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Advances in healthcare have considerably improved the life expectancy of the human

population over the last century and this has brought about new challenges. As we

live longer the capacity for cognitive aging increases. Consequently, it has been noted

that decline in cognitive performance in the elderly in domains of reasoning, problem

solving skills, attention, processing speed, working memory and episodic memory is a

significant societal problem. Despite the enormity of this issue there are relatively few

interventions for cognitive aging. This may be due to our current state of knowledge

on biological factors that underpin cognitive aging. One of the biological contributors

to cognitive aging is chronic neuroinflammation. This review will provide an overview

of the peripheral and central mechanisms involved in chronic neuroinflammation and

how neuroinflammation may be related to age-associated cognitive decline. Plant based

extracts including herbal and nutritional supplements with anti-inflammatory properties

will be examined in relation to their utility in treating age-related cognitive decline. Plant

based extracts in particular offer interesting pharmacological properties that may be

quickly utilized to prevent cognitive aging.

Keywords: neuroinflammation, cognitive aging, plant based extracts, herbal medicine, antioxidants, prakriti,

Ayurveda, personalized herbal medicine

INTRODUCTION

Advancements in healthcare have improved our life expectancy over the last century (United
Nations DoEaSA, 2013) and as we live longer the capacity for cognitive aging increases (Bishop
et al., 2010). A decline in cognitive performance in older people in domains of reasoning, problem
solving skills, attention, processing speed, working memory and episodic memory is a significant
societal problem (Simen et al., 2011). Therefore, interventions that improve cognitive function in
older people are needed to reduce this burden on society. One biological mechanism related to
cognitive aging is chronic neuroinflammation (Simen et al., 2011; Lim et al., 2013; Patterson, 2015;
Wu et al., 2016). Acute inflammation consists of local and systemic interactions of several cell
types, chemical signals and signaling pathways comprising the innate and the adaptive immune
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system. While acute neuroinflammation has an important role
in maintaining neural homeostasis, protecting the brain from
disease, and removing damaged tissue and repairing injury;
chronic low-grade neuroinflammation is destructive (Medzhitov,
2008). Associated with aging, chronic neuroinflammation is a
result of a deregulated acute phase response of the innate immune
system effecting surrounding neural tissue on a molecular,
structural and functional level (Nguyen et al., 2002).

PLANT EXTRACTS AND PLANT
SECONDARY METABOLITES THAT
TARGET NEUROINFLAMMATION AND MAY
IMPROVE COGNITION

The physiological mechanism for cognitive impairment is not
refined to one biomarker or area of the body. It is complex
involving multiple mechanisms including overexpression of
peripheral and neural inflammatory processes, BBB leakage, and
over activation of microglia and astrocytes. The process of drug
discovery to prevent cognitive decline over an adult’s life needs
to therefore explore substances that target these mechanisms
that are related to cognitive aging. Pharmaceutical interventions,
possibly because cognitive aging is not currently defined as a
medical illness, have been poor. Therefore, we need to turn
our attention to other pharmacologically active substances that
may reduce chronic neuroinflammation and improve cognitive
function in older people. Plant based extracts possess multiple
pharmacological actions on the human brain and therefore may
give rise to multiple therapeutic uses within this domain.

In the first part of this review we outline the peripheral and
central chronic inflammatory processes that have a complicated
relationship with age-related cognitive decline. In the second part
of this review we outline key plant extracts and plant secondary
metabolites that may address the neuroinflammatory mechanism
associated with age-related cognitive changes.

PART I: AGE-RELATED PERIPHERAL AND CENTRAL
CHRONIC NEUROINFLAMMATORY PROCESSES AND
COGNITIVE PERFORMANCE.

AGE-RELATED ALTERATIONS OF PRO-
AND ANTI-INFLAMMATORY CYTOKINE
LEVELS

Cytokines are a class of small proteins, divided into pro-
and anti-inflammatory cytokines, which are secreted by several
macrophages including microglial cells and astrocytes in the
brain (Cohen and Cohen, 1996). Cytokines are primary
messengers important in mediating neuroinflammation. They
activate a range of immune cells and promote the production
of inflammatory mediators including chemokines and acute
phase proteins (Holdsworth and Gan, 2015). Non-pathological
aging is often associated with an increased inflammatory profile
reflected in elevated levels of circulatory pro-inflammatory
mediators. Elevated blood levels of the pro-inflammatory
cytokine interleukin (IL)-6 (Wei et al., 1992; Roubenoff et al.,

1998; Forsey et al., 2003; Stowe et al., 2010; Álvarez-Rodríguez
et al., 2012), IL-1β and tumor necrosis factor-alpha (TNF-α)
(Álvarez-Rodríguez et al., 2012), and the acute phase c-reactive
protein (CRP; Roubenoff et al., 1998) have been reported in
healthy elderly people. The excessive production of cytokines
may have adverse consequences, with TNF-α for instance
inducing demyelination and axonal degeneration (Stoll et al.,
1993).

Earlier studies have observed changes in the pro-
inflammatory to anti-inflammatory cytokine ratio during
aging (Forsey et al., 2003). As opposed to an increase in pro-
inflammatory cytokine levels, some researchers failed to observe
an increase in anti-inflammatory cytokines (e.g., IL-10) with
increased age (Forsey et al., 2003; Stowe et al., 2010). Conversely,
Álvarez-Rodríguez and colleagues did not observe a change in
cytokine ratio, but rather an increased overall inflammatory
profile including increased levels of IL-10 (Álvarez-Rodríguez
et al., 2012). A possible explanation for these conflicting results
could be that cytokine profiles differ not only with age, but
also according to ethnicity (Stowe et al., 2010). Additionally,
the use of different methods across studies to assess circulatory
inflammatory marker levels and assay sensitivity could also
explain the contradictory findings between studies.

Peripheral cytokines have the ability to communicate with
the central nervous system (CNS) via: (United Nations DoEaSA,
2013) receptors on endothelial cells of the blood brain barrier
(BBB); (Bishop et al., 2010) active transport across tight junctions
of the BBB; and (Simen et al., 2011) the vagal nerve (Maier
et al., 1998; Banks, 2005; Erickson et al., 2012). In the CNS,
cytokines are primary messengers important in mediating
neuroinflammation. They activate a range of immune cells and
promote the production of inflammatory markers including
chemokines and acute phase proteins (Holdsworth and Gan,
2015).

AGE-RELATED INCREASED BLOOD BRAIN
BARRIER PERMEABILITY

The blood brain barrier (BBB) is a dynamic interface between
the peripheral circulation and the brain parenchyma consisting
of endothelial cells lining the brain capillaries. The BBB tightly
regulates the transport of blood-derived molecules, proteins and
cells, inflammatory cytokines, into or out of the CNS via tight
junctions involving active transport or receptor binding (Abbott
and Friedman, 2012; Erickson et al., 2012). Additionally, the BBB
maintains a complex relation with several cell types located in the
brain parenchyma, such as astrocytes and microglial cells, and as
such plays a key role in the communication between the CNS and
the immune system (Erickson et al., 2012; Abbott and Friedman,
2012).

Animal and clinical studies have shown an age-related
increase of BBB permeability in healthy individuals (Toornvliet
et al., 2006; Farrall and Wardlaw, 2009; Blau et al., 2012).
Recently, advanced magnetic resonance imaging (MRI)
techniques have shown increased BBB permeability in healthy
older people without cognitive impairment aged between 55 and
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90 years in specific areas of the brain important for cognitive
functioning, especially in the hippocampus (Montagne et al.,
2015). Various factors are believed to effect BBB integrity.
In animal studies, Elahy et al. (2015) provided evidence for
inflammation driven BBB dysfunction and decreased tight
junctions in aged mice compared to young mice (Elahy et al.,
2015). Furthermore, recent evidence obtained from experiments
on animal models suggests that a lack of normal gut microbiota
in germ-free mice is another potential regulator of BBB integrity
(Braniste et al., 2014). However, the mechanism for this gut-brain
relationship in modulating BBB integrity is unknown (Braniste
et al., 2014).

AGE-RELATED CHANGES IN GLIAL CELL
ACTIVATION: MICROGLIAL CELLS AND
ASTROCYTES

The brain parenchyma consists of neurons and glial cells.
Glial cells are divided into macro glial cells, as astrocytes, and
microglial cells. Microglial cells are the resident macrophages
and main orchestrators of the immune response in the CNS.
A key role of the microglial cells is to respond to signals
from the peripheral immune system and observed pathogens
or injury and neuronal signals in the CNS (Kreutzberg, 1996;
Kierdorf and Prinz, 2015). At rest and under normal homeostatic
circumstances, microglial cells express a branched morphology
and ceaselessly observe their microenvironment for damaged
tissue or pathogens (Nimmerjahn et al., 2005; Rivest, 2009;
Torres-Platas et al., 2014). Upon activation, microglial cells
undergo morphological and functional transformations: they
retract their branches and form hypertrophic cell bodies and
express immune mediators as pro-inflammatory and anti-
inflammatory cytokines (Hanisch, 2002; Torres-Platas et al.,
2014). After homeostatic balance has been restored microglial
cells return to their “observing” phenotype and transform back
to their resting state morphology (Nimmerjahn et al., 2005;
Rivest, 2009; Karperien et al., 2013). Astrocytes on the other
hand are the main glial cells of the brain parenchyma and
maintain a close relationship with the BBB permeability rate
forming the glial limitans of the BBB (Abbott et al., 2006;
Sofroniew, 2015). Astrocytes have been shown to modulate
microglial cell activity (Von Bernhardi and Eugenín, 2004;
Tichauer et al., 2007), perform an important role in synaptic
transmission in the synaptic cleft (Shigetomi et al., 2008;
Perea et al., 2009) and influence synaptic function (Ota et al.,
2013).

Normal aging is associated with glial senescence characterized
by a primed, activated state of the microglial cells and astrocytes.
In animal models microglial cells of aged individuals have
an activated morphology, expressing hypertrophic cell bodies
in the absence of disease (Hwang et al., 2008). In addition,
they express increased mRNA for pro- and anti-inflammatory
cytokines and other biomarkers, such as, IL-1β, IL-6, TNF-α,
IL-10, and major histocompatibility complex class II proteins
(Sheffield and Berman, 1998; Sierra et al., 2007; Henry et al., 2009;
Wu et al., 2016). This is consistent with the findings of an overall
increased inflammatory cytokine profile in healthy elderly people

(Álvarez-Rodríguez et al., 2012). However, a recent PET study
comparing healthy elderly to young people concluded that aging
was not associated with increased activity of microglial cells, but
rather degeneration of microglial cells (Suridjan et al., 2014).

