
ORIGINAL RESEARCH
published: 27 March 2017

doi: 10.3389/fphar.2017.00155

Frontiers in Pharmacology | www.frontiersin.org 1 March 2017 | Volume 8 | Article 155

Edited by:

Thomas J. Anastasio,

University of Illinois at

Urbana–Champaign, USA

Reviewed by:

Peng Hsiao,

Seattle Genetics Inc., USA

David Dickens,

University of Liverpool, UK

*Correspondence:

Douglas B. Kell

dbk@manchester.ac.uk

Specialty section:

This article was submitted to

Experimental Pharmacology and Drug

Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 13 December 2016

Accepted: 10 March 2017

Published: 27 March 2017

Citation:

Grixti JM, O’Hagan S, Day PJ and

Kell DB (2017) Enhancing Drug

Efficacy and Therapeutic Index

through Cheminformatics-Based

Selection of Small Molecule Binary

Weapons That Improve

Transporter-Mediated Targeting: A

Cytotoxicity System Based on

Gemcitabine.

Front. Pharmacol. 8:155.

doi: 10.3389/fphar.2017.00155

Enhancing Drug Efficacy and
Therapeutic Index through
Cheminformatics-Based Selection of
Small Molecule Binary Weapons That
Improve Transporter-Mediated
Targeting: A Cytotoxicity System
Based on Gemcitabine
Justine M. Grixti 1, 2, Steve O’Hagan 2, 3, 4, Philip J. Day 1, 2 and Douglas B. Kell 2, 3, 4*

1 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK, 2Manchester Institute of Biotechnology,

University of Manchester, Manchester, UK, 3 School of Chemistry, University of Manchester, Manchester, UK, 4Centre for

Synthetic Biology of Fine and Speciality Chemicals, University of Manchester, Manchester, UK

The transport of drug molecules is mainly determined by the distribution of influx
and efflux transporters for which they are substrates. To enable tissue targeting, we
sought to develop the idea that we might affect the transporter-mediated disposition
of small-molecule drugs via the addition of a second small molecule that of itself had no
inhibitory pharmacological effect but that influenced the expression of transporters for the
primary drug. We refer to this as a “binary weapon” strategy. The experimental system
tested the ability of a molecule that on its own had no cytotoxic effect to increase the
toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial
phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The
structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity
greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics
thus providing for a massive enrichment). We chose the top six representatives for further
study. They fell into three clusters whose members bore reasonable structural similarities
to each other (two were in fact isomers), lending strength to the self-consistency of
both our conceptual and experimental strategies. Existing literature had suggested that
indole-3-carbinol might play a similar role to that of our fragments, but in our hands
it was without effect; nor was it structurally similar to any of our hits. As there was
no evidence that the fragments could affect toxicity directly, we looked for effects on
transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5,
and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with
a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly,
the addition of gemcitabine alone increased the expression of the transcript for ABCC2
(MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of
the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without
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significant effect, implying that RRM1 was possibly the more significant player. These
effects were somewhat selective for Panc cells. It seems, therefore, that while the effects
we measured were here mediated more by efflux than influx transporters, and potentially
by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible
to find molecules that manipulate the expression of transporters that are involved in the
bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical
genomics-based drug targeting.

Keywords: binaryweapon, cheminformatics, gemcitabine, anticancer drugs, pancreatic cancer, drug transporters,

phenotypic screening

INTRODUCTION

In a typical small molecule drug discovery programme pipeline,
candidate (“hit”) compounds for treating a particular disease
are selected from a large chemical library, and after various
modifications (to form “leads” and variants thereof) enter
“phase 1,” a testing for safety at low doses in healthy volunteers.
“Attrition” is a term used to describe the failure of suchmolecules
to progress further to market, via phases 2 and 3 (small and larger
clinical trials) (Kola and Landis, 2004; Empfield and Leeson,
2010; Leeson and Empfield, 2010; Leeson, 2016). Nowadays
attrition occurs largely for reasons of toxicity or lack of efficacy
(Kola and Landis, 2004; Arrowsmith and Miller, 2013), and runs
in excess of 90% (e.g., Kola and Landis, 2004; Kell, 2013, and see
for full details http://csdd.tufts.edu/files/uploads/Tufts_CSDD_
briefing_on_RD_cost_study_-_Nov_18,_2014..pdf), with gross
pharmacokinetics and pharmacodynamics (as assessed at the
whole organ level) being seen as less of an issue than it once was
(Kola and Landis, 2004). The simple consequence of this level
of attrition is that it costs ∼10 times more than it might, per
molecule, now as much as $2.5 Bn, to bring a drug successfully
to market.

Role of Transporters in Cellular Drug
Uptake
We have argued that a lack of understanding of human
metabolism and of the transporters necessary to get orally active
drugs across intestinal epithelia and into target cells is one
of the chief causes of attrition. By now, following a similar
programme in yeast (Herrgård et al., 2008), we do have a
reasonable model of the human metabolic network (Swainston
et al., 2013, 2016; Thiele et al., 2013), with fully one third of
the steps involving some kind of transport(er), and with uptake
transporters of the SoLute Carrier families (SLCs) (Hediger et al.,
2004, 2013) being woefully understudied (César-Razquin et al.,
2015). In particular, although it remains underappreciated, we
have rehearsed on multiple occasions the abundant evidence
that the non-transporter- (i.e., bilayer-) mediated uptake of
drugs through intact cell membranes is normally negligible (e.g.,
Dobson and Kell, 2008; Dobson et al., 2009a,b; Kell et al., 2011,
2013, 2015; Lanthaler et al., 2011; Kell, 2013, 2015a,b, 2016a,b;
Kell and Goodacre, 2014; Kell and Oliver, 2014; Mendes et al.,
2015; O’Hagan and Kell, 2015a; Kell, 2015a,b), a striking recent
example being that of Superti-Furga and colleagues (Winter et al.,

2014). This shifts the agenda to one of molecular enzymology
and systems biology, in which we need to discover (i) which
transporters transport which drugs (Giacomini et al., 2010;
Sugiyama and Steffansen, 2013), (ii) their expression profiles in
differentmembranes and tissues, and (iii) their kinetic properties.
In other words it leads us to recognize that this is fundamentally
a problem of systems pharmacology (e.g., van der Greef and
Mcburney, 2005; Berger and Iyengar, 2009; van der Graaf and
Benson, 2011; Antman et al., 2012; Rostami-Hodjegan, 2012;
Waldman and Terzic, 2012; Zhao and Iyengar, 2012; Kell and
Goodacre, 2014; Westerhoff et al., 2015; Kell, 2015a).

Transporter-Mediated Drug Targeting
A particularly nice example of the overwhelming use of
transporters for drug uptake comes from the study of Superti-
Furga and colleagues (Winter et al., 2014) using haploid cells
and determining that very much less than 1% of sepantronium
uptake could have occurred other than via a specific SLC
called SLC35F2. In a similar and complementary vein, the
expression profile of specific transporters allows one to target
drug substrates to the particular tissues in which the relevant
transporters are most highly expressed. This has been illustrated
beautifully by Pfefferkorn and colleagues for both a glucokinase
activator (Pfefferkorn et al., 2012; Pfefferkorn, 2013; Sharma
et al., 2015) and a “statin”-type drug (Pfefferkorn et al., 2011)
that are both targeted to the liver via proteins of the Organic
Anion Transport Protein (OATP/SLCO/SLC21) (Hagenbuch and
Stieger, 2013) family. In this case substantial concentration
ratios of e.g., hepatocyte: pancreas of 50:1 (Pfefferkorn et al.,
2012) and hepatocyte:myocyte of 250,000:1 (Pfefferkorn et al.,
2011) could be achieved (a finding hard to explain on the
basis of any significant bilayer permeability!). Other examples
of tissue-selective drug targeting include a liver-targeted stearoyl
desaturase inhibitor (Oballa et al., 2011; Ramtohul et al., 2011;
Liu, 2013), various other liver-targeted drugs based on OATPs
(Buxhofer-Ausch et al., 2013; Tu et al., 2013), and a prostate-
specific targeting of an iodide transporter for radio-iodine-
mediated cell killing (Kakinuma et al., 2003).

These examples show what can be achieved in terms of drug
targeting if the transporter distribution happens to work to one’s
advantage “naturally,” but cannot be exploited directly when it
does not.

The glucokinase activator case is important, since if such
drug molecules were allowed to enter all tissues they proved
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toxic (Pfefferkorn et al., 2012; Pfefferkorn, 2013). A similar and
particular case of interest is that of broadly cytotoxic anticancer
drugs, where we evidently need mechanisms to target them
solely to the tissue of interest, and where we might then greatly
improve their therapeutic index. Since the tissue-dependent
expression of such transporter molecules is highly heterogeneous
(see e.g., almost any dataset in the human protein atlas http://
proteinatlas.org/ Uhlén et al., 2015, including those for SLC28
http://www.proteinatlas.org/search/slc28 and SLC29 http://www.
proteinatlas.org/search/slc29), it must be subject to regulation
(e.g., Pennycooke et al., 2001; Del Santo et al., 2001; Fernández-
Veledo et al., 2004, 2007; Plant, 2016). Thus, just as with the
small-molecule-driven induction of pluripotent stem cells (Okita
et al., 2007; Feng et al., 2009; Desponts and Ding, 2010; Li and
Ding, 2010; Zhang, 2010; Grskovic et al., 2011; Li et al., 2012,
2014; Li X. et al., 2015; Jung et al., 2014; Kang et al., 2014),
that regulation can similarly be affected by pharmacological
intervention with small molecule effectors. Thus, our aim was
to seek small molecules that were themselves without cytotoxic
effects but that could increase the response of different target
cells to anti-cancer drugs that are otherwise present at only a
barely cytotoxic level, in particular by modulating the level of
activities of specific uptake transporters. It differs from the use
of pairs of existing drugs of known activities (e.g., Borisy et al.,
2003; Lehár et al., 2007, 2008, 2009a,b; Zimmermann et al., 2007;
Wright, 2016), but, interestingly, bears a clear resemblance to
the overall strategy used in traditional Chinese medicine where
a “shi” (“courier”) herb is used to assist the delivery of the
main ingredient (“Jun” or “Emperor” herb) to its site of action
(Zhao et al., 2015). We refer to this combination as a “binary
weapon.”

