication (associated with CMT1A) has
been demonstrated to be a predictor of severe neurotoxicity in
patients (Graf et al., 1996), and more widely, several studies have
demonstrated a higher risk of inducing severe acute neurotoxicity
in patients with CMT1A (Naumann et al., 2001; Orejana-García
et al., 2003; Nishikawa et al., 2008). Finally, sensory neuropathy is
less rare in patients expressing a variant of the gene Centrosomal
Protein 72 (Diouf et al., 2015).

The occurrence of neuropathy was also strongly dose-
dependent, with development at a dose of 2–6 mg/m2 (Postma
et al., 1993; Haim et al., 1994; Verstappen et al., 2005). It is
noteworthy that neurotoxicity can occur with a single dose
in patients receiving a 4 mg dose and demonstrating worse
neurotoxicity than those receiving a 2 mg dose (Verstappen et al.,
2005). Thus, total dose levels have been capped at 2 mg/m2

regardless of body surface area (Haim et al., 1994). For vincristine
treated children, older patients are at higher risk of sensory and
motor CIPN. Sex is more debated, but female would be at higher
risk for CIPN (Lavoie Smith et al., 2015; Gilchrist et al., 2017)
(Table 2).

BORTEZOMIB AND THALIDOMIDE

Bortezomib, a dipeptidyl boronic acid, is the first of a new class
of proteasome inhibitors approved in 2004 by both US and
European authorities for the treatment of multiple myeloma
and in 2006 for the treatment of mantle cell non-Hodgkin’s
lymphoma (Argyriou et al., 2014). Bortezomib is the cornerstone
treatment for multiple myeloma, and is commonly used to treat
newly diagnosed as well as relapsed/refractory multiple myeloma,
either as single agent or combined with other therapies, leading
to a major improvement in disease management and increasing
the lifespan of patients.

Thalidomide is a glutamic acid derivative and an oral
immunomodulatory and antiangiogenic agent. It was the first
drug designed to treat nausea in pregnant woman in the
1960s. Widely known for its teratogenic effects, thalidomide was
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approved by the US Food and Drug Administration for the
treatment of multiple myeloma (Richardson et al., 2002).

Pathophysiological Mechanisms of CIPN
Associated to Bortezomib and
Thalidomide
Both thalidomide and bortezomib exert pleiotropic actions,
which complicates understanding of their neurotoxic effects
(Morawska et al., 2015). Little is known at present about the
mechanism underlying this neurotoxicity.

The pathogenetic hallmark of bortezomib-induced peripheral
neuropathy consists of morphological alterations in the spinal
cord, DRG and peripheral nerves, with specific functional
alterations in Aδ and C sensory nerve fibers (Carozzi et al., 2013;
Staff et al., 2013). In addition, proteasome inhibition increased
a-tubulin polymerization, mitochondrial and endoplasmic
reticulum damage, and dysregulation of neurotrophins through
the inhibition of NF-kB (nuclear factor kappa B) activation may
also significantly contribute to this CIPN genesis (Landowski
et al., 2005; Staff et al., 2013). However, these findings do not
explain why preferentially thin and unmyelinated nerve fibers
are affected. It was recently suggested that bortezomib-induced
peripheral neuropathy occurs via a proteasome-independent
mechanism (Arastu-Kapur et al., 2011), possibly involving
mitochondrial dysfunction (Zheng et al., 2012). By contrast
with immunomodulatory drugs, a more specific neurotoxic
action of bortezomib occurs through the transient release of
intracellular calcium stores, leading to mitochondrial calcium
influx and caspase-induced apoptosis (Landowski et al., 2005).
Disruption of intracellular calcium homeostasis in nerves can
promote depolarization and spontaneous discharge, causing
pain and other abnormal sensations. Finally, a higher ratio of
polymerized versus soluble tubulin was found in neural cells after
treatment with proteasome inhibitors, suggesting a mechanism
by which this neurotoxic anticancer drug could interfere with
microtubular stability (Poruchynsky et al., 2008).

Thalidomide has several actions, including a role in
modifying integrin receptors, altering TNFα and inhibiting
angiogenesis. The mechanism of action of thalidomide
on malignant cells is poorly understood but may involve
both immunomodulation and antiangiogenic effects,
resulting in partially irreversible damage to distal axons,
DRG neurons and central projections of primary afferent
neurons (Giannini et al., 2003). Because thalidomide has
antiangiogenic activities, it was initially proposed that one of
the mechanisms of thalidomide-induced peripheral neuropathy
was capillary damage and secondary anoxemia in nerve
fibers. Additionally, it was suggested that thalidomide reduces
neural cell survival by downregulation of TNFα, triggering
inhibition of NF-kB and subsequent acceleration of neuronal
cell death (Fernyhough et al., 2005). NF-kB inhibition is
one of the main effects of bortezomib and could provide
a common link between the neurotoxicity of thalidomide
and proteasome inhibition. A crucial event in thalidomide-
induced peripheral neuropathy may be the suppression of
NF-kB, a factor linked to p65 (activated by TNFα) and p75

(activated by pro-neurotrophins) receptors (Li et al., 2009).
These receptors may induce both apoptosis and cell growth,
depending on the circumstances (Ibáñez and Simi, 2012)
(Figure 1).