In the prefrontal cortex and areas of the hippocampus of
aged rats an increased number of astrocytes with an altered
morphology have been assessed and these astrocytes are larger
in size, indicating an activated profile (Amenta et al., 1998).
In addition, astrocytes in the aging brain of animals and
humans express an activated phenotype reflected by an increased
production of the astrocytic glial fibrillary acidic protein (GFAP)
(Nichols et al., 1993; David et al., 1997). The age-related increases
in GFAP has a similar profile as activated astrocytes during acute
inflammation (Pekny and Pekna, 2004).

OXIDATIVE STRESS AND CHRONIC
NEUROINFLAMMATION

In the brain parenchyma, microglial cells, together with
intracellular mitochondria, are the main producers of reactive
oxygen species (ROS), such as nitric oxide. ROS are a natural
by-product of energy production (Gemma et al., 2007). To
maintain a homeostatic balance microglial cells are involved
in antioxidant defense mechanisms and during inflammation
microglial cells are also the main producers of antioxidants in
the CNS, such as glutathione (Hirrlinger et al., 2000; Dringen,
2005). A homeostatic balance between these two processes is
of importance for adequate energy production of microglial
cells (Gemma et al., 2007). Both underproduction as well
as overproduction of ROS result in dysfunctional cells and
intercellular communication (Gemma et al., 2007).

Animal evidence shows an age-related overproduction of
ROS in primed microglial cells (Hayashi et al., 2008; Nakanishi
and Wu, 2009). During age-related chronic inflammation,
it is hypothesized that antioxidants are depleted and an
overproduction of ROS occurs. This results in an imbalance
between ROS and antioxidants, causing oxidative stress (Gemma
et al., 2007; Njie et al., 2012). Indeed, oxidative stress caused by
depletion of antioxidants has shown to activate inflammatory
pathways, such as Nuclear Factor kappa B (NFκB) in an
experimental animal model (Lee et al., 2010). As a result,
microglial cells and astrocytes were shown to be activated
resulting in elevated amounts of IL-6 and TNF-α (Lee et al., 2010;
Njie et al., 2012).

CHRONIC STRESS AND
NEUROINFLAMMATION

On presentation of an internal or external stressor a series of
(neuro) endocrine reactions take place. The neuroendocrine
cascade is initiated via the hypothalamic pituitary adrenal (HPA)
axis and results in the excretion of several neuropeptides and
stimulating factors and the eventual release of glucocorticoids
(Aguilera, 2011). Glucocorticoids modulate HPA-axis activity
via feedback to the pituitary, hippocampus and hypothalamus
(Aguilera, 2011). Acute stress responses are essential for survival
and homeostatic rebalance and have an immunosuppressive
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effect (Aguilera, 2011; Tian et al., 2014; Duque Ede and Munhoz,
2016). However, chronic exposure to stress hormones may
predispose to immune alterations resulting in an increased
inflammatory response in the brain via activation of the NF-
κB pathway and increased release of pro-inflammatory cytokines
(Munhoz et al., 2006; Aguilera, 2011; Tian et al., 2014; Duque Ede
and Munhoz, 2016).

Several animal studies have shown that the prefrontal cortex
and the hippocampus, areas with high density of glucocorticoid
receptors, are sensitive to the neuroinflammatory effects of
glucocorticoids and a range of pro-inflammatory responses are
induced via increased microglial activity, activation of the NF-
κB pathway and TNF-α and IL1β expression (de Pablos et al.,
2006; Munhoz et al., 2006, 2010). In addition, Schiavone et al.
(2016) demonstrated that in rats isolation-induced chronic stress
increased BBB permeability, reflected by increased expression
of matrix metalloproteinases and increased expression of IL-6
(Schiavone et al., 2016).

A longitudinal study demonstrated that chronic stress resulted
in an age-related increased expression of IL-6 (Kiecolt-Glaser
et al., 2003). However, another study found no age-related
correlation between life event stress and memory functioning
in adults (Korten et al., 2014). In an animal model though,
McKim et al. (2016) showed that chronic stress induced
hippocampal inflammatory responses characterized by increased
pro-inflammatory cytokine expression and microglial activation.
This also resulted in transient spatial memory impairments
(McKim et al., 2016).

HIPPOCAMPAL NEUROGENESIS AND
NEUROINFLAMMATION

Hippocampal neurogenesis plays an important role in memory
consolidation and spatial learning, processes in which the
hippocampus exerts a key role (Ojo et al., 2015). Hippocampal
neurogenesis has shown to diminish in aged animals (Ojo
et al., 2015). In human post-mortem studies a moderate
decline in hippocampal neurogenesis has been observed (Knoth
et al., 2010). Increased neuroinflammation and especially an
increased activation of microglial cells is thought to underlie this
diminished hippocampal neurogenesis (Ojo et al., 2015). Indeed,
Ekdahl and colleagues showed that increased microglial activity
inhibited the formation of new neurons in the hippocampal
dentate gyrus (Ekdahl et al., 2003). However, a human post-
mortem study in patients with Alzheimer’s disease showed
increased hippocampal neurogenesis and the findings of an
in vitro study suggested that astrocyte excreted IL-6 promotes
hippocampal neurogenesis (Jin et al., 2004; Oh et al., 2010).
Although a study with mice showed age-related decline in
neurogenesis which was correlated with cognitive decline, a study
in Rhesus monkeys showed that a decrease in hippocampal
neurogenesis is not highly related to age-related cognitive decline
(Villeda et al., 2011; Ngwenya et al., 2015). Therefore, the exact
relation between hippocampal neurogenesis, neuroinflammation
and age-related cognitive decline should be investigated further.

CHRONIC LOW-GRADE
NEUROINFLAMMATION AND COGNITIVE
AGING

A growing body of preclinical and clinical studies indicate
that the age-related physiological and functional changes of
the immune system are associated with age-related cognitive
decline. Cytokines, microglial cells and astrocytes are involved
in molecular mechanisms underlying cognitive functions, such
as neurogenesis, synaptic transmission, synaptic pruning, long-
term potentiation and synaptic plasticity (Newman, 2003;
McAfoose and Baune, 2009; Morris et al., 2013; Ota et al., 2013).
Moreover, the pro-inflammatory cytokines IL-1β, TNF-α and IL-
6 are particularly overexpressed onmicroglial cells and astrocytes
in areas of the hippocampus and prefrontal cortex (David et al.,
1997; Liu et al., 2012).

Expression of pro-inflammatory cytokines in the brain
above basal level has shown to impair synaptic plasticity and
hippocampal-dependent memory learning in rodents (Sierra
et al., 2007; Barrientos et al., 2010; Hein et al., 2010; Norden
and Godbout, 2013). In coherence with these results, Blau et al.
(2012) observed in an imaging study that compared to young
rats increased BBB permeability in the perivascular space and
hippocampal areas was associated with age-related dysfunction
of long-term potentiation in the old rats, a process underlying
the formation of memories (Blau et al., 2012). In addition, age-
related dysfunction of long term potentation (LTP) through
chronic systemic inflammation might be mainly caused by
neuroinflammation induced by microglial cells (Liu et al., 2012).

In healthy elderly people IL-6 has been negatively associated
with encoding and recall of memories as well as with processing
speed, executive functions and global cognitive functioning
(Ravaglia et al., 2005; Elderkin-Thompson et al., 2012; Trollor
et al., 2012). Another study found that increased levels of
CRP were associated with poorer memory and smaller medial
temporal lobe volumes in healthy elderly people (Bettcher et al.,
2012). However, Palta et al. (2015) were unable to replicate
these results in their longitudinal study with healthy elderly
women. Neither IL-6 nor CRP levels were associated with
immediate and delayed memory or executive functions, although
IL-6 was negatively associated with processing speed (Palta
et al., 2015). Comparing these studies is difficult with the
latter study using different methodologies and analyses (i.e.,
dividing inflammatory markers into tertiles and measured non-
fasting blood inflammatory levels). Diurnal rhythms of cytokines
in plasma and serum have also shown to fluctuate with age
(Altara et al., 2015). Interestingly, a recent study reported an
increased oxidative stress status and lower antioxidants levels
as well as an increased inflammatory profile in institutionalized
healthy elderly people compared to non-institutionalized healthy
elderly people and these variables correlated with lower
cognitive performance with oxidative stress best predicting
cognitive decline (Baierle et al., 2015). Together the results
from these studies indicate that the underlying mechanisms
involved in chronic neuroinflammation and oxidative stress
negatively influence cognition across several domains as we
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age. Differences between studies might be due to a variety of
psychological and cognitive test batteries used as well as different
methodologies applied to measure inflammatory biomarkers
(see Pase and Stough, 2013). Longitudinal intervention studies
targeting neuroinflammation and oxidative stress for the elderly
are urgently required. Figure 1 summarizes the potential
inflammatory pathways that are involved in cognitive decline.

PART II: PLANT EXTRACTS AND PLANT
SECONDARY METABOLITES THAT MAY ADDRESS THE
NEUROINFLAMMATORY MECHANISMS ASSOCIATED
WITH AGE-RELATED COGNITIVE.