Gemcitabine and Pancreatic Cancer
The nucleoside analog gemcitabine (2’,2’-difluorodeoxycytidine,
Gemzar R©) (Alvarellos et al., 2014) is one of the most commonly
used chemotherapeutic agents in pancreatic adenocarcinoma,
the carcinoma with arguably the least favorable prognosis (5-
year survival time) of any (Bhattacharjee et al., 2014; Waddell
et al., 2015). Like all nucleoside inhibitors of this type, it
must first be transported into the cell and then be metabolized
(phosphorylated) to exert its clinical action (thereby lowering its
ability to act as a substrate for efflux pumps Fukuda and Schuetz,
2012, though see below). Gemcitabine has multiple intracellular
targets, and up-regulation of these targets or nucleoside-
metabolizing enzymes such as ribonucleotide reductase (RRM1)
may confer resistance to this drug (Bergman et al., 2002,
2005; Nakano et al., 2007; Minami et al., 2015). The main
uptake transporters are considered to be ENT1 (SLC29A1) and
CNT1/3 (SLC28A1/3) of the SLC28/29 families (Kong et al.,
2004; Podgorska et al., 2005; Veltkamp et al., 2008; Young
et al., 2008, 2013; Molina-Arcas et al., 2009; Cano-Soldado
and Pastor-Anglada, 2012; Molina-Arcas and Pastor-Anglada,
2013) (Table 1). SLC28 transporters are sodium-dependent
concentrative nucleoside transporters (Smith et al., 2007), while
SLC29 are equilibrative. Notably, there is considerable evidence
that the potency (cytotoxicity) of gemcitabine is strongly related
to the expression level(s) of these transporters (e.g., Burke et al.,

1998; Mackey et al., 1998a,b; Baldwin et al., 1999; Rauchwerger
et al., 2000; Cass, 2001; Achiwa et al., 2004; Spratlin et al., 2004;
Giovannetti et al., 2005, 2006, 2007; King et al., 2006; Marcé et al.,
2006; Mey et al., 2006; Mini et al., 2006; Leung and Tse, 2007;
Mori et al., 2007; Oguri et al., 2007; Zhang et al., 2007; Cano-
Soldado et al., 2008; Molina-Arcas et al., 2008; Pérez-Torras et al.,
2008; Veltkamp et al., 2008; Andersson et al., 2009; Damaraju
et al., 2009; Farrell et al., 2009, 2016; Köse and Schiedel, 2009;
Maréchal et al., 2009, 2012; Wong et al., 2009; Hagmann et al.,
2010; Lane et al., 2010; Molina-Arcas and Pastor-Anglada, 2010;
Okazaki et al., 2010; Paproski et al., 2010, 2013; Santini et al.,
2010, 2011; Spratlin andMackey, 2010; Tanaka et al., 2010; Bhutia
et al., 2011; De Pas et al., 2011; Gusella et al., 2011; Komori
et al., 2011; Matsumura et al., 2011; Borbath et al., 2012; Choi,
2012; Gesto et al., 2012; Kobayashi et al., 2012; Koczor et al.,
2012; Morinaga et al., 2012; Murata et al., 2012; Eto et al., 2013;
Nakagawa et al., 2013; Skrypek et al., 2013; Xiao et al., 2013;
Chan et al., 2014; Deng et al., 2014; Greenhalf et al., 2014; Khatri
et al., 2014; Koay et al., 2014; Lee et al., 2014; Lemstrová et al.,
2014; Liu et al., 2014; Nordh et al., 2014; Tavano et al., 2014; Wu
et al., 2014; de Sousa Cavalcante and Monteiro, 2014; Hung et al.,
2015; Pastor-Anglada and Pérez-Torras, 2015; Yamada et al.,
2016).

ABC-type efflux transporters are heavily involved in drug
resistance in both mammals (e.g., Liu et al., 2005; Fukuda and
Schuetz, 2012; Rosenberg et al., 2015; Silva et al., 2015) and
microbes (e.g., Putman et al., 2000; Du et al., 2014; Prasad
and Rawal, 2014; Li X.-Z. et al., 2015), and may be of value
in industrial biotechnology (Kell et al., 2015). Gemcitabine
may also be a substrate for certain efflux transporters such as
ABCG2/BRCP (König et al., 2005; Keppler, 2011; Chen et al.,
2012; Lemstrová et al., 2014), although “knockdown of ABCC3,
ABCC5 or ABCC10 individually did not significantly increase
gemcitabine sensitivity” (Rudin et al., 2011). Finally, gemcitabine
may also be deaminated in plasma, leading to its clearance
(Hodge et al., 2011).

Other small molecules known to affect the response of
pancreatic cancer cells to gemcitabine include nicotine (Banerjee
et al., 2013, 2014), while molecules that affect nucleoside
transporter expression include bile acids (Klein et al., 2009).
Finally, erlotinib, gefitinib, and vandetanib inhibit human
nucleoside transporters and thereby protect cancer cells from
gemcitabine cytotoxicity (Damaraju et al., 2014), while a variety
of kinase inhibitors (Huang et al., 2002, 2003, 2004) and
dihydropyridine-type calcium channel antagonists (Li et al.,
2007) may also affect nucleoside transport.

In particular, however, and not least since the small
molecule indole-3-carbinol (which is probably converted to
3,3′-diindolylmethane Banerjee et al., 2009) had been stated to
increase both ENT1 expression and the sensitivity of pancreatic
carcinoma cells to gemcitabine (Wang et al., 2011), possibly
acting viamiRNA-21 (Giovannetti et al., 2010; Hwang et al., 2010;
Melkamu et al., 2010; Paik et al., 2013), as too did the molecule
“S-1” (Nakahira et al., 2008; Jordheim and Dumontet, 2013), the
gemcitabine/nucleoside transporter system seemed ideal for the
test of our “binary weapon” strategy. The present paper reports
the results of this approach.
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MATERIALS AND METHODS

Cells and Reagents
The human pancreatic duct epithelioid carcinoma cell line, Panc1
(see Gou et al., 2007), and the human embryonic kidney cell
line, HEK293 were grown in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma). The human bone marrow neuroblastoma cell
line, SH-SY5Y was grown in a 1:1 mixture of Eagle’s Minimum
Essential Medium (Sigma) and F12 Medium (Sigma). All cell
culture media were supplemented with 10% heat-inactivated
fetal bovine serum (FBS), 200 mM L-glutamine, and a 5 mL
solution containing 10,000 units.mL-1 penicillin and 10 mg.mL-
1 streptomycin. The immortal human pancreatic duct epithelial
cell line, hPDE was grown in Keratinocyte-SFM (1X) medium
(ThermoFisher), supplemented with 10 mg.mL-1 streptomycin.
All four cell lines were obtained and karyotyped locally. Cells
were routinely maintained at 37◦C in a humidified 5% CO2
atmosphere, in continuous exponential growth at a cell density
ranging between 1 × 105 and 1 × 106 cells.mL-1, by passaging
every 3 or 4 days. Cell line authenticity was confirmed through
karyotype testing (University of Manchester, UK).

Cell Growth/Viability Assay
Cells were seeded in a 96-well plate at a density of 5,000
cells/well, in triplicate, and left to attach. Gemcitabine, present
at different concentrations, was added directly to the cells, and
left to incubate for an additional 96 h. Cells were then subjected
to the MTT Cell Proliferation Assay as per the manufacturer’s
instructions (Sigma). Absorbance at 570 nm was measured 3 h
after the addition of 10 µL of MTT salt reagent/well.

Maybridge Fragment Screening
Maybridge fragments (MBFs) obeying the “rule of three”
(Congreve et al., 2003) were supplied at 100 mM in DMSO and
were deployed into the assay plates using an ECHO contactless
liquid handler (Labcyte, Inc). For screening purposes, the first
500 MBFs (Library 1) were pooled, i.e., each well in a 96-well
plate had a pool of six MBFs. Cells were seeded in a 96-well
plate at a density of 5,000 cells/well, in triplicate, and left to
attach overnight. Following incubation, the growth medium was
replaced with fresh medium containing the pooled MBFs, each
fragment present at 10 µM, followed by an additional 24 h
incubation. The cells were further incubated with the fragments
in the presence of gemcitabine at 20 nM for 96 h. Cells were then
subjected to theMTTCell Proliferation Assay as described above.

To study the effect of each MBF on its own rather than in
a pool, the candidate pooled fragments (i.e., showing activity)
were de-convolved, i.e., one MBF/well, and cells were plated and
treated as described above.

Specificity Experiments
SH-SY5Y cells were seeded at a density of 12,500 cells/well,
HEK293 and hPDE cells at a density of 10,000 cells/well,
in triplicate in a 96-well plate, and left to attach overnight.
Following incubation, the medium was replaced with fresh
medium containing the MBF hits (i.e., MBF D1, B1, 10, 11, 12,
and 20) at 10 µM, followed by an additional 24 h incubation
period. Cells were further incubated with the fragments in the

presence of gemcitabine at 100 nM for 72 h (SH-SY5Y cells) and
96 h (HEK293 and hPDE cells). Cell viability was then assessed
using the MTT Cell Proliferation Assay.

Cheminformatic Analyses
These were all performed as in our previous work of this type
(O’Hagan and Kell, 2015a,b,c; O’Hagan et al., 2015; O’Hagan and
Kell, 2016), using the KNIMEworkflow system (see e.g., Berthold
et al., 2008; Mazanetz et al., 2012; Meinl et al., 2012; Warr, 2012;
O’Hagan and Kell, 2015b and http://knime.org/).