Symptoms and Long-Term Effects of
CIPN Associated to Bortezomib and
Thalidomide
Although bortezomib and thalidomide represent a major advance
in the treatment of multiple myeloma, they are also unfortunately
accompanied by an increase of challenging treatment-related
adverse events; in particular they frequently induce dose-
limiting peripheral neuropathy. Bortezomib-induced peripheral
neuropathy is considered to be one of the most severe,
unpredictable and potentially permanent non-hematological
side-effects of chemotherapy against multiple myeloma. Thus
it also has a detrimental effect on the HRQOL of survivors
(Argyriou et al., 2014) and compromises optimal treatment
for patients with multiple myeloma. Although rare, autonomic
peripheral neuropathy can be life threatening, leading to serious
medical conditions such as irregular heartbeat, hypotension, and
shortness of breath. The incidence of this CIPN (any grade)
in large clinical studies ranges from 31 to 64% (Richardson
et al., 2003, 2005; Velasco et al., 2010) for bortezomib and
from 10 to 55% for thalidomide (Jongen et al., 2015). The data
collected showed a higher percentage of patients developing
CIPN following thalidomide at doses of 200 mg/day or higher
in comparison to lower thalidomide doses (Glasmacher et al.,
2006).

Bortezomib-induced peripheral neuropathy is typically a
predominantly sensory axonopathy associated with burning
dysesthesia, coldness, numbness, hyperesthesia, and/or tingling
in a distal stocking-and-glove distribution over the hands and
feet. Neuropathic pain is a prominent feature of this CIPN,
occurring in 25–80% of cases (Rampen et al., 2013), characterized
by shooting pain and severe cramps, due to dysfunction of all
three major sensory nerve fibers (Aβ, Aδ, and C), as demonstrated
in both clinical and animal models (Cata et al., 2007). Signs
and symptoms of autonomic dysfunction may occur, since
these are also served by unmyelinated nerve fibers. Autonomic
dysfunctions are present in 12–50% of patients, with constipation
and orthostatic hypotension being the most frequent symptoms
(Velasco et al., 2010). Other autonomic disturbances are
frequently observed and lead to adverse gastrointestinal events
(Richardson et al., 2010). Motor fibers are rarely affected (Mateos,
2012). Bortezomib-induced peripheral neuropathy is an early
complication when it occurs shortly after the introduction of
treatment. CIPN generally occurs during the first 5 cycles of
bortezomib treatment and is related to cumulative dose and
reaching a plateau at cycle 5 (Richardson et al., 2009) (Table 1).

As with bortezomib, thalidomide-induced peripheral
neuropathy causes often painful distal sensory axonal peripheral
neuropathy in over half of patients if treated over a sufficiently
long period of time (Cavaletti et al., 2004). Thalidomide-induced
peripheral neuropathy affects large and small fibers, associated
with tingling or painful paresthesia, and numbness in the
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lower limbs (Plasmati et al., 2007). Its onset is usually slower
than for bortezomib. Mild motor impairment also appears to
be present (Chaudhry et al., 2008), but is only significant in
severe cases (Giannini et al., 2003). Autonomic manifestations,
including gastrointestinal (constipation, anorexia, and nausea),
and cardiovascular (hypotension and bradycardia) effects are
commonly observed (Morawska et al., 2015). A dual role for
thalidomide has been highlighted by clinical observations that
suggest that thalidomide may be neuroprotective in patients
receiving a combination with bortezomib, while being neurotoxic
when given as a single agent (Badros et al., 2007). This might be
explained by its anti-inflammatory effect in preventing excess
neurotoxicity (Table 1).

Unfortunately, these CIPNs are not always reversible.
Although reversal of bortezomib-induced peripheral neuropathy
after treatment cessation is frequent, recovery in some patients
may take months, up to 2 years, and some will never fully recover
neurological function (Cavaletti and Jakubowiak, 2010). This
CIPN has a significant impact on HRQOL, including the physical,
social, and psychological effects of unrelieved pain (Tariman et al.,
2008). At present, extensive reports on the long-term evolution
of this CIPNs are not available. The long-term evolution of
thalidomide-induced peripheral neuropathy has not yet been
studied extensively, although it is suggested that this CIPN may
improve after thalidomide dose-reduction or discontinuation
(Argyriou et al., 2012). However, some patients may be subject
to permanent damage (Mohty et al., 2010).