POLYPHENOLS AND ALKALOIDS

Resveratrol
Resveratrol is a plant-derived polyphenol found in red wine
and grapes and has the capability to protect and cross the BBB.
In their study, Turner et al. (2015) observed that resveratrol
and its metabolites were present in plasma and the CNS and
based on this observation suggest that penetration of these

metabolites across the blood brain barrier occurred. As shown
in mouse models resveratrol may protect the integrity of the
BBB by preserving normal cerebral endothelial function and
thus BBB permeability (Lin et al., 2010; Zhao et al., 2015).
Resveratrol protects the BBB and also inhibits beta-amyloids
accumulating in the hippocampus as demonstrated in AD rat
models (Zhao et al., 2015). Resveratrol may also play a role in
neuroprotection by inhibiting interleukin beta (IL-1β) and BV-
2 murine microglial cells (Abraham and Johnson, 2009), and
with its derivatives inhibiting microglial activation and reducing
the production of pro-inflammatory factors (Candelario-Jalil
et al., 2007; Meng et al., 2008). These mechanisms may explain
the potential therapeutic effects of resveratrol on preventing
cognitive decline as demonstrated in clinical trials. For example,
a recent 26 week randomized clinical trial (RCT) with resveratrol
supplementation (200 mg/d) in older overweight individuals
resulted in improved retention of words and reduced body fat.
MRI scans during cognitive tasks performance, have shown that
compared to placebo, resveratrol increases cerebral blood flow in
the prefrontal cortex as measured by changes in total hemoglobin
concentrations (Kennedy et al., 2010). Other neuroimaging

FIGURE 1 | Age-related effects on neuroinflammation are characterized by:

(i) an increased activity of microglial cells, especially in the hippocampus and prefrontal cortex.

(a) this is characterized by microglial cells with hyperthrophic cell bodies.

(b) which is accompanied by increased NF-κB expression; increased pro-and anti-inflammatory cytokine production; increased ROS production and decreased

antioxidant production which results in oxidative stress; decreased hippocampal neurogenesis.

(c) Oxidative stress and NF-κB increase each other.

(ii) an increased amount of peripheral pro- and anti-inflammatory cytokines.

(iii) increased BBB permeability.

(a) increased entrance of peripheral cytokines.

(b) peripheral cytokines induce increased activity of microglial cells.

The age-related neuroinflammatory processes are amplified when exposed to chronic stress.

The neuroinflammatory changes result in variable cognitive decline.
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studies have also revealed increases in hippocampal functional
connectivity, which correlated with improvements in retention
scores and glycated hemoglobin, an indicator of improved
glucose metabolism (Witte et al., 2014). Brain imaging also
showed an increase in brain volume loss in individuals with mild
to moderate AD who took a high-dose resveratrol intervention
for 52-weeks (Turner et al., 2015).

Curcumin
Curcumin, the yellow pigment of turmeric (Curcuma lunga) is
a powerful antioxidant and consumption in the diet has been
linked to reduced AD rates. The mechanism by which curcumin
is neuroprotective may be by decreasing Aβ plaques, metal-
chelation, and decrease microglia activation and protection of the
BBB breakdown (Jiang et al., 2007). Jiang et al. (2007) studied
the effects of curcumin injection in rats exposed to cerebral
ischemia-reperfusion. They found that curcumin reduced infarct
volume, neurological deficit and BBB permeability (Jiang et al.,
2007). In other animal studies, curcumin was shown to inhibit
free radicals (nitric oxide) and inflammatory markers (TNF-α,
IL-1α, and IL-6) produced by microglia (Lee et al., 2007) and
reduced levels of an astrocyte marker (GFAP) in animal models
(Lim et al., 2001). Few randomized, double blind, placebo-
controlled trials examining the effects of curcumin on cognitive
function have been conducted in humans. Although curcumin
was shown to decrease Aβ-plaque deposition, it does not seem
to provide benefits on cognition in AD patients (Baum et al.,
2008). Yet in healthy elderly adults acute doses (1 and 3 h post
intervention) of a special curcumin extract (400mg Longvida R©)
significantly improved performance on sustained attention and
working memory compared to controls (Cox et al., 2015),
although these findings were acute rather than chronic effects. A
more limited range of effects were seen chronically after a 4 week
administration period (Cox et al., 2015).

Pinocembrin
Pinocembrin is one of the flavanones found in propolis and
honey with actions useful in preserving cognitive function.
Preclinical studies have shown pinocembrin treatment prevents
or improves cognitive functioning (Guang and Du, 2006;
Liu et al., 2014). The mechanisms by which procembrin
improves cognition may be through its neuroprotective effects,
reducing inflammatory mediators, reducing glial activation and
reducing ROS production (Guang and Du, 2006; Liu et al.,
2014). In a recent animal study, pinocembrin ameliorated
cerebral damage caused by global cerebral ischemia-reperfusion.
These neuroprotective effects (Lin et al., 2010) were attributed
to pinocembrin suppressing damaging biomarkers including
oxidative stress and inflammation (Saad et al., 2015). Another
mechanism may be through improving brain edema, reduced
BBB permeability and improve cerebral blood flow (Meng et al.,
2011). Future clinical studies are required to explore the possible
effects of pinocembrin on preventing cognitive function in
humans.

Epigallocatechin-3-Gallate (EGCG)
Epigallocatechin-3-Gallate (EGCG) is a compound extracted
from green tea (Camellia sinensis) that has polypharmacological

actions contributing to its potential role in preventing cognitive
decline. EGCG inhibits the production of Aβ-induced
neuroinflammatory response of microglia (TNF-α, IL-1β,
IL-6, and inducible nitric oxide synthase), protects against
neurotoxicity and inhibits ROS (Cheng-Chung Wei et al.,
2016). Similarly, in another study in animals with increased
neuroinflammation and memory impairment, EGCG prevented
the activation of astrocytes and increase in cytokines (TNF-α,
IL-1β, IL-6) (Lee et al., 2013). Moreover, in a cerebral ischemia
mouse model, Wu and colleagues (2012) found that chronic
treatment with either a green tea extract or EGCG improved
learning and memory deficits. Additionally, both treatments
resulted in elevated levels of antioxidant levels and activity
(Malondialdehyde, glutathione, and superoxide dismutase)
in the cerebral cortex and hippocampus (Wu et al., 2012). In
addition, EGCG had anti-inflammatory effects in microglia cells.
These studies demonstrate that EGCG can prevent memory
impairments by potentially inhibiting neuroinflammatory
biomarkers and reducing oxidative stress. To date most of
the research on EGCG has been preclinical. One pilot study
demonstrated that a single dose of EGCG (135 mg) modulated
cerebral blood flow 45 min post dose, no changes related to
placebo were seen on cognitive function or mood (Wightman
et al., 2012). Another study showed that an acute (2 h) EGCG
treatment was associated with increased calmness, reduced stress
and increased EEG activity in the midline frontal and central
brain regions (Scholey et al., 2012). However, these authors did
not assess cognitive function. Despite these promising findings of
acute doses on brain function and hemodynamic factors, clinical
studies exploring the long-term effects of EGCG on cognitive
function are required.

Berberine and Caffeine
Alkaloids, such as caffeine and berberine, the latter obtained from
several plants including Tinospora cordifolia, have protective
roles on the BBB. In rabbits with high cholesterol, caffeine
consumption attenuated leakage of the inflammatory marker
immunoglobulin G and Evans blue (used to measure the
permeability of the BBB to macronutrients) to the brain tissue,
indicating a possible role in protecting the BBB integrity (Chen
et al., 2008). Caffeine is found in various beverages (e.g.,
coffee, tea) and food sources (e.g., chocolate) and is commonly
consumed in our society. Caffeine suppresses the production
of inflammatory cytokines (e.g., TNF-α, IL-10) and is thought
to have protective effects on the BBB (see Horrigan et al.,
2006; Chen et al., 2010 for review). The mechanism by which
caffeine protects the BBB leakage is thought to be via inhibiting
neuroinflammation as seen in in vitro models lacking a BBB and
through modulating astrocytes, microglia and neurones (Chen
et al., 2010).

PLANT BASED EXTRACTS

Ginseng–Panax quinquefolius
Clinical studies have shown that the standardized ginseng
(Panax quinquefolius) root extract, demonstrated improved
cognitive function in healthy older individuals, particularly
in working memory, spatial working memory and executive
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functioning domains (Ossoukhova et al., 2015). Ginseng’s
constituents’ ginsenodies Rh2, Rh3, and compound K have anti-
inflammatory effects through their ability to inhibit nitric oxide
synthase and cytokine expression, and by stemming microglia-
mediating mechanisms (Choi et al., 2011). Ginsenoside Rb1 in
particular, protects against BBB dysfunction in subarachnoid
hemorrhage brain injury rat models (Li et al., 2010). The
reduction of neurological deficits, brain oedema and BBB
permeability are argued to underlie BBB protection. Further
to this Ke et al. (2014) demonstrated that ginsenoside Rb1
attenuates damage to rat cerebral cortical neurons against
hypoxia-activated microglia. This neuroprotective mechanism
may be mediated by the downregulation of nitric oxide,
superoxide, and TNF-α expression (Ke et al., 2014). Ginseng’s
other mechanisms for improving cognitive function involve
inhibiting microglial pathways, attenuating neuroinflammation
(TNF-α and IL-6) and increasing acetylcholinesterase levels in
the cortex and hippocampus (Xu et al., 2014). Furthermore,
in an acute hippocampal injury model, resulting in spatial
memory, learning and memory impairments, Xu and colleagues
assessed the effects of ginsenosides (Rb1, Rb3 and Rd, termed
Rb extract) on neuronal loss in rats. They found that Rb
delayed microglial activation, prevented memory impairments,
and protected astrocytes and neurones (Xu et al., 2014). In
another study by the same research group, ginsenoside Rg1
treatment in aging rat models resulted in an attenuation of
age associated changes in the hippocampus, including cognitive
impairments and hippocampal neurogenesis compared with
the controls (Zhu et al., 2014). Additionally, ginsenoside
Rg1 treatment elevated age-associated biomarkers in the
hippocampus including antioxidants (glutathione peroxidase
and superoxide dismutase, decreased proinflammatory cytokine
levels (IL-1b, IL-6, and TNF-α). Importantly, ginsenoside Rg1
treatment attenuated astrocyte activation, which may have been
due to the anti-inflammatory and neurogenesis ability of this
treatment (Zhu et al., 2014).

Ginkgo biloba
Ginkgo biloba is a well-known plant based extract for its benefits
on cognitive functioning through its antioxidant and vascular
functions. Recent in vitro evidence suggests that an additional
mechanism for cognitive enhancing effects of Ginkgolide B may
be in reducing BBB permeability as shown in rats (Sharma
et al., 2000). Recently Wan et al. (2014) discovered in vitro,
that the well characterized Ginkgo biloba leave extract EGB-
761, prevented brain endothelial damage caused by beta-amyloid
oligomer, which plays a key role in the pathogenesis of AD
(Wan et al., 2014). In human studies a Ginkgo biloba leaf extract
decreased IL-6 serum levels in patients with neurologic disorders
(Ching-Hsiang et al., 2012). A recent randomized controlled pilot
study showed that following 1 week treatment with a special
combination of Panax ginseng, Ginkgo biloba, and Crocus sativus
(Sailuotong; SLT) improved working memory performance in
healthy adults (Steiner et al., 2015).