Maybridge Fragment Titration Experiments
Cells were seeded in a 96-well plate at a density of 5,000 cells/well,
in triplicate, and left to attach overnight. Following incubation,
the medium was replaced with fresh medium containing MBFs
at different concentrations (3, 10, 30, 100, and 300 µM) followed
by an additional 24 h incubation. Cells were further incubated
with the fragments in the presence of gemcitabine at 100 nM for
96 h. Cells were then assessed using the MTT Cell Proliferation
Assay as described earlier.

Cell Culture Treatments for Gene
Dysregulation Studies
To examine the effect of gemcitabine and MBFs, alone or in
combination; on expression of the influx and efflux transporter
genes and of the RRM1 gene, cells were seeded in a 6-well
plate at a density of 30,000 cells/well, in duplicate, and left to
attach overnight. Following incubation, in studies where the
effects of the MBFs alone were studied, the medium was replaced
with fresh medium containing MBFs at 10 µM, followed by
further incubation for 24 h. For studies where the effects of
gemcitabine alone were studied, the medium was replaced with
fresh medium containing gemcitabine at 100 nM, followed by
further incubation for 96 h. For studies in which cells were
treated with gemcitabine in combination with the fragments,
the cells were first pre-treated with MBFs at 10 µM for 24 h,
followed by further incubation with the fragments at 10 µM
in the presence of gemcitabine at 100 nM for 96 h. Cells were
harvested using TRIzol R© reagent (Life Technologies) and stored
in−80◦C until use.

Total RNA Isolation and Quantitative
Real-Time Reverse Transcription
Polymerase Chain Reaction (RT-qPCR)
Following treatment as described above, total cellular RNA was
isolated from the cells using the RNeasy isolation kit (Qiagen)
according to the manufacturer’s instructions. RNA concentration
was determined using a NanoDrop R© Spectrophotometer
(NanoDrop ND-1000, NanoDrop Technologies, Wilmington,
USA). The OD_260/280 nm ratios of all RNA samples were
determined to be between 1.9 and 2.0, suggesting that all
RNA samples were highly pure. RNA integrity was verified
by the Agilent RNA 6000 Nano assay kit (Agilent Bioanalyser
2100, Agilent Technologies, Cheadle, UK) as described by the
manufacturer. Single-strand cDNA used for RT-qPCR analyses
was synthesized from purified total RNA using SuperScript R©

III Reverse Transcriptase (Life Technologies, Paisley, UK).
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FIGURE 1 | Effect of 500 Maybridge fragments on the viability of Panc1 cells in the absence and presence of 20 nM gemcitabine. Experiment number is
encoded by shape. Fragments were added in pools of 6. Pools in which there was a hit relative to the same control are marked in red. The line is a line of best fit.

FIGURE 2 | Effect of gemcitabine concentration on the viability of

Panc1 cells. Cells were grown and pre-incubated with the stated
concentration of gemcitabine, and their viability was assessed, as described in
the Methods section.

RT-qPCR were performed using 384-well plates, with a final
volume of 10 µL in each well, consisting of 4 µL of cDNA, 5 µL
of 2x SYBR Green LightCycler 480_TM PCR master mix (Roche
Life Sciences), 0.8 µL of sterile distilled water, 0.1 µL each of 20
µM reverse and forward primers. Samples were performed in
triplicates. In the no template controls (negative controls) 4µL
of H2O were added, instead of the cDNA samples. RT-qPCR
reactions were carried-out using the Roche LightCycler LC_480-
qPCR platform, where fluorescence signals were measured in

FIGURE 3 | Variability in gemcitabine sensitivity and the effect of a “hit”

(fragment D1) on cellular viability when measured on three sets of cells

in cultures grown on different days. The differences between gemcitabine
and gemcitabine plus all “hit” fragments such as D1 is statistically significant at
the P < 0.05 level (n = 3).

real-time. The protocol, set-up with thermal cycling conditions,
consisted of one cycle at 95◦C for 10 min, followed by 45 cycles
of amplification at 95◦C for 10 s, and 60◦C for 30 s. Roche
LightCycler Data Analysis Software was used to determine
the melt curve data as well as the quantification cycle values
(Cq values). The changes in expression levels were normalized
against two reference gene as determined via GeNorm (REF),
and the relative mRNA levels of genes following treatment
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FIGURE 4 | Distribution in chemical space of the first 500 Maybridge fragments as judged using the principal components of the variance in a set of

their biophysical properties (see Methods) as produced using RDKit in KNIME.

FIGURE 5 | As in Figure 4 save that the axes are Total Polar Surface area and S log P as calculated using RDKit.
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FIGURE 6 | Tanimoto similarity to the set of three hits in the first 500 Maybridge fragments of 20 molecules selected from the other four libraries. The
average % viability of the cells in the presence of gemcitabine but the absence of Maybridge fragments in this experiment was 81. The starting fragment to which the
molecule was most similar is encoded by shape and color, while the S log P-value is encoded by size.

were calculated using “The Comparative CT Method” (11CT

Method).

Design of Primers for RT-qPCR
The National Centre for Biotechnology Information (NCBI)
website (http://www.ncbi.nlm.nih.gov/) was used to identify and
obtain mRNA sequences. Exon boundaries were determined
from the “European Molecular Biology Laboratories” website
(http://www.ensembl.org). This procedure was performed until
sets of primers were selected for each target gene. The final
step involved checking the primers for similarity using NCBI
BLAST (Basic Local Alignment Search Tool) (http://www.ncbi.
nlm.nih.gov/BLAST), reducing the chance of primers binding
non-specifically.

Identification of Reference Genes for
RT-qPCR Analysis
Samples were analyzed for the expression of each of eight
candidate reference genes, namely: ACTB (Beta-Actin), B2M
(Beta-2-microglobulin), GAPDH (glyceraldehyde-3-phosphate
dehydrogenase), HMBS (hydroxymethyl-bilane synthase),
HPRT1 (hypoxanthine phosphoribosyl transferase 1), RPL13A
(ribosomal protein L13a), RPL32 (ribosomal protein L32),
SDHA (succinate dehydrogenase complex, subunit A) as
recommended by Vandesompele et al. (2002). RT-qPCR was
performed as described previously, using the primers specific for
each candidate reference gene. The GeNorm algorithm software
package was used to determine the two most stable reference
genes from the set of tested candidate genes by calculating a gene
normalization factor, eliminating the least stable genes until a

stability value (M) of 0.4 or less was reached (Vandesompele
et al., 2002).

RESULTS

Effects of Gemcitabine and Drug
Fragments on the Viability of Panc-1 Cells
A standard strategy is to choose a series of molecules that
cover chemical space effectively, and for this we chose initially
the main Maybridge drug fragment library. It consists of 500
rule-of-three-compliant (Congreve et al., 2003) polar molecules
that cover chemical space widely, and where the molecular
properties include molecular weight <300, number of hydrogen
bond donors≤3, number of hydrogen bond acceptors≤3, ClogP
≤3, and in addition, the number of rotatable bonds ≤3 and
the polar surface area ≤60Å2. While the use of fragments is
commonplace in target-based assays, especially where structures
are known (e.g., Erlanson and Hansen, 2004; Erlanson et al.,
2004; Rees et al., 2004; Carr et al., 2005; Alex and Flocco, 2007;
Ciulli and Abell, 2007; Jhoti, 2007; Jhoti et al., 2007; Hubbard,
2008; Fischer and Hubbard, 2009; Schulz and Hubbard, 2009;
Whittaker et al., 2010; Leach and Hann, 2011; Erlanson, 2012;
Caliandro et al., 2013), we here prefer the use of the rather more
successful phenotypic screens (Swinney and Anthony, 2011;
Swinney, 2013). Although it is hard to find published examples of
phenotypic screens that used fragment-based libraries, we merely
point out that 25% of successful (marketed) drugs are no larger
than fragments (i.e., <300 Da) (O’Hagan and Kell, 2015c). The
fragment-based approach also has the advantage of avoiding the
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TABLE 2 | Six hits in the “binary weapon” assay given in three formats, plus indole-3-carbinol.

MBF SMILES Name

D1 OC(=O)c1sc2sccc2c1Cl 3-chlorothieno[2,3-b]thiophene-2-carboxylic acid

B1 CNCc1ccccc1c2cccs2 N-methyl-N-(2-thien-2-ylbenzyl)amine

10 S1C(=CC=C1CNC)c1cccnc1 N-methyl-(5-pyrid-3-ylthien-2-yl)methylamine

11 S1C(=CC=C1CNC)c1ccncc1 N-methyl-(5-pyrid-4-ylthien-2-yl)methylamine

12 S1C=C(c2c1ccc(c2)Cl)CC(=O)O 2-(5-Chlorobenzo[b]thiophen-3-yl)acetic acid

20 N1=COC(=C1)c1ccc(cc1)N 4-(1, 3-Oxazol-5-yl)aniline

I3C C1=CC=C2C(=C1)C(=CN2)CO Indole-3-carbinol

increasing “molecular obesity” (Hann, 2011; Meanwell, 2011)
that is seen in some cases as inimical to the finding of successful
drugs (Leeson and Springthorpe, 2007; Leeson and Empfield,
2010).

Panc1 cells are a pancreatic cancer cell line (e.g., Gradiz et al.,
2016). Figure 1 shows four separate experiments in which the
effect of the pools of the Maybridge fragments (6 at a time) on
the viability of cells was assessed in the presence and absence
of 20 nM gemcitabine, pointing up three pools containing “hits”
(which occurred in at least 3 experiments; there are a total of 336
experiments here). Figure 2 shows the % viability of one set of
Panc1 cells as a function of the gemcitabine concentration, as
a result of which we later chose 100 nM gemcitabine to assess
the efficacy of the individual fragments in increasing its toxicity.
Figure 3 shows a titration curve for three repeats with one of
the “hits,” the plot also serving to illustrate the variability of the
toxicity of gemcitabine alone on different days. Figures 4, 5 show
the distribution in chemical space of all 500 fragments in the
first Maybridge library and three “hits” at 10 µM that lowered

the viability of cells by at least 10% in the presence, but not
the absence, of 100 nM gemcitabine. These were retested singly,
then together pairwise, resulting in three hits, viz B1, D1, and
B12. B12 seemed to interfere with the other two fragments by
binding to them directly (UV evidence) and was not used further.
Note that a significant issue is that although for a given batch
of Panc1 cells the titration curves were reasonably reproducible,
they were considerably less so between batches (for reasons that
will become apparent below). This meant that each culture had
to be used as its own control, as we did e.g., in Figure 2. Another
interesting feature was that quite a significant fraction of the
fragments (as in Figure 1, and see below) were even somewhat
stimulatory to cell growth in the absence of gemcitabine.