Maximizing the benefits of treatment while preserving
HRQOL therefore requires a careful balance between achieving
optimum activity and minimizing toxicity, in order to further
enhance efficacy. Monitoring for signs and symptoms of
peripheral neuropathy during bortezomib or thalidomide
therapy, such as the Indication for Common Toxicity Criteria
Grading of Peripheral Neuropathy Questionnaire, should ensure
early recognition, allowing for prompt dose reduction and
discontinuation which are the mainstays of preventing and
managing CIPN, and increasing the probability of recovery of
patients undergoing cancer treatment (Beijers et al., 2016).

CIPN Risk Factors Associated to
Bortezomib and Thalidomide
Risk factors for CIPN in multiple myeloma patients include
advanced age, prior neuropathy and drug combinations, but not
genetic factors (García-Sanz et al., 2016). Nevertheless, in larger
studies, baseline neuropathy was the only consistent risk factor
for bortezomib-induced peripheral neuropathy. Age, diabetes,
International Staging System stage, obesity, and creatinine
clearance did not affect the overall rate of this CIPN (Dimopoulos
et al., 2011; Tacchetti et al., 2014). Like almost any neurotoxic
antineoplastic drug, the cumulative bortezomib dose is the
most significant risk factor of CIPN development. The study
by Tacchetti et al. (2014) demonstrated that the rate of grade
2 CIPN in the VTD arm was three times higher than in
the thalidomide dexamethasone arm of the study. Of all the
treatment phases, induction therapy was associated with the
highest risk of CIPN, while the lowest risk was related to

consolidation therapy (Tacchetti et al., 2014). Furthermore,
lowering the dose of bortezomib to 1 mg/m2 was associated
with a reduced risk of developing severe neurological toxicity
after four cycles of VTD (Moreau et al., 2011a). Since 2012,
The Food and Drug Administration and the European Medicine
Agency have validated the subcutaneous injection of bortezomib
instead of the intravenous injection in order to limit the adverse
effects and CIPN (Moreau et al., 2011b; Minarik et al., 2015).
However, a recent study show that the prevalence and severity
of bortezomib-induced peripheral neuropathy were not different
between intravenous and subcutaneous ways (Minarik et al.,
2015) (Table 2).

CONCLUSION

As presented in this review, CIPN represents a very problematic
adverse event of certain anticancer chemotherapies. First, these
CIPNs are frequent in cancer patients treated with neurotoxic
anticancer drugs with an overall incidence of approximately 38%
(possibly as many as 90% of patients treated with oxaliplatin).
Finally, the long-term reversibility of these CIPNs remains
questionable, notably in the case of platinum-based anticancer
drugs and taxanes, for which CIPN may last several years after
the end of anticancer chemotherapies. These CIPN are also
very problematic for young patients (children, adolescents, and
young adults), which may interfere with their own development
and social life. As we have seen, these long-term effects are
associated with comorbidities such as depression, insomnia and a
decrease of HRQOL in cancer patients and survivors. However,
it is noteworthy that these long-term effects remain poorly
studied, and only limited data are available such as in the case
of bortezomib and thalidomide-induced peripheral neuropathy,
despite the shorter life expectancy of patients.

Some risk factors of CIPN have been identified for each
anticancer drug. The most applicable ones are the control of
cumulative doses, preexisting neuropathic disorders and age of
patients. But these preventive measures have a limited effect
in clinical practice because patients still suffer of CIPN. No
preventive or curative pharmacological strategy has yet been
acknowledged. This can be explained by the fact that the drugs
chosen to treat or prevent CIPNs are the same as those used to
treat common neuropathic pain conditions, such as nerve injury,
post-herpetic neuralgia, polyneuropathy, and painful diabetic
peripheral neuropathy. The main preclinical and clinical studies
have been performed although CIPN differs from other forms
of neuropathy, particularly in terms of pathophysiology and
symptomatology. CIPNs are frequently associated with sensory
symptoms (numbness, tingling) without severe neuropathic
pain symptoms (shooting/burning pain), point that we recently
debated in the literature (Kerckhove et al., 2017).

For many patients, these CIPNs are not vital adverse effects but
impact greatly their quality of life, and for cancer survivors, these
CIPN are reminders of the cancer disease and its treatments.
Oncologists decrease or stop neurotoxic anticancer drugs, thus
limiting the severity of these neurological symptoms “and that’s
all.” However, given the major improvement of the therapeutic
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management of many cancers and the increasing number of
cancer survivors, it is now urgent to discover new and effective
strategies to prevent and/or treat these CIPNs and their long-term
effects.
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