Bacopa monnieri
Clinical studies have reported in healthy subjects that compared
to placebo, chronic Bacopa monnieri daily treatment (3

months; 300/320 mg/day, 150/160mg × 2/day) improves visual
information processing, learning rate, memory consolidation,
anxiety levels, working memory, spatial working memory,
attention, verbal learning, and cognitive processing (Stough et al.,
2001, 2008; Peth-Nui et al., 2012). Additionally in AD patients,
a higher dose of Bacopa monnieri (300mg × 2/day) improved
attention, language and comprehension following a 6 month
intervention (Goswami et al., 2011). One mechanism by which
Bacopa monnieri improves cognitive function may be through
its ability to reduce inflammation. Bacopa monnieri inhibits
cyclooxygenase (COX), down regulates TNF-α, inhibits ROS
and reduces DNA damage in rat astrocytes, demonstrating its
anti-inflammatory actions (Russo et al., 2003; Viji and Helen,
2008).

Scutellaria baicalensis, Scutellaria
laterifolia
Skullcap (Scutellaria baicalensis) is a herb traditionally used
for relieving anxiety and stress. The root extract of the herb
Scutellaria baicalensis, has been demonstrated in vivo studies to
attenuate the BBB disruption through anti-inflammatory effects
(the root extract Scutellaria radis) (Shin et al., 2012) and reduces
BBB permeability (Zhu et al., 2012). Preclinical studies showed
improvements in cognition in aged and senescent rat models
(Song et al., 2009; Jeong et al., 2011). Additionally, reduced
oxidative stress (MDA concentrations), increased antioxidant
activity (superoxide dismutase, catalase) and reduced expression
of inflammatory markers (iNOS, COX) were observed in aged
rat brain tissue including the hippocampus and cerebral cortex
following treatment with a special Scutellaria baicalensis extract
(Song et al., 2009; Jeong et al., 2011). However, the effects
on cognitive function in humans are mixed (Brock et al.,
2014) and future clinical studies employing comprehensive
neuropsychological test batteries are needed. Taken together
these findings suggest that Scutellaria baicalensis may be a
plant based extract to consider when researching conditions
that involves the disruption of the BBB, elevated oxidative
stress and reduced antioxidant activity, such as in cognitive
impairments.

Salvia triloba, Salvia officinalis
Salvia miltiorrhiza and Salvia triloba have been studied for their
neuroprotective effects. Salvia miltiorrhiza commonly known,
as Danshen is an herb used in Traditional Chinese Medicine.
The terpine Tashinone IIA is one of Salvia miltiorrhiza’s
major active constitutes shown to maintain the integrity of
the BBB and endothelial cell function (Wang et al., 2010;
Zhang et al., 2010). Additionally, AD model rats treated with
Salvia triloba and Piper nigrum showed significantly increased
brain ACh levels, reduced brain and serum inflammatory
marker levels (CRP, NF-jB65 and MCP-1 levels). Although
few clinical studies have been conducted on Salvia, one
randomized controlled trial showed that relative to placebo, 16
week administration of Salvia officinalis, produced significant
improvements on the Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-cog) scores in patients with mild to
moderate dementia (Akhondzadeh et al., 2003). By ameliorating
cholinergic dysfunction, reducing inflammation and increasing
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antioxidant activity, these plant based extracts may assist in
repairing neuronal damage associated with AD (Ahmed et al.,
2013a).

Withania somnifera
Withanolides and extracts from Withania somnifera have been
studied for their anti-inflammatory and immunomodulatory
properties as well as their cognitive enhancing effects (Pingali
et al., 2014; Gupta and Kaur, 2016). A recent in vitro study
demonstrated that a leaf extract from Withania somnifera
decreased production of the pro-inflammatory mediators TNF-
α, IL1-β, IL6 as well as ROS via downregulation of NFκB
proteins in inflamed primary microglial cells. Furthermore,
the extract inhibited microglial migration, an important aspect
of neuroinflammation, and induced apoptosis of the inflamed
microglial cells (Gupta and Kaur, 2016). This study also
suggests that Withania somnifera is capable of maintaining or
restoring BBB integrity by inhibiting expression of microglial
inflammatory factors as matrix metalloproteinases, associated
with opening of the BBB (Rosenberg, 2002; Shigemori et al.,
2006; Gupta and Kaur, 2016). In an in-vitro study a Withania
somnifera leaf extract and the active compound withanone, but
not withaferin A, showed to be protective against oxidative stress
in brain-derived cells (Shah et al., 2015). A rat model showed
that pre-treatment withWithania somnifera reversed the induced
oxidative stress and the resulting cognitive decline via a strong
antioxidant effect (Ahmed et al., 2013b).

OTHER COMPOUNDS

There are many other plant based and nutraceutical compounds
that may be important therapeutic targets for cognitive aging
via their actions on the immune system. These include Ginger,
Vitamin D, Alpha lipoic acid, Omega-3 essential fatty acids,
and Obovatol fromMagnolia obovata. However, the mechanisms
and or trials assessing cognition are lacking. As such we
believe that it is too early to include these compounds in this
review.

CONCLUSION

Mechanisms including BBB integrity, oxidative stress, chronic
stress, hippocampal neurogenesis, microglial activation and
chronic low-grade neuroinflammation, have shown to be related
to cognitive changes across age. Supplementation with one or
more plant based extracts or nutraceuticals that act on these
mechanisms may be an important next step toward preventing
age associated cognitive decline. In recent years there has been a
growing interest in exploring naturally forming compounds on
protecting BBB permeability, ameliorating microglial activation
and/or neuroinflammation, with the aim to develop treatments
to prevent cognitive decline. Various plant based extracts have
shown to exert protective effects on the BBB by preserving BBB
integrity and function. These important compounds are found in
plants (e.g., Ginkgo biloba, Panax ginseng, and Bacopa monnieri)
and food sources (e.g., resveratrol, tea polyphenols, plant
alkaloids and antioxidants). Since microglial cells contribute

to neurodegenerative diseases by activating neuroinflammatory
processes and oxidative stress, natural compounds that supress
these mechanisms may be key therapies in preventing cognitive
decline in older individuals. Potential antioxidant therapies
are phytochemicals including curcumin, EGCG and resveratrol
which interestingly also play a role on microglial cells.

However, the translational gap between in vitro, in vivo and
clinical studies is still a major issue and there is a paucity of
studies looking at the immunomodulatory effects of the discussed
plant extracts and secondary plant metabolites in a healthy
population. Moreover, careful consideration should be made
in respect to the immunosuppressive and immunomodulatory
effects of the plant extracts and active plant compounds,
as for instance hypo-activity of microglial cells has likewise
demonstrated to be involved in disturbing normal brain
functioning (Niraula et al., 2017). Therefore, the long-term effects
of the herbal treatments should be studied more extensively.

Another aspect to take into consideration is that humans
present a broad range of responses to similar plant based extracts
related to genetic and epigenetic modulations involved in the
metabolism and distribution of the active compounds (Szarc vel
Szic et al., 2015). Interestingly, modern science is investigating
the effects of many traditionally used medicinal plant extracts
and plant compounds and should perhaps also evaluate the great
potential of other fundamental principles underlying traditional
medicinal systems.

One fundamental principle in Ayurveda, the Indian
traditional medicinal system, is the prakriti, which defines a
person’s true nature based on psychosomatic features (Prasher
et al., 2017). The prakriti is independent of racial, ethnic and
geographical factors and is highly correlated with molecular
and genetic profiles (Joshi et al., 2010; Ghodke et al., 2011;
Prasher et al., 2016). Therefore, future research could be
focused on personalized herbal supplementation to prevent
age-related cognitive decline and thus aim for an optimal
response through a personalized rebalance of the various
underlying mechanisms. Furthermore, some of the common
cofounding factors that currently debilitate comparisons
within and between research could be rectified. In addition,
the prakriti is likely also underlying the discrepancies found
between other study outcomes as either increased or decreased
amounts of pro-inflammatory cytokines in similar research
settings, because the homeostatic imbalance can take a different
course depending on someone’s prakriti (Prasher et al.,
2016).

AUTHOR CONTRIBUTIONS

CS conceptualized the review; All authors contributed to the
writing of the review; CK took overall responsibility with the
integration of the review.

ACKNOWLEDGMENTS

This manuscript was supported by a Blackmores Institute pilot
research grant and a Swinburne University Advancement Office
pilot grant to CS.