There are four other Maybridge fragment libraries of 500
molecules each, covering broadly the same chemical space but
in more detail (O’Hagan and Kell, 2015c), and we performed
a cheminformatics analysis (MACCS encoding, Tanimoto
similarity) to establish which other molecules might be similar,
exactly as per the analyses in (O’Hagan et al., 2015). Some 20
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FIGURE 7 | Chemical similarities of the various hits to each other, and effect of Maybridge fragment 10 on cell viability. A heatmap showing the three
clusters of molecules that could be observed.

molecules had a Tanimoto similarity within 0.7 of one of the
three remaining hits and were tested. In this case, the starting %
viability was much higher than those in Figure 2. All 20 of these
fragments are in fact active, which shows that these molecules
(Figure 6) exhibit a very considerable enrichment over the whole
library, and illustrates the utility of the principle of molecular
similarity (Gasteiger, 2003; Bender and Glen, 2004; Stumpfe and
Bajorath, 2011; Maggiora et al., 2014). The figure also illustrates
which of the original three hits the new hits are closest to,
and encodes their S log P-values as the size of the marker.
This enormous cheminformatics-based enrichment also gives
considerable confidence in our strategy, despite the variability
in sensitivity of the Panc1 cells to gemcitabine alone, since such
a huge enrichment could not conceivable occur for molecules
that were not active. Although none was quite as active as the
original hits, all exhibited some kind of activity (Figure 2) (the
starting viabilities for two different experiments in the presence
of gemcitabine only were 78 and 84%). Of all of these, the seven
most potent molecules exhibited activity at 3µM.One was rather
expensive and was again excluded. Thus, we had a total of 6 hits
to consider [two from library 1 (B1 and D1), and a total of four
from the other four libraries, referred to as fragments 10, 11, 12,

and 20]. Table 2 gives their names, SMILES encodings and 2D
structures, along with that of indole-3-carboxylic acid (see later).

Figure 7 shows a (symmetrical) heatmap (MACCS encoding)
of the Tanimoto similarities of the 22 most potent molecules,
where it can again be seen that the hits are in three clusters.
These are B1, 10, and 11 (all are amines), D1 and 12 (carboxylic
acids), and 20 (an aniline derivative—possibly to be avoided
Benigni and Passerini, 2002; Benigni et al., 2009; Franke et al.,
2010). One implication is that they each have different targets
(probably plural) but attempts even to show additivity, let alone
synergy, met with failure, possibly because the molecules were
indeed rather similar to each other in terms of the larger
chemical space. Figure 8—equivalent to Figure 3—shows data
for two experiments with fragment 10, again illustrating the
stimulation of growth by the fragment alone, and its inhibition
in the presence of a relatively weakly inhibiting concentration
of gemcitabine. Finally, Figure 9 shows the Tanimoto similarities
(TS, based on the MACCS encoding) between the six hits plus
Indole-3-carbinol (I3C, see below). Fragments within a group
showed a Tanimoto similarity of 0.75 or greater, while those
between groups were less than 0.5. I3C was not really similar to
any of the hits; its highest TS to any of the hits was 0.36. It is
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FIGURE 8 | Two experiments illustrating the effect of Maybridge fragment 10 on cell viability in the absence and presence of gemcitabine, again

showing the stimulation in the absence of gemcitabine. The differences between gemcitabine and gemcitabine plus fragment 10 is statistically significant at the
P < 0.05 level (n = 3).

especially gratifying to note that MBF10 and MBF11 were both
selected and had a TS to each other of 1, as they are in fact
structural isomers. Along with the other clusterings, this adds
considerable weight to the validity of our assays.

Effect of Indole-3-Carbinol on Gemcitabine
Toxicity
Cruciferous vegetables such as Brassica spp. are considered to
have certain anticancer properties (Higdon et al., 2007; Juge
et al., 2007; Fujioka et al., 2016b), and small molecules derived
from the hydrolysis of glucosinolates, such as sulforaphane and
indole-3-carbinol (I3C), have been implicated in a variety of
anticarcinogenic mechanisms (e.g., Chen et al., 2014; Fujioka
et al., 2016a). I3C is a small molecule (MW 147.17, well within
the range of “fragments”), and Lyn-Cook and colleagues (Lyn-
Cook et al., 2010; Wang et al., 2011; Paik et al., 2013) have
published that I3C can enhance the sensitivity of pancreatic
cancer cells to gemcitabine, possibly via upregulation of ENT1
expression (Wang et al., 2011). It was thus of interest to compare
I3C with the hits that we found. In our hands, however, I3C
had no measurable effect on either the cell viability in the
presence or absence of gemcitabine (nor on the expression
profiles discussed below). This is entirely consistent with its low
structural similarity to the other hits as indicated above.

Effect of Fragments on the Growth of
Panc1 Cells
Although this was not the main focus of the present paper, we
did note (as mentioned above) that the fragments themselves
could stimulate the growth of Panc1 cells relative to that of
controls (as measured by OD). This is illustrated in Figure 10

for 28 of the fragments on which we focussed. Also encoded
with the structures are the number of H-bond donors and
acceptors, the total polar surface area of the fragments, and
(on the abscissa) the S log P-values. It is clear (i) that virtually
every fragment could stimulate the growth of the cells, and
(ii) that there was no particularly obvious relationship of
the extent of such stimulation with any of the descriptors
stated.

Effect of Gemcitabine and Fragments on
the Expression of Selected Transcripts in
Panc 1 Cells
Given that there was evidence that the fragments did not affect
gemcitabine uptake directly, we assumed that they must be
working by influencing the activity or expression of appropriate
targets (and certainly small molecules can affect transporter
expression, (e.g., Mrozikiewicz et al., 2014). To this end, we
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FIGURE 9 | Tanimoto similarities of the main hits in the three clusters of Figure 7 (plus I3C).

FIGURE 10 | Effect of various fragments on cell growth/viability relative to untreated controls. Also plotted are the number of H-bond acceptors (by shape;
square 1, circle 2, diamond 3, triangle 4), H-bond donors (by color, blue 0, green 1, red 2, yellow 3), total polar surface area (by size of symbol, up to 63 Å2) and S log
P (on the abscissa).
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TABLE 3 | Changes in the transcript level of relevant transporters and

other genes when treated with gemcitabine and/or fragment D1.

Gene Fold changes

Treatment with

100nM GEM

Treatment with

MBF D1 only

Treatment with MBF

D1 and 100 nM GEM

ENT1 0.87 ± 0.13 0.79 ± 0.12 1.08 ± 0.17

ENT2 0.57 ± 0.13 0.98 ± 0.27 0.59 ± 0.17

ENT3 2.58 ± 0.11 1.18 ± 0.64* 0.89 ± 0.20***

ABCC2 12.27 ± 0.34 0.66 ± 0.14*** 1.33 ± 0.33***

ABCC3 0.16 ± 0.48 2.10 ± 0.09** 0.54 ± 0.18

ABCC4 0.53 ± 0.10 0.90 ± 0.23 0.36 ± 0.14

ABCC5 0.50 ± 0.11 1.18 ± 0.32* 1.21 ± 0.15**

ABCC10 1.61 ± 0.48 0.53 ± 0.08* 0.48 ± 0.16*

RRM1 4.43 ± 0.13 1.11 ± 0.17*** 2.07 ± 0.16***

Only those transcripts detectable within 35 PCR cycles are shown. Data are given asmean

± standard deviation. A 2-sided T-test was performed to assess statistical significance

against GEM alone, P-values being encoded as * < 0.05, ** < 0.01, *** < 0.001.

TABLE 4 | Changes in the transcript level of ABCC2 and RRM1 when

treated with gemcitabine and/or the other fragment hits.

Treatment Gene fold changes

ABCC2 STDEV RRM1 STDEV

GEM 100 nM GEM 12.27 ±0.34 4.43 ±0.13

MBF D1 MBF D1 only 0.66*** ±0.14 1.11*** ±0.17

MBF D1 + 100 nM GEM 1.33*** ±0.33 2.07*** ±0.16

MBF B1 MBF B1 only 0.49*** ±0.08 1.22*** ±0.12

MBF B1 + 100 nM GEM 1.21*** ±0.53 2.77*** ±0.11

MBF 10 MBF 10 only 1.00*** ±0.23 1.76*** ±0.14

MBF 10 + 100 nM GEM 0.68*** ±0.05 1.56*** ±0.08

MBF 11 MBF 11 only 1.09*** ±0.09 1.04*** ±0.11

MBF 11 + 100 nM GEM 0.93*** ±0.15 1.88*** ±0.20

MBF 12 MBF 12 only 0.65*** ±0.13 1.39*** ±0.09

MBF 12 + 100 nM GEM 1.25*** ±0.19 2.11*** ±0.15

MBF 20 MBF 20 only 0.7*** ±0.06 1.43*** ±0.11

MBF 20 + 100 nM GEM 1.13*** ±0.05 2.02*** ±0.12

A 2-sided T-test was performed to assess statistical significance vs. GEM alone, P-values

being encoded as * < 0.05, ** < 0.01, *** < 0.001.

designed primers to enable PCR of transcripts relevant to
gemcitabine transport and metabolism. Table 3 shows each of
those that were detectable within 35 PCR cycles when treated (i)
with gemcitabine alone, (ii) with Maybridge fragment D1 alone,
and (iii) with both gemcitabine and D1. Strikingly, gemcitabine
increases the expression of the ABCC2 efflux transporter (MRP2)
more than 12-fold, and that of RRM1 more than fourfold, while
the addition of D1 largely reverses both of these effects. It
would seem that these are by far the largest contributors to
the efficacy of fragment D1 in enhancing the cytotoxicity of
gemcitabine, and the same is true for each of the other fragments
(Table 4 and Figure 11). However, the ABCC2 inhibitor MK-571
(e.g., Weiss et al., 2007; Noma et al., 2008) at 20 µM had no
effect on the viability of Panc1 cells treated with Gemcitabine

alone (data not shown), possibly implying that RRM1 was
the more significant contributor to the phenotypic changes
in resistance.