Frontiers in Pharmacology | www.frontiersin.org 8 March 2017 | Volume 8 | Article 117

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Kure et al. Inflammation and Cognition

REFERENCES

Abbott, N. J., and Friedman, A. (2012). Overview and introduction:
the blood–brain barrier in health and disease. Epilepsia 53, 1–6.
doi: 10.1111/j.1528-1167.2012.03696.x

Abbott, J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte–endothelial
interactions at the blood–brain barrier. Nat. Rev. Neuroscie. 7, 41–53.
doi: 10.1038/nrn1824

Abraham, J., and Johnson, R. W. (2009). Consuming a diet supplemented
with resveratrol reduced infection-related neuroinflammation and
deficits in working memory in aged mice. Rejuvenation Res. 12, 445–453.
doi: 10.1089/rej.2009.0888

Aguilera, G. (2011). HPA axis responsiveness to stress: implications for healthy
aging. Exp. Gerontol. 46, 90–95. doi: 10.1016/j.exger.2010.08.023

Ahmed, H. H., Salem, A. M., Sabry, G. M., Husein, A. A., and Kotob, S. E. (2013a).
Possible therapeutic uses of Salvia triloba and piper nigrum in Alzheimer’s
disease-induced rats. J. Med. Food 16, 437–446. doi: 10.1089/jmf.2012.0165

Ahmed, M. E., Javed, H., Khan, M. M., Vaibhav, K., Ahmad, A., Khan, A.,
et al. (2013b). Attenuation of oxidative damage-associated cognitive decline
by Withania somnifera in rat model of streptozotocin-induced cognitive
impairment. Protoplasma 250, 1067–1078. doi: 10.1007/s00709-013-0482-2

Akhondzadeh, S., Noroozian, M., Mohammadi, M., Ohadinia, S., Jamshidi,
A. H., and Khani, M. (2003). Salvia officinalis extract in the treatment
of patients with mild to moderate Alzheimer’s disease: a double blind,
randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 28, 53–59.
doi: 10.1046/j.1365-2710.2003.00463.x

Altara, R., Manca, M., Hermans, K. C., Daskalopoulos, E. P., Brunner-La
Rocca, H.-P., Hermans, R. J., et al. (2015). Diurnal rhythms of serum
and plasma cytokine profiles in healthy elderly individuals assessed using
membrane based multiplexed immunoassay. J. Transl. Med. 13, 1–8.
doi: 10.1186/s12967-015-0477-1

Álvarez-Rodríguez, L., López-Hoyos, M., Muñoz-Cacho, P., and Martínez-
Taboada, V. M. (2012). Aging is associated with circulating cytokine
dysregulation.Cell. Immunol. 273, 124–132. doi: 10.1016/j.cellimm.2012.01.001

Amenta, F., Bronzetti, E., Sabbatini, M., and Vega, J. A. (1998). Astrocyte
changes in aging cerebral cortex and hippocampus: a quantitative
immunohistochemical study. Microsc. Res. Tech. 43, 29–33. doi: 10.1002
/(SICI)1097-0029(19981001)43:1&lt;29::AID-JEMT5&gt;3.0.CO;2-H

Baierle, M., Nascimento, S. N., Moro, A. M., Brucker, N., Freitas, F., Gauer, B., et al.
(2015). Relationship between inflammation and oxidative stress and cognitive
decline in the institutionalized elderly. Oxid. Med. Cell. Longev. 2015:804198.
doi: 10.1155/2015/804198

Banks, W. A. (2005). Blood-brain barrier transport of cytokines: a
mechanism for neuropathology. Curr. Pharm. Des. 11, 973–984.
doi: 10.2174/1381612053381684

Barrientos, R. M., Frank, M. G., Watkins, L. R., and Maier, S. F. (2010). Memory
impairments in healthy aging: role of aging-induced microglial sensitization.
Aging Dis. 1, 212–231.

Baum, L., Lam, C. W. K., Cheung, S. K. K., Kwok, T., Lui, V., Tsoh, J., et al. (2008).
Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of
curcumin in patients with Alzheimer disease [7]. J. Clin. Psychopharmacol. 28,
110–113. doi: 10.1097/jcp.0b013e318160862c

Bettcher, B. M., Wilheim, R., Rigby, T., Green, R., Miller, J. W., Racine,
C. A., et al. (2012). C-reactive protein is related to memory and medial
temporal brain volume in older adults. Brain Behav. Immun. 26, 103–108.
doi: 10.1016/j.bbi.2011.07.240

Bishop, N. A., Lu, T., and Yankner, B. A. (2010). Neural mechanisms of ageing and
cognitive decline. Nature. 464, 529–535. doi: 10.1038/nature08983

Blau, C. W., Cowley, T. R., O’Sullivan, J., Grehan, B., Browne, T. C., Kelly, L., et al.
(2012). The age-related deficit in LTP is associated with changes in perfusion
and blood-brain barrier permeability. Neurobiol. Aging 33, 1005.e23–1005.e35.
doi: 10.1016/j.neurobiolaging.2011.09.035

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., et al.
(2014). The gut microbiota influences blood-brain barrier permeability in mice.
Sci. Transl. Med. 6:263ra158. doi: 10.1126/scitranslmed.3009759

Brock, C., Whitehouse, J., Tewfik, I., and Towell, T. (2014). American
skullcap (scutellaria lateriflora): a randomised, double-blind placebo-controlled
crossover study of its effects on mood in healthy volunteers. Phytother. Res. 28,
692–698. doi: 10.1002/ptr.5044

Candelario-Jalil, E., de Oliveira, A. C., Graf, S., Bhatia, H. S., Hull, M.,
Munoz, E., et al. (2007). Resveratrol potently reduces prostaglandin
E2 production and free radical formation in lipopolysaccharide-activated
primary rat microglia. J. Neuroinflammation. 4:25. doi: 10.1186/1742-20
94-4-25

Chen, X., Gawryluk, J. W., Wagener, J. F., Ghribi, O., and Geiger, J. D. (2008).
Caffeine blocks disruption of blood brain barrier in a rabbit model of
Alzheimer’s disease. J. Neuroinflammation. 5:12. doi: 10.1186/1742-2094-5-12

Chen, X., Ghribi, O., and Geiger, J. D. (2010). Caffeine protects against disruptions
of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s
diseases. J. Alzheimer’s Dis. 20, S127–S41. doi: 10.3233/JAD-2010-1376

Cheng-Chung Wei, J., Huang, H. C., Chen, W. J., Huang, C. N., Peng, C. H.,
and Lin, C. L. (2016). Epigallocatechin gallate attenuates amyloid β-induced
inflammation and neurotoxicity in EOC 13.31 microglia. Eur. J. Pharmacol.

770, 16–24. doi: 10.1016/j.ejphar.2015.11.048
Ching-Hsiang, L., Chiao-Wen, H., Nan-Fu, C., Wen-Sheng, L., Ya-Fen, H., and

Wen-Tung, W. (2012). In vivo effects of Ginkgo biloba extract on interleukin-6
cytokine levels in patients with neurological disorders. Indian J. Pharmacol. 44,
118–121. doi: 10.4103/0253-7613.91881

Choi, D. K., Koppula, S., and Suk, K. (2011). Inhibitors of microglial
neurotoxicity: focus on natural products. Molecules 16, 1021–1043.
doi: 10.3390/molecules16021021

Cohen, M. C., and Cohen, S. (1996). Cytokine function: a study in biologic
diversity. Am. J. Clin. Pathol. 105, 589–598. doi: 10.1093/ajcp/105.5.589

Cox, K. H. M., Pipingas, A., and Scholey, A. B. (2015). Investigation of the effects
of solid lipid curcumin on cognition and mood in a healthy older population. J.
Psychopharmacol. 29, 642–651. doi: 10.1177/0269881114552744

David, J.-P., Ghozali, F., Fallet-Bianco, C., Wattez, A., Delaine, S., Boniface,
B., et al. (1997). Glial reaction in the hippocampal formation is highly
correlated with aging in human brain. Neurosci. Lett. 235, 53–56.
doi: 10.1016/S0304-3940(97)00708-8

de Pablos, R., Villarán, R., Argüelles, S., Herrera, A., Venero, J., Ayala, A., et al.
(2006). Stress increases vulnerability to inflammation in the rat prefrontal
cortex. J. Neurosci. 26, 5709–5719. doi: 10.1523/JNEUROSCI.0802-06.2006

Dringen, R. (2005). Oxidative and antioxidative potential of brain microglial cells.
Antioxid. Redox Signal. 7, 1223–1233. doi: 10.1089/ars.2005.7.1223

Duque Ede, A., and Munhoz, C. D. (2016). The Pro-inflammatory Effects
of Glucocorticoids in the Brain. Front. Endocrinol. (Lausanne). 7:78.
doi: 10.3389/fendo.2016.00078

Ekdahl, C. T., Claasen, J.-H., Bonde, S., Kokaia, Z., and Lindvall, O. (2003).
Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad.
Sci. U.S.A. 100, 13632–13637. doi: 10.1073/pnas.2234031100

Elahy, M., Jackaman, C., Mamo, J. C., Lam, V., Dhaliwal, S. S., Giles, C., et al.
(2015). Blood–brain barrier dysfunction developed during normal aging is
associated with inflammation and loss of tight junctions but not with leukocyte
recruitment. Immun. Ageing 12, 1–9. doi: 10.1186/s12979-015-0029-9

Elderkin-Thompson, V., Irwin, M. R., Hellemann, G., and Kumar, A. (2012).
Interleukin-6 and memory functions of encoding and recall in healthy
and depressed elderly adults. Am. J. Geriat. Psychiatry 20, 753–763.
doi: 10.1097/JGP.0b013e31825d08d6

Erickson, M. A., Dohi, K., and Banks, W. A. (2012). Neuroinflammation: a
common pathway in CNS diseases as mediated at the blood-brain barrier.
Neuroimmunomodulation 19, 121–130. doi: 10.1159/000330247

Farrall, A. J., and Wardlaw, J. M. (2009). Blood–brain barrier: ageing and
microvascular disease–systematic review and meta-analysis. Neurobiol. Aging
30, 337–352. doi: 10.1016/j.neurobiolaging.2007.07.015

Forsey, R. J., Thompson, J. M., Ernerudh, J., Hurst, T. L., Strindhall, J., Johansson,
B., et al. (2003). Plasma cytokine profiles in elderly humans.Mech. Ageing Dev.

124, 487–493. doi: 10.1016/S0047-6374(03)00025-3
Gemma, C., Vila, J., Bachstetter, A., and Bickford, P. (2007). “Chapter 15 oxidative

stress and the aging brain: from theory to prevention,” in Brain Aging: Models,

Methods, and Mechanisms, ed D. R. Riddle (Boca Raton, FL: CRC Press Taylor
and Francis Group), 353–374.

Ghodke, Y., Joshi, K., and Patwardhan, B. (2011). Traditional Medicine to modern
pharmacogenomics: ayurveda prakriti type and CYP2C19 gene polymorphism
associated with the metabolic variability. Evid. Based Complement. Alternat.

Med. 2011, 249528. doi: 10.1093/ecam/nep206
Goswami, S., Saoji, A., Kumar, N., Thawani, V., Tiwari, M., and Thawani,

M. (2011). Effect of bacopa monnieri on cognitive functions in Alzheimer’s

Frontiers in Pharmacology | www.frontiersin.org 9 March 2017 | Volume 8 | Article 117

https://doi.org/10.1111/j.1528-1167.2012.03696.x
https://doi.org/10.1038/nrn1824
https://doi.org/10.1089/rej.2009.0888
https://doi.org/10.1016/j.exger.2010.08.023
https://doi.org/10.1089/jmf.2012.0165
https://doi.org/10.1007/s00709-013-0482-2
https://doi.org/10.1046/j.1365-2710.2003.00463.x
https://doi.org/10.1186/s12967-015-0477-1
https://doi.org/10.1016/j.cellimm.2012.01.001
https://doi.org/10.1002/(SICI)1097-0029(19981001)43:1&lt;29::AID-JEMT5&gt;3.0.CO;2-H
https://doi.org/10.1155/2015/804198
https://doi.org/10.2174/1381612053381684
https://doi.org/10.1097/jcp.0b013e318160862c
https://doi.org/10.1016/j.bbi.2011.07.240
https://doi.org/10.1038/nature08983
https://doi.org/10.1016/j.neurobiolaging.2011.09.035
https://doi.org/10.1126/scitranslmed.3009759
https://doi.org/10.1002/ptr.5044
https://doi.org/10.1186/1742-2094-4-25
https://doi.org/10.1186/1742-2094-5-12
https://doi.org/10.3233/JAD-2010-1376
https://doi.org/10.1016/j.ejphar.2015.11.048
https://doi.org/10.4103/0253-7613.91881
https://doi.org/10.3390/molecules16021021
https://doi.org/10.1093/ajcp/105.5.589
https://doi.org/10.1177/0269881114552744
https://doi.org/10.1016/S0304-3940(97)00708-8
https://doi.org/10.1523/JNEUROSCI.0802-06.2006
https://doi.org/10.1089/ars.2005.7.1223
https://doi.org/10.3389/fendo.2016.00078
https://doi.org/10.1073/pnas.2234031100
https://doi.org/10.1186/s12979-015-0029-9
https://doi.org/10.1097/JGP.0b013e31825d08d6
https://doi.org/10.1159/000330247
https://doi.org/10.1016/j.neurobiolaging.2007.07.015
https://doi.org/10.1016/S0047-6374(03)00025-3
https://doi.org/10.1093/ecam/nep206
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Kure et al. Inflammation and Cognition

disease patients. Int. J. Collaborative Res. Intern. Med. Public Health 3,
285–293.

Guang, H. M., and Du, G. H. (2006). Protections of pinocembrin
on brain mitochondria contribute to cognitive improvement in
chronic cerebral hypoperfused rats. Eur. J. Pharmacol. 542, 77–83.
doi: 10.1016/j.ejphar.2006.04.054

Gupta, M., and Kaur, G. (2016). Aqueous extract from the Withania somnifera

leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J.
Neuroinflammation. 13, 193. doi: 10.1186/s12974-016-0650-3

Hanisch, U.-K. (2002). Microglia as a source and target of cytokines. Glia 40,
140–155. doi: 10.1002/glia.10161

Hayashi, Y., Yoshida, M., Yamato, M., Ide, T., Wu, Z., Ochi-Shindou,
M., et al. (2008). Reverse of age-dependent memory impairment and
mitochondrial DNA damage in microglia by an overexpression of human
mitochondrial transcription factor a in mice. J. Neurosci. 28, 8624–8634.
doi: 10.1523/JNEUROSCI.1957-08.2008

Hein, A. M., Stasko, M. R., Matousek, S. B., Scott-McKean, J. J., Maier, S. F.,
Olschowka, J. A., et al. (2010). Sustained hippocampal IL-1β overexpression
impairs contextual and spatial memory in transgenic mice. Brain Behav.

Immun. 24, 243–253. doi: 10.1016/j.bbi.2009.10.002
Henry, C. J., Huang, Y., Wynne, A. M., and Godbout, J. P. (2009). Peripheral

lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged
mice that is associated with exaggerated induction of both pro-inflammatory
IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23,
309–317. doi: 10.1016/j.bbi.2008.09.002

Hirrlinger, J., Gutterer, J. M., Kussmaul, L., Hamprecht, B., and Dringen, R.
(2000). Microglial cells in culture express a prominent glutathione system
for the defense against reactive oxygen species. Dev. Neurosci. 22, 384–392.
doi: 10.1159/000017464

Holdsworth, S. R., and Gan, P.-Y. (2015). Cytokines: names and numbers
you should care about. Clin. J. Am. Soc. Nephrol. 10, 2243–2254.
doi: 10.2215/CJN.07590714

Horrigan, L. A., Kelly, J. P., and Connor, T. J. (2006). Immunomodulatory
effects of caffeine: friend or foe? Pharmacol. Ther. 111, 877–892.
doi: 10.1016/j.pharmthera.2006.02.002

Hwang, I. K., Lee, C. H., Li, H., Yoo, K.-Y., Choi, J. H., Kim, D. W., et al. (2008).
Comparison of ionized calcium-binding adapter molecule 1 immunoreactivity
of the hippocampal dentate gyrus and CA1 region in adult and aged dogs.
Neurochem. Res. 33, 1309–1315. doi: 10.1007/s11064-007-9584-6

Jeong, K., Shin, Y. C., Park, S., Park, J. S., Kim, N., Um, J. Y., et al. (2011).
Ethanol extract of Scutellaria baicalensisGeorgi prevents oxidative damage and
neuroinflammation and memorial impairments in artificial senescense mice. J.
Biomed. Sci. 18:14. doi: 10.1186/1423-0127-18-14

Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., and Zhu, D. Y. (2007).
Neuroprotective effect of curcumin on focal cerebral ischemic rats by
preventing blood–brain barrier damage. Eur. J. Pharmacol. 561, 54–62.
doi: 10.1016/j.ejphar.2006.12.028

Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., et al. (2004).
Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl. Acad.
Sci. 101, 343–347. doi: 10.1073/pnas.2634794100

Joshi, K., Ghodke, Y., and Shintre, P. (2010). Traditional medicine and genomics.
J. Ayurveda Integr. Med. 1, 26–32. doi: 10.4103/0975-9476.59824

Karperien, A., Ahammer, H., and Jelinek, H. (2013). Quantitating the subtleties
of microglial morphology with fractal analysis. Front. Cell. Neurosci. 7:3.
doi: 10.3389/fncel.2013.00003

Ke, L. N., Guo, W., Xu, J. W., Zhang, G. D., Wang, W., and Huang, W.
H. (2014). Ginsenoside Rb1 attenuates activated microgliainduced neuronal
damage. Neural Regen. Res. 9, 252–259. doi: 10.4103/1673-5374.128217

Kennedy, D. O., Wightman, E. L., Reay, J. L., Lietz, G., Okello, E. J., Wilde, A.,
et al. (2010). Effects of resveratrol on cerebral blood flow variables and cognitive
performance in humans: a double-blind, placebo-controlled, crossover
investigation. Am. J. Clin. Nutr. 91, 1590–1597. doi: 10.3945/ajcn.2009.28641

Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., Atkinson, C., Malarkey,
W. B., and Glaser, R. (2003). Chronic stress and age-related increases in the
proinflammatory cytokine IL-6. Proc. Natl. Acad. Sci. U.S.A. 100, 9090–9095.
doi: 10.1073/pnas.1531903100

Kierdorf, K., and Prinz, M. (2015). “Factors regulating microglia activation,”
in Never-Resting Microglia: Physiological Roles in the Healthy Brain and
Pathological Implications, eds A. Sierra, M. Tremblay, and H. Wake (Lausanne:
Frontiers Media SA), 4.

Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R. P., et al. (2010).
Murine features of neurogenesis in the human hippocampus across the lifespan
from 0 to 100 years. PLoS ONE 5:e8809. doi: 10.1371/journal.pone.0008809

Korten, N. C., Sliwinski, M. J., Comijs, H. C., and Smyth, J. M. (2014). Mediators of
the relationship between life events and memory functioning in a community
sample of adults. Appl. Cogn. Psychol. 28, 626–633. doi: 10.1002/acp.3043

Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS.
Trends Neurosci. 19, 312–318. doi: 10.1016/0166-2236(96)10049-7

Lee, M., Cho, T., Jantaratnotai, N., Wang, Y. T., McGeer, E., and McGeer, P.
L. (2010). Depletion of GSH in glial cells induces neurotoxicity: relevance
to aging and degenerative neurological diseases. FASEB J. 24, 2533–2545.
doi: 10.1096/fj.09-149997

Lee, Y. J., Choi, D. Y., Yun, Y. P., Han, S. B., Oh, K. W., and Hong, J. T. (2013).
Epigallocatechin-3-gallate prevents systemic inflammation-induced memory
deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J.
Nutr. Biochem. 24, 298–310. doi: 10.1016/j.jnutbio.2012.06.011

Lee, H. S., Jung, K. K., Cho, J. Y., Rhee, M. H., Hong, S., Kwon, M., et al.
(2007). Neuroprotective effect of curcumin is mainly mediated by blockade of
microglial cell activation. Pharmazie 62, 937–942. doi: 10.1691/ph.2007.12.7563

Li, Y., Tang, J., Khatibi, N. H., Zhu, M., Chen, D., Zheng, W., et al. (2010).
Ginsenoside RB1 reduces neurologic damage, is anti-apoptotic, and down-
regulates p53 and BAX in subarachnoid hemorrhage. Curr. Neurovasc. Res. 7,
85–94. doi: 10.2174/156720210791184952

Lim, A., Krajina, K., and Marsland, A. I. (2013). “Peripheral inflammation and
cognitive aging,” in Inflammation in Psychiatry, eds A. Harlaris and B. E.
Leonard (Basel: Kraft Druck, Ettelingen), 175–187.

Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., and Cole, G. M. (2001).
The curry spice curcumin reduces oxidative damage and amyloid pathology in
an Alzheimer transgenic mouse. J. Neurosci. 21, 8370–8377.