Selectivity of Fragments for Increasing
Transporter Expression
Having seen that various of the fragments could increase the
toxicity of gemcitabine to Panc1 cells, it was of interest to see
whether this was a cell-selective phenomenon. Although time did
not permit an exhaustive study, we noted that fragments 10 and
20 also had these toxicity-enhancing effect for the neuroblastoma
SH-SY5Y cell line while B1, D1, 11, and 12 did not (Figure 12).
No fragments seemed to have any such effects on the non-
cancerous pancreatic cell line hPDE (Figure 13) and HEK293
cells (Figure 14), implying that there is or can be at least some
degree of specificity in our “binary weapon” approach. Clearly a
larger-scale study (including both larger libraries and more cell
lines) would be able to discover molecules with both potency and
selectivity.

DISCUSSION

In the present work, we sought to develop the idea that we might
affect the transporter-mediated disposition of small-molecule
drugs via the addition of a second small molecule that of itself
had no inhibitory pharmacological effect but that influenced
the expression of transporters for the primary drug (Figure 15).
We refer to this as a “binary weapon” strategy. The specific
phenotypic effect we sought was for a molecule that on its own
had no such effect to increase the toxicity of the nucleoside analog
gemcitabine to Panc1 pancreatic cancer cells (Figures 1–3).

Given the recognition (O’Hagan and Kell, 2015c) that more
some 25% of marketed drugs are in fact no larger than the polar
“rule-of-three”-compliant (Congreve et al., 2003) molecules used
in fragment-based drug discovery, we used an initial screen of
a 500-member polar drug fragment library. This yielded three
“hits” (Figures 4, 5). The structures of 20 of the other 2000
members of this library had a Tanimoto similarity greater than 0.7
to those of the initial hits, and eachwas itself a hit (Figure 6) (with
the cheminformatics thus providing for a massive enrichment
in the fraction of successful experiments). We chose the top
six representatives for further study. They each bore reasonable
structural similarities to each other (two were in fact isomers),
lending strength to the self-consistency of both our conceptual
and experimental strategies (Figures 7, 8).

Existing literature had suggested that indole-3-carbinol might
play a similar role to that of our fragments, but in our hands it
was without effect, and nor was it structurally similar to any of
our hits (Figure 9). We therefore discounted it.

There is an interesting issue when the phenotypic activity
being measured is in fact cell death, as it is then impossible
legitimately to compare bulk measurements of biochemical
changes with individual-cell viabilities. This is because with
bulk or ensemble measurements one does not know if say a
lowering of a biochemical parameter by 50% means that all of
the cells have lost half of it or half of the cells have lost all
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FIGURE 11 | Effect of gemcitabine ± various Maybridge fragments on the expression of transcripts for ABCC2 and RRM1. Each experiment was
performed three times, as described in Materials and Methods, and the mean is shown. For clarity, SD and statistical significance data are given only in the legends to
Tables 3, 4.

FIGURE 12 | Effects of gemcitabine and gemcitabine plus fragments on the viability of SH-SY5Y cells. Apart from fragments 10 and 20, the effects of the
fragments were not statistically significant at the P < 0.05 level, n = 3 per experiment.
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FIGURE 13 | Effects of gemcitabine and gemcitabine plus fragments on the viability of hPDE cells. The effects of the fragments were not statistically
significant at the P < 0.05 level, n = 3 per experiment.

FIGURE 14 | Effects of gemcitabine and gemcitabine plus fragments on the viability of HEK293 cells. Experiments were performed as described, and as per
the legend to Figures 3, 8. The effects of the fragments were not statistically significant at the P < 0.05 level, n = 3 per experiment.
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FIGURE 15 | Cartoons illustrating the potential modes of action of

fragments in enhancing transporter-mediated gemcitabine toxicity in

Panc1 cells. (The smaller effects on RRM1 are ignored for clarity). Left:
Original hypothesis that fragments would stimulate the activity of uptake
transporters. Right: Actual mechanism based on PCR data.

of it (or anything in between) (Kell et al., 1991, 1998; Davey
and Kell, 1996). In the event, the mechanism was very clear,
however.

Because the fragments were themselves without negative
effects on the cells in the absence of gemcitabine (interestingly,
many of them actually stimulated cell growth, Figure 1, so
each had to be compared to the appropriate control!), we next
designed suitable primers to assess the expression levels of all
the candidate transporters plus ribonucleotide reductase. In our
hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux
transporters displayed measurable transcripts, along with RRM1.

Very strikingly, the addition of gemcitabine alone increased the
expression of the transcript for ABCC2 (MRP2) by more than
12-fold, and that of RRM1 by more than fourfold, and each
of the fragment “hits” served to reverse this, at least in part
(Figure 11). The effects on ABCC2 are thus consistent with the
finding (Horiguchi et al., 2013) that it may be amajor efflux pump
for gemcitabine.

It seems, therefore, that while the effect was here mediated
more by efflux than influx transporters, the binary weapon idea is
hereby fully confirmed: our results show that it is possible to find
molecules that manipulate the expression of transporters that are
involved in the bioactivity of a pharmaceutical drug, and that
there is a certain degree of specificity in this for pancreatic cancer
cells (Figures 12–14). This could explain, at least in part, the basis
for the selective toxicity of a drug that is otherwise cytotoxic
generally (Figure 15). The next steps will involve determining
muchmore extensively howmuch any such activity differs, or can
be made to differ (as do most transcript levels), between different
cells.
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Lemstrová, R., Souček, P., Melichar, B., and Mohelnikova-Duchonova, B.
(2014). Role of solute carrier transporters in pancreatic cancer: a review.
Pharmacogenomics 15, 1133–1145. doi: 10.2217/pgs.14.80

Leung, G. P. H., and Tse, C. M. (2007). The role of mitochondrial and plasma
membrane nucleoside transporters in drug toxicity. Expert Opin. Drug Metab.

Toxicol. 3, 705–718. doi: 10.1517/17425255.3.5.705
Li, K., Zhu, S., Russ, H. A., Xu, S., Xu, T., Zhang, Y., et al. (2014).

Small molecules facilitate the reprogramming of mouse fibroblasts into
pancreatic lineages. Cell Stem Cell 14, 228–236. doi: 10.1016/j.stem.2014.
01.006

Li, R. W. S., Tse, C. M., Man, R. Y., Vanhoutte, P. M., and Leung, G. P.
H. (2007). Inhibition of human equilibrative nucleoside transporters by
dihydropyridine-type calcium channel antagonists. Eur. J. Pharmacol. 568,
75–82. doi: 10.1016/j.ejphar.2007.04.033

Li, W., and Ding, S. (2010). Small molecules that modulate embryonic stem
cell fate and somatic cell reprogramming. Trends Pharmacol. Sci. 31, 36–45.
doi: 10.1016/j.tips.2009.10.002

Li, W., Jiang, K., and Ding, S. (2012). Concise review: a chemical approach to
control cell fate and function. Stem Cells 30, 61–68. doi: 10.1002/stem.768

Li, X.-Z., Plesiat, P., and Nikaido, H. (2015). The challenge of efflux-mediated
antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28,
337–418. doi: 10.1128/CMR.00117-14

Li, X., Zuo, X., Jing, J., Ma, Y., Wang, J., Liu, D., et al. (2015). Small-molecule-
driven direct reprogramming of mouse fibroblasts into functional neurons. Cell
Stem Cell 17, 195–203. doi: 10.1016/j.stem.2015.06.003

Liu, G. (2013). Stearoyl-CoA Desaturase 1 (SCD1) inhibitors: bench to
bedside must only go through liver. RSC Drug Discov. 27, 249–269.
doi: 10.1039/9781849735322-00249

Liu, Y., Peng, H., and Zhang, J. T. (2005). Expression profiling of ABC transporters
in a drug-resistant breast cancer cell line using AmpArray.Mol. Pharmacol. 68,
430–438. doi: 10.1124/mol.105.011015

Liu, Z. Q., Han, Y. C., Zhang, X., Chu, L., Fang, J. M., Zhao, H. X., et al. (2014).
Prognostic value of human equilibrative nucleoside transporter1 in pancreatic
cancer receiving gemcitabin-based chemotherapy: a meta-analysis. PLoS ONE

9:e87103. doi: 10.1371/journal.pone.0087103
Loewen, S. K., Ng, A. M., Yao, S. Y., Cass, C. E., Baldwin, S. A., and

Young, J. D. (1999). Identification of amino acid residues responsible for
the pyrimidine and purine nucleoside specificities of human concentrative
Na+ nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem. 274,
24475–24484. doi: 10.1074/jbc.274.35.24475

Lyn-Cook, B. D., Mohammed, S. I., Davis, C., Word, B., Haefele, A., Wang, H.,
et al. (2010). Gender differences in gemcitabine (Gemzar) efficacy in cancer
cells: effect of indole-3-carbinol. Anticancer Res. 30, 4907–4913.

Mackey, J. R., Baldwin, S. A., Young, J. D., and Cass, C. E. (1998a). Nucleoside
transport and its significance for anticancer drug resistance.Drug Resist. Updat.
1, 310–324. doi: 10.1016/S1368-7646(98)80047-2

Mackey, J. R., Mani, R. S., Selner, M., Mowles, D., Young, J. D., Belt, J. A., et al.
(1998b). Functional nucleoside transporters are required for gemcitabine influx
and manifestation of toxicity in cancer cell lines. Cancer Res. 58, 4349–4357.

Maggiora, G., Vogt, M., Stumpfe, D., and Bajorath, J. (2014). Molecular similarity
in medicinal chemistry. J. Med. Chem. 57, 3186–3204. doi: 10.1021/jm401411z

Marcé, S., Molina-Arcas, M., Villamor, N., Casado, F. J., Campo, E., Pastor-
Anglada, M., et al. (2006). Expression of human equilibrative nucleoside
transporter 1 (hENT1) and its correlation with gemcitabine uptake and
cytotoxicity in mantle cell lymphoma. Haematologica 91, 895–902.

Maréchal, R., Bachet, J. B., Mackey, J. R., Dalban, C., Demetter, P.,
Graham, K., et al. (2012). Levels of gemcitabine transport and metabolism
proteins predict survival times of patients treated with gemcitabine
for pancreatic adenocarcinoma. Gastroenterology, 143, 664–674.e661–e666.
doi: 10.1053/j.gastro.2012.06.006

Maréchal, R., Mackey, J. R., Lai, R., Demetter, P., Peeters, M., Polus, M., et al.
(2009). Human equilibrative nucleoside transporter 1 and human concentrative
nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy
in resected pancreatic adenocarcinoma. Clin. Cancer Res. 15, 2913–2919.
doi: 10.1158/1078-0432.CCR-08-2080

Matsumura, N., Nakamura, Y., Kohjimoto, Y., Inagaki, T., Nanpo, Y., Yasuoka,
H., et al. (2011). The prognostic significance of human equilibrative nucleoside
transporter 1 expression in patients with metastatic bladder cancer treated

with gemcitabine-cisplatin-based combination chemotherapy. BJU Int. 108,
E110–E116. doi: 10.1111/j.1464-410X.2010.09932.x

Mazanetz, M. P., Marmon, R. J., Reisser, C. B. T., and Morao, I. (2012). Drug
discovery applications for KNIME: an open source data mining platform. Curr.
Top. Med. Chem. 12, 1965–1979. doi: 10.2174/156802612804910331

Meanwell, N. A. (2011). Improving drug candidates by design: a focus
on physicochemical properties as a means of improving compound
disposition and safety. Chem. Res. Toxicol. 24, 1420–1456. doi: 10.1021/tx2
00211v

Meinl, T., Jagla, B., and Berthold, M. R. (2012). “Integrated data analysis with
KNIME,” in Open Source Software in Life Science Research, eds L. Harland and
M. Forster (Sawston: Woodhead Publishing), 151–171.

Melkamu, T., Zhang, X. X., Tan, J. K., Zeng, Y., and Kassie, F. (2010). Alteration
of microRNA expression in vinyl carbamate-induced mouse lung tumors and
modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis
31, 252–258. doi: 10.1093/carcin/bgp208

Mendes, P., Oliver, S. G., and Kell, D. B. (2015). Fitting transporter activities to
cellular drug concentrations and fluxes: why the bumblebee can fly. Trends
Pharmacol. Sci. 36, 710–723. doi: 10.1016/j.tips.2015.07.006

Mey, V., Giovannetti, E., De Braud, F., Nannizzi, S., Curigliano, G., Verweij, F.,
et al. (2006). In vitro synergistic cytotoxicity of gemcitabine and pemetrexed
and pharmacogenetic evaluation of response to gemcitabine in bladder cancer
patients. Br. J. Cancer 95, 289–297. doi: 10.1038/sj.bjc.6603242

Minami, K., Shinsato, Y., Yamamoto, M., Takahashi, H., Zhang, S., Nishizawa,
Y., et al. (2015). Ribonucleotide reductase is an effective target to
overcome gemcitabine resistance in gemcitabine-resistant pancreatic
cancer cells with dual resistant factors. J. Pharmacol. Sci. 127, 319–325.
doi: 10.1016/j.jphs.2015.01.006

Mini, E., Nobili, S., Caciagli, B., Landini, I., and Mazzei, T. (2006).
Cellular pharmacology of gemcitabine. Ann. Oncol. 17(Suppl. 5), v7–v12.
doi: 10.1093/annonc/mdj941

Molina-Arcas, M., Casado, F. J., and Pastor-Anglada, M. (2009). Nucleoside
transporter proteins. Curr. Vasc. Pharmacol. 7, 426–434. doi: 10.2174/15701610
9789043892

Molina-Arcas, M., and Pastor-Anglada, M. (2010). Role of nucleoside transporters
in nucleoside-derived drug sensitivity.Nucleosides Nucleotides Nucleic Acids 29,
335–346. doi: 10.1080/15257771003729823

Molina-Arcas, M., and Pastor-Anglada, M. (2013). “Nucleoside transporters
(SLC28 and SLC29) family,” in Pharmacogenomics of Human Drug

Transporters: Clinical Impacts, eds T. Ishikawa, R. B. Kim, and J. König
(New York, NY: Wiley), 243–270.

Molina-Arcas, M., Trigueros-Motos, L., Casado, F. J., and Pastor-Anglada,
M. (2008). Physiological and pharmacological roles of nucleoside
transporter proteins. Nucleosides Nucleotides Nucleic Acids 27, 769–778.
doi: 10.1080/15257770802145819

Mori, R., Ishikawa, T., Ichikawa, Y., Taniguchi, K., Matsuyama, R., Ueda,
M., et al. (2007). Human equilibrative nucleoside transporter 1 is
associated with the chemosensitivity of gemcitabine in human pancreatic
adenocarcinoma and biliary tract carcinoma cells. Oncol. Rep. 17, 1201–1205.
doi: 10.3892/or.17.5.1201

Morinaga, S., Nakamura, Y., Watanabe, T., Mikayama, H., Tamagawa, H.,
Yamamoto, N., et al. (2012). Immunohistochemical Analysis of Human
Equilibrative Nucleoside Transporter-1 (hENT1) predicts survival in resected
pancreatic cancer patients treated with adjuvant gemcitabine monotherapy.
Ann. Surg. Oncol. 19(Suppl. 3), 558–564. doi: 10.1245/s10434-011-2054-z

Mrozikiewicz, P. M., Bogacz, A., Bartkowiak-Wieczorek, J., Kujawski, R.,
Mikolajczak, P. L., Ozarowski, M., et al. (2014). Screening for impact of
popular herbs improving mental abilities on the transcriptional level of brain
transporters. Acta Pharm. 64, 223–232. doi: 10.2478/acph-2014-0020

Murata, Y., Hamada, T., Kishiwada, M., Ohsawa, I., Mizuno, S., Usui, M.,
et al. (2012). Human equilibrative nucleoside transporter 1 expression is
a strong independent prognostic factor in UICC T3-T4 pancreatic cancer
patients treated with preoperative gemcitabine-based chemoradiotherapy.
J. Hepatobiliary Pancreat. Sci. 19, 413–425. doi: 10.1007/s00534-01
1-0440-3

Nakagawa, N., Murakami, Y., Uemura, K., Sudo, T., Hashimoto, Y.,
Kondo, N., et al. (2013). Combined analysis of intratumoral human
equilibrative nucleoside transporter 1 (hENT1) and ribonucleotide reductase

Frontiers in Pharmacology | www.frontiersin.org 20 March 2017 | Volume 8 | Article 155

https://doi.org/10.2217/pgs.14.80
https://doi.org/10.1517/17425255.3.5.705
https://doi.org/10.1016/j.stem.2014.01.006
https://doi.org/10.1016/j.ejphar.2007.04.033
https://doi.org/10.1016/j.tips.2009.10.002
https://doi.org/10.1002/stem.768
https://doi.org/10.1128/CMR.00117-14
https://doi.org/10.1016/j.stem.2015.06.003
https://doi.org/10.1039/9781849735322-00249
https://doi.org/10.1124/mol.105.011015
https://doi.org/10.1371/journal.pone.0087103
https://doi.org/10.1074/jbc.274.35.24475
https://doi.org/10.1016/S1368-7646(98)80047-2
https://doi.org/10.1021/jm401411z
https://doi.org/10.1053/j.gastro.2012.06.006
https://doi.org/10.1158/1078-0432.CCR-08-2080
https://doi.org/10.1111/j.1464-410X.2010.09932.x
https://doi.org/10.2174/156802612804910331
https://doi.org/10.1021/tx200211v
https://doi.org/10.1093/carcin/bgp208
https://doi.org/10.1016/j.tips.2015.07.006
https://doi.org/10.1038/sj.bjc.6603242
https://doi.org/10.1016/j.jphs.2015.01.006
https://doi.org/10.1093/annonc/mdj941
https://doi.org/10.2174/157016109789043892
https://doi.org/10.1080/15257771003729823
https://doi.org/10.1080/15257770802145819
https://doi.org/10.3892/or.17.5.1201
https://doi.org/10.1245/s10434-011-2054-z
https://doi.org/10.2478/acph-2014-0020
https://doi.org/10.1007/s00534-011-0440-3
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Grixti et al. Drug Targeting Binary Weapon Strategy

regulatory subunit M1 (RRM1) expression is a powerful predictor of
survival in patients with pancreatic carcinoma treated with adjuvant
gemcitabine-based chemotherapy after operative resection. Surgery 153,
565–575. doi: 10.1016/j.surg.2012.10.010

Nakahira, S., Nakamori, S., Tsujie, M., Takeda, S., Sugimoto, K., Takahashi, Y.,
et al. (2008). Pretreatment with S-1, an oral derivative of 5-fluorouracil,
enhances gemcitabine effects in pancreatic cancer xenografts. Anticancer Res.
28, 179–186.