Lin, Y. L., Chang, H. C., Chen, T. L., Chang, J. H., Chiu, W. T., Lin, J. W.,
et al. (2010). Resveratrol protects against oxidized LDL-induced breakage of
the blood-brain barrier by lessening disruption of tight junctions and apoptotic
insults to mouse cerebrovascular endothelial cells. J. Nutr. 140, 2187–2192.
doi: 10.3945/jn.110.123505

Liu, R., Li, J. Z., Song, J. K., Zhou, D., Huang, C., Bai, X. Y., et al.
(2014). Pinocembrin improves cognition and protects the neurovascular
unit in Alzheimer related deficits. Neurobiol. Aging 35, 1275–1285.
doi: 10.1016/j.neurobiolaging.2013.12.031

Liu, X., Wu, Z., Hayashi, Y., and Nakanishi, H. (2012). Age-dependent
neuroinflammatory responses and deficits in long-term potentiation in the
hippocampus during systemic inflammation. Neuroscience 216, 133–142.
doi: 10.1016/j.neuroscience.2012.04.050

Maier, S. F., Goehler, L. E., Fleshner, M., and Watkins, L. R. (1998). The role of the
vagus nerve in cytokine-to-brain communication. Ann. N. Y. Acad. Sci. 840,
289–300. doi: 10.1111/j.1749-6632.1998.tb09569.x

McAfoose, J., and Baune, B. (2009). Evidence for a cytokine
model of cognitive function. Neurosci. Biobeh. Rev. 33, 355–366.
doi: 10.1016/j.neubiorev.2008.10.005

McKim, D. B., Niraula, A., Tarr, A. J., Wohleb, E. S., Sheridan, J. F., and
Godbout, J. P. (2016). Neuroinflammatory dynamics underlie memory
impairments after repeated social defeat. J. Neurosci. 36, 2590–2604.
doi: 10.1523/JNEUROSCI.2394-15.2016

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454,
428–435. doi: 10.1038/nature07201

Meng, F., Liu, R., Gao, M., Wang, Y., Yu, X., Xuan, Z., et al. (2011). Pinocembrin
attenuates blood-brain barrier injury induced by global cerebral ischemia-
reperfusion in rats. Brain Res. 1391, 93–101. doi: 10.1016/j.brainres.2011.03.010

Meng, X. L., Yang, J. Y., Chen, G. L., Wang, L. H., Zhang, L. J., Wang, S.,
et al. (2008). Effects of resveratrol and its derivatives on lipopolysaccharide-
induced microglial activation and their structure-activity relationships. Chem.

Biol. Interact. 174, 51–59. doi: 10.1016/j.cbi.2008.04.015
Montagne, A., Barnes, S. R., Sweeney,M. D., Halliday,M. R., Sagare, A. P., Zhao, Z.,

et al. (2015). Blood-brain barrier breakdown in the aging human hippocampus.
Neuron 85, 296–302. doi: 10.1016/j.neuron.2014.12.032

Morris, G. P., Clark, I. A., Zinn, R., and Vissel, B. (2013). Microglia: a new frontier
for synaptic plasticity, learning and memory, and neurodegenerative disease
research. Neurobiol. Learn. Mem. 105, 40–53. doi: 10.1016/j.nlm.2013.07.002

Munhoz, C. D., Lepsch, L. B., Kawamoto, E. M., Malta, M. B., de Sá Lima,
L., Avellar, M. C. W., et al. (2006). Chronic unpredictable stress exacerbates
lipopolysaccharide-induced activation of nuclear factor-κB in the frontal cortex

Frontiers in Pharmacology | www.frontiersin.org 10 March 2017 | Volume 8 | Article 117

https://doi.org/10.1016/j.ejphar.2006.04.054
https://doi.org/10.1186/s12974-016-0650-3
https://doi.org/10.1002/glia.10161
https://doi.org/10.1523/JNEUROSCI.1957-08.2008
https://doi.org/10.1016/j.bbi.2009.10.002
https://doi.org/10.1016/j.bbi.2008.09.002
https://doi.org/10.1159/000017464
https://doi.org/10.2215/CJN.07590714
https://doi.org/10.1016/j.pharmthera.2006.02.002
https://doi.org/10.1007/s11064-007-9584-6
https://doi.org/10.1186/1423-0127-18-14
https://doi.org/10.1016/j.ejphar.2006.12.028
https://doi.org/10.1073/pnas.2634794100
https://doi.org/10.4103/0975-9476.59824
https://doi.org/10.3389/fncel.2013.00003
https://doi.org/10.4103/1673-5374.128217
https://doi.org/10.3945/ajcn.2009.28641
https://doi.org/10.1073/pnas.1531903100
https://doi.org/10.1371/journal.pone.0008809
https://doi.org/10.1002/acp.3043
https://doi.org/10.1016/0166-2236(96)10049-7
https://doi.org/10.1096/fj.09-149997
https://doi.org/10.1016/j.jnutbio.2012.06.011
https://doi.org/10.1691/ph.2007.12.7563
https://doi.org/10.2174/156720210791184952
https://doi.org/10.3945/jn.110.123505
https://doi.org/10.1016/j.neurobiolaging.2013.12.031
https://doi.org/10.1016/j.neuroscience.2012.04.050
https://doi.org/10.1111/j.1749-6632.1998.tb09569.x
https://doi.org/10.1016/j.neubiorev.2008.10.005
https://doi.org/10.1523/JNEUROSCI.2394-15.2016
https://doi.org/10.1038/nature07201
https://doi.org/10.1016/j.brainres.2011.03.010
https://doi.org/10.1016/j.cbi.2008.04.015
https://doi.org/10.1016/j.neuron.2014.12.032
https://doi.org/10.1016/j.nlm.2013.07.002
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Kure et al. Inflammation and Cognition

and hippocampus via glucocorticoid secretion. J. Neurosci. 26, 3813–3820.
doi: 10.1523/JNEUROSCI.4398-05.2006

Munhoz, C. D., Sorrells, S. F., Caso, J. R., Scavone, C., and Sapolsky, R. M.
(2010). Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the
frontal cortex and hippocampus in a dose-dependent manner. J. Neurosci. 30,
13690–13698. doi: 10.1523/JNEUROSCI.0303-09.2010

Nakanishi, H., and Wu, Z. (2009). Microglia-aging: roles of microglial lysosome-
and mitochondria-derived reactive oxygen species in brain aging. Behav. Brain
Res. 201, 1–7. doi: 10.1016/j.bbr.2009.02.001

Newman, E. A. (2003). New roles for astrocytes: regulation of synaptic
transmission. Trends Neurosci. 26, 536–542. doi: 10.1016/S0166-2236(03)
00237-6

Nguyen, M. D., Julien, J.-P., and Rivest, S. (2002). Innate immunity: the missing
link in neuroprotection and neurodegeneration?Nat. Rev. Neurosci. 3, 216–227.
doi: 10.1038/nrn752

Ngwenya, L. B., Heyworth, N. C., Shwe, Y., Moore, T. L., and Rosene, D. L.
(2015). Age-related changes in dentate gyrus cell numbers, neurogenesis, and
associations with cognitive impairments in the rhesus monkey. Front. Syst.
Neurosci. 9:102. doi: 10.3389/fnsys.2015.00102

Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A., and Finch, C. E. (1993).
GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14,
421–429. doi: 10.1016/0197-4580(93)90100-P

Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells
are highly dynamic surveillants of brain parenchyma in vivo. Science 308,
1314–1318. doi: 10.1126/science.1110647

Niraula, A., Sheridan, J. F., and Godbout, J. P. (2017). Microglia priming with aging
and stress. Neuropsychopharmacology 42, 318–333. doi: 10.1038/npp.2016.185

Njie, E. G., Boelen, E., Stassen, F. R., Steinbusch, H. W. M., Borchelt, D. R., and
Streit, W. J. (2012). Ex vivo cultures of microglia from young and aged rodent
brain reveal age-related changes in microglial function. Neurobiol. Aging 33,
195.e1–195.e12. doi: 10.1016/j.neurobiolaging.2010.05.008

Norden, D. M., and Godbout, J. P. (2013). Review: microglia of the aged
brain: primed to be activated and resistant to regulation. Neuropathol. Appl.
Neurobiol. 39, 19–34. doi: 10.1111/j.1365-2990.2012.01306.x

Oh, J., McCloskey, M. A., Bong, C. C., Bendickson, L., Nilsen-Hamilton, M.,
and Sakaguchi, D. S. (2010). Astrocyte-derived interleukin-6 promotes specific
neuronal differentiation of neural progenitor cells from adult hippocampus.
J. Neurosci. Res. 88, 2798–2809. doi: 10.1002/jnr.22447

Ojo, J. O., Rezaie, P., Gabbott, P. L., and Stewart, M. G. (2015). Impact of age-
related neuroglial cell responses on hippocampal deterioration. Front. Aging
Neurosci. 7:57. doi: 10.3389/fnagi.2015.00057

Ossoukhova, A., Owen, L., Savage, K., Meyer, M., Ibarra, A., Roller, M., et al.
(2015). Improved working memory performance following administration of a
single dose of American ginseng (Panax quinquefolius L.) to healthymiddle-age
adults. Hum. Psychopharmacol. 30, 108–122. doi: 10.1002/hup.2463

Ota, Y., Zanetti, A. T., and Hallock, R. M. (2013). The role of astrocytes in
the regulation of synaptic plasticity and memory formation. Neural Plast.
2013:185463. doi: 10.1155/2013/185463

Palta, P., Xue, Q.-L., Deal, J. A., Fried, L. P., Walston, J. D., and Carlson, M. C.
(2015). Interleukin-6 and C-reactive protein levels and 9-year cognitive decline
in community-dwelling older women: the women’s health and aging study, II.
J. Gerontol. A Biol. Sci. Med. Sci. 70, 873–878. doi: 10.1093/gerona/glu132

Pase, M. P., and Stough, C. (2013). Describing a taxonomy of cognitive
processes for clinical trials assessing cognition. Am. J. Clin. Nutr. 98, 509–510.
doi: 10.3945/ajcn.113.065532

Patterson, S. L. (2015). Immune dysregulation and cognitive vulnerability in the
aging brain: interactions of microglia, IL-1β, BDNF and synaptic plasticity.
Neuropharmacology 96, 11–18. doi: 10.1016/j.neuropharm.2014.12.020

Pekny, M., and Pekna, M. (2004). Astrocyte intermediate filaments in CNS
pathologies and regeneration. J. Pathol. 204, 428–437. doi: 10.1002/path.1645

Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes
process and control synaptic information. Trends Neurosci. 32, 421–431.
doi: 10.1016/j.tins.2009.05.001