Nakano, Y., Tanno, S., Koizumi, K., Nishikawa, T., Nakamura, K., Minoguchi, M.,
et al. (2007). Gemcitabine chemoresistance and molecular markers associated
with gemcitabine transport and metabolism in human pancreatic cancer cells.
Br. J. Cancer 96, 457–463. doi: 10.1038/sj.bjc.6603559

Noma, B., Sasaki, T., Fujimoto, Y., Serikawa, M., Kobayashi, K., Inoue, M., et al.
(2008). Expression of multidrug resistance-associated protein 2 is involved
in chemotherapy resistance in human pancreatic cancer. Int. J. Oncol. 33,
1187–1194. doi: 10.3892/ijo_00000108

Nordh, S., Ansari, D., and Andersson, R. (2014). hENT1 expression is predictive
of gemcitabine outcome in pancreatic cancer: a systematic review. World J.

Gastroenterol. 20, 8482–8490. doi: 10.3748/wjg.v20.i26.8482
Oballa, R. M., Belair, L., Black, W. C., Bleasby, K., Chan, C. C., Desroches,

C., et al. (2011). Development of a liver-targeted stearoyl-CoA desaturase
(SCD) inhibitor (MK-8245) to establish a therapeutic window for the
treatment of diabetes and dyslipidemia. J. Med. Chem. 54, 5082–5096.
doi: 10.1021/jm200319u

Oguri, T., Achiwa, H., Muramatsu, H., Ozasa, H., Sato, S., Shimizu, S., et al.
(2007). The absence of human equilibrative nucleoside transporter 1 expression
predicts nonresponse to gemcitabine-containing chemotherapy in non-small
cell lung cancer. Cancer Lett. 256, 112–119. doi: 10.1016/j.canlet.2007.06.012

O’Hagan, S., and Kell, D. B. (2015a). The apparent permeabilities of Caco-2
cells to marketed drugs: magnitude, and independence from both biophysical
properties and endogenite similarities PeerJ 3:E1405. doi: 10.7717/peerj.1405

O’Hagan, S., and Kell, D. B. (2015b). Software review: the KNIME
workflow environment and its applications in Genetic Programming
and machine learning. Genetic Progr. Evol. Mach. 16, 387–391.
doi: 10.1007/s10710-015-9247-3

O’Hagan, S., and Kell, D. B. (2015c). Understanding the foundations of the
structural similarities between marketed drugs and endogenous human
metabolites. Front. Pharmacol. 6:105. doi: 10.3389/fphar.2015.00105

O’Hagan, S., and Kell, D. B. (2016). MetMaxStruct: a Tversky-similarity-based
strategy for analysing the (sub)structural similarities of drugs and endogenous
metabolites. Front. Pharmacol. 7:266. doi: 10.3389/fphar.2016.00266

O’Hagan, S., Swainston, N., Handl, J., and Kell, D. B. (2015). A ‘rule of 0.5’ for
the metabolite-likeness of approved pharmaceutical drugs. Metabolomics 11,
323–339. doi: 10.1007/s11306-014-0733-z

Okazaki, T., Javle, M., Tanaka, M., Abbruzzese, J. L., and Li, D. (2010).
Single nucleotide polymorphisms of gemcitabine metabolic genes and
pancreatic cancer survival and drug toxicity. Clin. Cancer Res. 16, 320–329.
doi: 10.1158/1078-0432.CCR-09-1555

Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-
competent induced pluripotent stem cells. Nature 448, 313–317.
doi: 10.1038/nature05934

Paik, W. H., Kim, H. R., Park, J. K., Song, B. J., Lee, S. H., and Hwang, J.
H. (2013). Chemosensitivity induced by down-regulation of microRNA-21 in
gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer
Res. 33, 1473–1481. doi: 10.1371/journal.pone.0056423

Paproski, R. J., Yao, S. Y. M., Favis, N., Evans, D., Young, J. D., Cass,
C. E., et al. (2013). Human concentrative nucleoside transporter 3
transfection with ultrasound and microbubbles in nucleoside transport
deficient HEK293 cells greatly increases gemcitabine uptake. PLoS ONE

8:e56423. doi: 10.1371/journal.pone.0056423
Paproski, R. J., Young, J. D., and Cass, C. E. (2010). Predicting

gemcitabine transport and toxicity in human pancreatic cancer cell
lines with the positron emission tomography tracer 3′-deoxy-3′-
fluorothymidine. Biochem. Pharmacol. 79, 587–595. doi: 10.1016/j.bcp.2009.
09.025

Pastor-Anglada, M., and Pérez-Torras, S. (2015). Nucleoside transporter proteins
as biomarkers of drug responsiveness and drug targets. Front. Pharmacol. 6:13.
doi: 10.3389/fphar.2015.00013

Pennycooke, M., Chaudary, N., Shuralyova, I., Zhang, Y., and Coe, I.
R. (2001). Differential expression of human nucleoside transporters in
normal and tumor tissue. Biochem. Biophys. Res. Commun. 280, 951–959.
doi: 10.1006/bbrc.2000.4205

Pérez-Torras, S., García-Manteiga, J., Mercadé, E., Casado, F. J., Carbó, N.,
Pastor-Anglada, M., et al. (2008). Adenoviral-mediated overexpression of
human equilibrative nucleoside transporter 1 (hENT1) enhances gemcitabine
response in human pancreatic cancer. Biochem. Pharmacol. 76, 322–329.
doi: 10.1016/j.bcp.2008.05.011

Pfefferkorn, J. A. (2013). Strategies for the design of hepatoselective glucokinase
activators to treat type 2 diabetes. Expert Opin. Drug Discov. 8, 319–330.
doi: 10.1517/17460441.2013.748744

Pfefferkorn, J. A., Guzman-Perez, A., Litchfield, J., Aiello, R., Treadway,
J. L., Pettersen, J., et al. (2012). Discovery of (S)-6-(3-cyclopentyl-2-(4-
(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotini c acid as a
hepatoselective glucokinase activator clinical candidate for treating type 2
diabetes mellitus. J. Med. Chem. 55, 1318–1333. doi: 10.1021/jm2014887

Pfefferkorn, J. A., Litchfield, J., Hutchings, R., Cheng, X. M., Larsen, S. D.,
Auerbach, B., et al. (2011). Discovery of novel hepatoselective HMG-CoA
reductase inhibitors for treating hypercholesterolemia: a bench-to-bedside
case study on tissue selective drug distribution. Bioorg. Med. Chem. Lett. 21,
2725–2731. doi: 10.1016/j.bmcl.2010.11.103

Plant, N. (2016). “Enabling dynamic response to chemical challenge: nuclear
receptor-mediated control of transporter expression,” in Drug Transporters,

Vol. 2, Recent Advances and Emerging Technologies, eds G. Nicholls and K.
Youdim (London: RSC), 19–43.

Podgorska, M., Kocbuch, K., and Pawelczyk, T. (2005). Recent advances in studies
on biochemical and structural properties of equilibrative and concentrative
nucleoside transporters. Acta Biochim. Pol. 52, 749–758.

Prasad, R., and Rawal, M. K. (2014). Efflux pump proteins in antifungal resistance.
Front. Pharmacol. 5:202. doi: 10.3389/fphar.2014.00202

Putman, M., Van Veen, H. W., and Konings, W. N. (2000). Molecular properties
of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693.
doi: 10.1128/MMBR.64.4.672-693.2000

Ramtohul, Y. K., Powell, D., Leclerc, J. P., Leger, S., Oballa, R., Black, C.,
et al. (2011). Bicyclic heteroaryl inhibitors of stearoyl-CoA desaturase: from
systemic to liver-targeting inhibitors. Bioorg. Med. Chem. Lett. 21, 5692–5696.
doi: 10.1016/j.bmcl.2011.08.037

Rauchwerger, D. R., Firby, P. S., Hedley, D. W., and Moore, M. J. (2000).
Equilibrative-sensitive nucleoside transporter and its role in gemcitabine
sensitivity. Cancer Res. 60, 6075–6079.

Rees, D. C., Congreve, M., Murray, C. W., and Carr, R. (2004). Fragment-based
lead discovery. Nat. Rev. Drug Discov. 3, 660–672. doi: 10.1038/nrd1467

Ritzel, M. W. L., Ng, A. M. L., Yao, S. Y. M., Graham, K., Loewen, S. K., Smith, K.
M., et al. (2001). Molecular identification and characterization of novel human
and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and
mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib).
J. Biol. Chem. 276, 2914–2927. doi: 10.1074/jbc.M007746200

Rosenberg, M. F., Bikadi, Z., Hazai, E., Starborg, T., Kelley, L., Chayen, N. E.,
et al. (2015). Three-dimensional structure of the human breast cancer resistance
protein (BCRP/ABCG2) in an inward-facing conformation. Acta Crystallogr. D
Biol. Crystallogr. 71, 1725–1735. doi: 10.1107/S1399004715010676

Rostami-Hodjegan, A. (2012). Physiologically based pharmacokinetics joined with
in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems
pharmacology. Clin. Pharmacol. Ther. 92, 50–61. doi: 10.1038/clpt.2012.65

Rudin, D., Li, L., Niu, N., Kalari, K. R., Gilbert, J. A., Ames, M. M., et al. (2011).
Gemcitabine cytotoxicity: interaction of efflux and deamination. J. Drug Metab.