Peth-Nui, T., Wattanathorn, J., Muchimapura, S., Tong-Un, T., Piyavhatkul, N.,
Rangseekajee, P., et al. (2012). Effects of 12-weekBacopamonnieri consumption
on attention, cognitive processing, working memory, and functions of both
cholinergic and monoaminergic systems in healthy elderly volunteers. Evid.
Based Complement. Alternat. Med. 2012:606424. doi: 10.1155/2012/606424

Pingali, U., Pilli, R., and Fatima, N. (2014). Effect of standardized aqueous
extract of Withania somnifera on tests of cognitive and psychomotor
performance in healthy human participants. Pharmacognosy Res. 6, 12–18.
doi: 10.4103/0974-8490.122912

Prasher, B., Gibson, G., and Mukerji, M. (2016). Genomic insights into ayurvedic
and western approaches to personalized medicine. J. Genet. 95, 209–228.
doi: 10.1007/s12041-015-0607-9

Prasher, B., Varma, B., Kumar, A., Khuntia, B. K., Pandey, R., Narang, A.,
et al. (2017). Ayurgenomics for stratified medicine: TRISUTRA consortium
initiative across ethnically and geographically diverse Indian populations. J.
Ethnopharmacol. 197, 274–293. doi: 10.1016/j.jep.2016.07.063

Ravaglia, G., Forti, P., Maioli, F., Brunetti, N., Martelli, M., Servadei, L., et al.
(2005). Serum C-reactive protein and cognitive function in healthy elderly
italian community dwellers. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1017–1021.
doi: 10.1093/gerona/60.8.1017

Rivest, S. (2009). Regulation of innate immune responses in the brain. Nat. Rev.
Immunol. 9, 429–439. doi: 10.1038/nri2565

Rosenberg, G. A. (2002). Matrix metalloproteinases in neuroinflammation. Glia
39, 279–291. doi: 10.1002/glia.10108

Roubenoff, R., Harris, T. B., Abad, L.W.,Wilson, P.W., Dallal, G. E., andDinarello,
C. A. (1998). Monocyte cytokine production in an elderly population: effect of
age and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 53, M20–M6.

Russo, A., Borrelli, F., Campisi, A., Acquaviva, R., Raciti, G., and Vanella, A. (2003).
Nitric oxide-related toxicity in cultured astrocytes: effect of Bacopa monniera.
Life Sci. 73, 1517–1526. doi: 10.1016/S0024-3205(03)00476-4

Saad, M. A., Abdel Salam, R. M., Kenawy, S. A., and Attia, A. S. (2015).
Pinocembrin attenuates hippocampal inflammation, oxidative perturbations
and apoptosis in a rat model of global cerebral ischemia reperfusion.
Pharmacol. Rep. 67, 115–122. doi: 10.1016/j.pharep.2014.08.014

Schiavone, S., Mhillaj, E., Neri, M., Morgese, M. G., Tucci, P., Bove, M., et al.
(2016). Early loss of blood-brain barrier integrity precedes NOX2 elevation
in the prefrontal cortex of an animal model of psychosis. Mol. Neurobiol.

doi: 10.1007/s12035-016-9791-8. [Epub ahead of print].
Scholey, A., Downey, L. A., Ciorciari, J., Pipingas, A., Nolidin, K., Finn, M.,

et al. (2012). Acute neurocognitive effects of epigallocatechin gallate (EGCG).
Appetite 58, 767–770. doi: 10.1016/j.appet.2011.11.016

Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., Kaur, G., et al.
(2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells
against oxidative stress and induce differentiation. PLoS ONE 10:e0120554.
doi: 10.1371/journal.pone.0120554

Sharma, H. S., Drieu, K., Alm, P., and Westman, J. (2000). Role of nitric
oxide in blood-brain barrier permeability, brain edema and cell damage
following hyperthermic brain injury. An experimental study using EGB-761
and Gingkolide B pretreatment in the rat. Acta Neurochir. Suppl. 76, 81–86.
doi: 10.1007/978-3-7091-6346-7_17

Sheffield, L. G., and Berman, N. E. (1998). Microglial expression of MHC class II
increases in normal aging of nonhuman primates. Neurobiol. Aging 19, 47–55.
doi: 10.1016/S0197-4580(97)00168-1

Shigemori, Y., Katayama, Y., Mori, T., Maeda, T., and Kawamata, T. (2006).
“Matrix metalloproteinase-9 is associated with blood-brain barrier opening and
brain edema formation after cortical contusion in rats,” in Brain EdemaXIII, eds
J. T. Hoff, R. F. Keep, G. Xi, and Y. Hua (New York, NY: Springer), 130–133.

Shigetomi, E., Bowser, D. N., Sofroniew, M. V., and Khakh, B. S. (2008).
Two forms of astrocyte calcium excitability have distinct effects on NMDA
receptor-mediated slow inward currents in pyramidal neurons. J. Neurosci. 28,
6659–6663. doi: 10.1523/JNEUROSCI.1717-08.2008

Shin, J. W., Kang, H. C., Shim, J., and Sohn, N. W. (2012). Scutellaria

baicalensis attenuates blood-brain barrier disruption after intracerebral
hemorrhage in rats. Am. J. Chin. Med. 40, 85–96. doi: 10.1142/S0192415X12
500073

Sierra, A., Gottfried-Blackmore, A. C., McEwen, B. S., and Bulloch, K. (2007).
Microglia derived from aging mice exhibit an altered inflammatory profile.Glia
55, 412–424. doi: 10.1002/glia.20468

Simen, A. A., Bordner, K. A., Martin, M. P., Moy, L. A., and Barry, L. C. (2011).
Cognitive dysfunction with aging and the role of inflammation. Ther. Adv.
Chronic Dis. 2, 175–195. doi: 10.1177/2040622311399145

Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nat. Rev.
Neurosci. 16, 249–263. doi: 10.1038/nrn3898

Frontiers in Pharmacology | www.frontiersin.org 11 March 2017 | Volume 8 | Article 117

https://doi.org/10.1523/JNEUROSCI.4398-05.2006
https://doi.org/10.1523/JNEUROSCI.0303-09.2010
https://doi.org/10.1016/j.bbr.2009.02.001
https://doi.org/10.1016/S0166-2236(03)00237-6
https://doi.org/10.1038/nrn752
https://doi.org/10.3389/fnsys.2015.00102
https://doi.org/10.1016/0197-4580(93)90100-P
https://doi.org/10.1126/science.1110647
https://doi.org/10.1038/npp.2016.185
https://doi.org/10.1016/j.neurobiolaging.2010.05.008
https://doi.org/10.1111/j.1365-2990.2012.01306.x
https://doi.org/10.1002/jnr.22447
https://doi.org/10.3389/fnagi.2015.00057
https://doi.org/10.1002/hup.2463
https://doi.org/10.1155/2013/185463
https://doi.org/10.1093/gerona/glu132
https://doi.org/10.3945/ajcn.113.065532
https://doi.org/10.1016/j.neuropharm.2014.12.020
https://doi.org/10.1002/path.1645
https://doi.org/10.1016/j.tins.2009.05.001
https://doi.org/10.1155/2012/606424
https://doi.org/10.4103/0974-8490.122912
https://doi.org/10.1007/s12041-015-0607-9
https://doi.org/10.1016/j.jep.2016.07.063
https://doi.org/10.1093/gerona/60.8.1017
https://doi.org/10.1038/nri2565
https://doi.org/10.1002/glia.10108
https://doi.org/10.1016/S0024-3205(03)00476-4
https://doi.org/10.1016/j.pharep.2014.08.014
https://doi.org/10.1007/s12035-016-9791-8
https://doi.org/10.1016/j.appet.2011.11.016
https://doi.org/10.1371/journal.pone.0120554
https://doi.org/10.1007/978-3-7091-6346-7_17
https://doi.org/10.1016/S0197-4580(97)00168-1
https://doi.org/10.1523/JNEUROSCI.1717-08.2008
https://doi.org/10.1142/S0192415X12500073
https://doi.org/10.1002/glia.20468
https://doi.org/10.1177/2040622311399145
https://doi.org/10.1038/nrn3898
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Kure et al. Inflammation and Cognition

Song, H. R., Cheng, J. J., Miao, H., and Shang, Y. Z. (2009). Scutellaria
flavonoid supplementation reverses ageing-related cognitive impairment
and neuronal changes in aged rats. Brain Injury 23, 146–153.
doi: 10.1080/02699050802649670

Steiner, G. Z., Yeung, A., Liu, J. X., Camfield, D. A., Blasio, F. M., Pipingas,
A., et al. (2015). The effect of Sailuotong (SLT) on neurocognitive and
cardiovascular function in healthy adults: a randomised, double-blind, placebo
controlled crossover pilot trial. BMC Complement. Altern. Med. 16:15.
doi: 10.1186/s12906-016-0989-0

Stoll, G., Jung, S., Jander, S., van der Meide, P., and Hartung, H.-P. (1993).
Tumor necrosis factor-α in immune-mediated demyelination and Wallerian
degeneration of the rat peripheral nervous system. J. Neuroimmunol. 45,
175–182. doi: 10.1016/0165-5728(93)90178-2

Stough, C., Downey, L. A., Lloyd, J., Silber, B., Redman, S., Hutchison, C.,
et al. (2008). Examining the nootropic effects of a special extract of Bacopa
monniera on human cognitive functioning: 90 Day double-blind placebo-
controlled randomized trial. Phytother. Res. 22, 1629–1634. doi: 10.1002/
ptr.2537

Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T.,
et al. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi)
on cognitive function in healthy human subjects. Psychopharmacology (Berl).

156, 481–484. doi: 10.1007/s002130100815
Stowe, R. P., Peek, M. K., Cutchin, M. P., and Goodwin, J. S. (2010). Plasma

cytokine levels in a population-based study: relation to age and ethnicity. J.
Gerontol. A Biol. Sci. Med. Sci. 65A, 429–433. doi: 10.1093/gerona/glp198

Suridjan, I., Rusjan, P., Voineskos, A. N., Selvanathan, T., Setiawan, E., Strafella, A.
P., et al. (2014). Neuroinflammation in healthy aging: a PET study using a novel
Translocator Protein 18kDa (TSPO) radioligand,[18 F]-FEPPA. Neuroimage

84, 868–875. doi: 10.1016/j.neuroimage.2013.09.021
Szarc vel Szic, K., Declerck, K., Vidaković, M., and Vanden Berghe, W.
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