Toxicol. 2, 1–10. doi: 10.4172/2157-7609.1000107
Santini, D., Schiavon, G., Vincenzi, B., Cass, C. E., Vasile, E., Manazza, A. D.,

et al. (2011). Human equilibrative nucleoside transporter 1 (hENT1) levels
predict response to gemcitabine in patients with biliary tract cancer (BTC).
Curr. Cancer Drug Targets 11, 123–129. doi: 10.2174/156800911793743600

Santini, D., Vincenzi, B., Fratto, M. E., Perrone, G., Lai, R., Catalano, V.,
et al. (2010). Prognostic role of human equilibrative transporter 1 (hENT1)
in patients with resected gastric cancer. J. Cell. Physiol. 223, 384–388.
doi: 10.1002/jcp.22045

Saunders, N. R., Ek, C. J., Habgood, M. D., Johansson, P., Liddelow,
S., and Dziegielewska, K. M. (2011). Assessing blood-cerebrospinal fluid

Frontiers in Pharmacology | www.frontiersin.org 21 March 2017 | Volume 8 | Article 155

https://doi.org/10.1016/j.surg.2012.10.010
https://doi.org/10.1038/sj.bjc.6603559
https://doi.org/10.3892/ijo_00000108
https://doi.org/10.3748/wjg.v20.i26.8482
https://doi.org/10.1021/jm200319u
https://doi.org/10.1016/j.canlet.2007.06.012
https://doi.org/10.7717/peerj.1405
https://doi.org/10.1007/s10710-015-9247-3
https://doi.org/10.3389/fphar.2015.00105
https://doi.org/10.3389/fphar.2016.00266
https://doi.org/10.1007/s11306-014-0733-z
https://doi.org/10.1158/1078-0432.CCR-09-1555
https://doi.org/10.1038/nature05934
https://doi.org/10.1371/journal.pone.0056423
https://doi.org/10.1371/journal.pone.0056423
https://doi.org/10.1016/j.bcp.2009.09.025
https://doi.org/10.3389/fphar.2015.00013
https://doi.org/10.1006/bbrc.2000.4205
https://doi.org/10.1016/j.bcp.2008.05.011
https://doi.org/10.1517/17460441.2013.748744
https://doi.org/10.1021/jm2014887
https://doi.org/10.1016/j.bmcl.2010.11.103
https://doi.org/10.3389/fphar.2014.00202
https://doi.org/10.1128/MMBR.64.4.672-693.2000
https://doi.org/10.1016/j.bmcl.2011.08.037
https://doi.org/10.1038/nrd1467
https://doi.org/10.1074/jbc.M007746200
https://doi.org/10.1107/S1399004715010676
https://doi.org/10.1038/clpt.2012.65
https://doi.org/10.4172/2157-7609.1000107
https://doi.org/10.2174/156800911793743600
https://doi.org/10.1002/jcp.22045
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Grixti et al. Drug Targeting Binary Weapon Strategy

barrier permeability in the rat embryo. Methods Mol. Biol. 686, 247–265.
doi: 10.1007/978-1-60761-938-3_11

Schulz, M. N., and Hubbard, R. E. (2009). Recent progress in fragment-based lead
discovery. Curr. Opin. Pharmacol. 9, 615–621. doi: 10.1016/j.coph.2009.04.009

Sharma, R., Litchfield, J., Bergman, A., Atkinson, K., Kazierad, D., Gustavson, S.M.,
et al. (2015). Comparison of the circulating metabolite profile of PF-04991532,
a hepatoselective glucokinase activator, across preclinical species and humans:
potential implications in metabolites in safety testing assessment. Drug Metab.

Dispos. 43, 190–198. doi: 10.1124/dmd.114.061218
Silva, R., Vilas-Boas, V., Carmo, H., Dinis-Oliveira, R. J., Carvalho, F., De

Lourdes Bastos, M., et al. (2015). Modulation of P-glycoprotein efflux pump:
induction and activation as a therapeutic strategy. Pharmacol. Ther. 149, 1–123.
doi: 10.1016/j.pharmthera.2014.11.013

Skrypek, N., Duchêne, B., Hebbar, M., Leteurtre, E., Van Seuningen, I., and
Jonckheere, N. (2013). The MUC4 mucin mediates gemcitabine resistance of
human pancreatic cancer cells via the concentrative nucleoside transporter
family. Oncogene 32, 1714–1723. doi: 10.1038/onc.2012.179

Smith, K. M., Slugoski, M. D., Cass, C. E., Baldwin, S. A., Karpinski, E., and
Young, J. D. (2007). Cation coupling properties of human concentrative
nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol. Membr. Biol. 24,
53–64. doi: 10.1080/09687860600942534

Spratlin, J. L., and Mackey, J. R. (2010). Human Equilibrative Nucleoside
Transporter 1 (hENT1) in pancreatic adenocarcinoma: towards individualized
treatment decisions. Cancers 2, 2044–2054. doi: 10.3390/cancers2042044

Spratlin, J., Sangha, R., Glubrecht, D., Dabbagh, L., Young, J. D., Dumontet, C.,
et al. (2004). The absence of human equilibrative nucleoside transporter
1 is associated with reduced survival in patients with gemcitabine-
treated pancreas adenocarcinoma. Clin. Cancer Res. 10, 6956–6961.
doi: 10.1158/1078-0432.CCR-04-0224

Stumpfe, D., and Bajorath, J. (2011). Similarity searching.Wires Comput. Mol. Sci.

1, 260–282. doi: 10.1002/wcms.23
Sugiyama, Y., and Steffansen, B. (eds.). (2013). Transporters in Drug Development:

Discovery, Optimization, Clinical Study and Regulation. New York, NY:
AAPS/Springer.

Swainston, N., Mendes, P., and Kell, D. B. (2013). An analysis of a ‘community-
driven’ reconstruction of the human metabolic network. Metabolomics 9,
757–764. doi: 10.1007/s11306-013-0564-3

Swainston, N., Smallbone, K., Hefzi, H., Dobson, P. D., Brewer, J., Hanscho, M.,
et al. (2016). Recon 2.2: from reconstruction to model of human metabolism.
Metabolomics 12, 109. doi: 10.1007/s11306-016-1051-4

Swinney, D. C. (2013). Phenotypic vs. target-based drug discovery for first-in-class
medicines. Clin. Pharmacol. Ther. 93, 299–301. doi: 10.1038/clpt.2012.236

Swinney, D. C., and Anthony, J. (2011). How were newmedicines discovered?Nat.
Rev. Drug Discov. 10, 507–519. doi: 10.1038/nrd3480

Tanaka, M., Javle, M., Dong, X., Eng, C., Abbruzzese, J. L., and Li, D. (2010).
Gemcitabine metabolic and transporter gene polymorphisms are associated
with drug toxicity and efficacy in patients with locally advanced pancreatic
cancer. Cancer 116, 5325–5335. doi: 10.1002/cncr.25282

Tavano, F., Fontana, A., Pellegrini, F., Burbaci, F., Rappa, F., Cappello, F.,
et al. (2014). Modeling interactions between human equilibrative nucleoside
transporter-1 and other factors involved in the response to gemcitabine
treatment to predict clinical outcomes in pancreatic ductal adenocarcinoma
patients. J. Transl. Med. 12, 248. doi: 10.1186/s12967-014-0248-4

Thiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K.,
et al. (2013). A community-driven global reconstruction of humanmetabolism.
Nat. Biotechnol. 31, 419–425. doi: 10.1038/nbt.2488

Tu, M. H., Mathiowetz, A. M., Pfefferkorn, J. A., Cameron, K. O., Dow, R. L.,
Litchfield, J., et al. (2013). Medicinal chemistry design principles for liver
targeting through OATP transporters. Curr. Top. Med. Chem. 13, 857–866.
doi: 10.2174/1568026611313070008

Uhlén, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu,
A., et al. (2015). Tissue-based map of the human proteome. Science

347:1260419. doi: 10.1126/science.1260419
van der Graaf, P. H., and Benson, N. (2011). Systems pharmacology:

bridging systems biology and pharmacokinetics-pharmacodynamics
(PKPD) in drug discovery and development. Pharm. Res. 28, 1460–1464.
doi: 10.1007/s11095-011-0467-9

van der Greef, J., and Mcburney, R. N. (2005). Rescuing drug discovery: in
vivo systems pathology and systems pharmacology. Nat. Rev. Drug Discov. 4,
961–967. doi: 10.1038/nrd1904

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe,
A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR
data by geometric averaging of multiple internal control genes. Genome Biol.

3:research0034. doi: 10.1186/gb-2002-3-7-research0034
Veltkamp, S. A., Pluim, D., Van Eijndhoven, M. A., Bolijn, M. J., Ong, F. H.,

Govindarajan, R. et al. (2008). New insights into the pharmacology and
cytotoxicity of gemcitabine and 2′,2′-difluorodeoxyuridine. Mol. Cancer Ther.

7, 2415–2425. doi: 10.1158/1535-7163.MCT-08-0137
Vickers, M. F., Kumar, R., Visser, F., Zhang, J., Charania, J., Raborn, R.

T., et al. (2002). Comparison of the interaction of uridine, cytidine, and
other pyrimidine nucleoside analogues with recombinant human equilibrative
nucleoside transporter 2 (hENT2) produced in Saccharomyces cerevisiae.
Biochem. Cell Biol. 80, 639–644. doi: 10.1139/o02-148

Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., et al.
(2015).Whole genomes redefine themutational landscape of pancreatic cancer.
Nature 518, 495–501. doi: 10.1038/nature14169

Waldman, S. A., and Terzic, A. (2012). Advancing pharmacometrics and systems
pharmacology. Clin. Pharmacol. Ther. 92, 535–537. doi: 10.1038/clpt.2012.151

Wang, H., Word, B. R., and Lyn-Cook, B. D. (2011). Enhanced efficacy of
gemcitabine by indole-3-carbinol in pancreatic cell lines: the role of human
equilibrative nucleoside transporter 1. Anticancer Res. 31, 3171–3180.

Wang, J., and Giacomini, K. M. (1999). Serine 318 is essential for the pyrimidine
selectivity of theN2Na+-nucleoside transporter. J. Biol. Chem. 274, 2298–2302.
doi: 10.1074/jbc.274.4.2298

Ward, J. L., Sherali, A., Mo, Z. P., and Tse, C. M. (2000). Kinetic
and pharmacological properties of cloned human equilibrative nucleoside
transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-
deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and
cytidine but a high affinity for inosine. J. Biol. Chem. 275, 8375–8381.
doi: 10.1074/jbc.275.12.8375

Warr, W. A. (2012). Scientific workflow systems: pipeline pilot and KNIME. J.
Comput. Aided Mol. Des. 26, 801–804. doi: 10.1007/s10822-012-9577-7

Weiss, J., Theile, D., Ketabi-Kiyanvash, N., Lindenmaier, H., and Haefeli, W. E.
(2007). Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by
nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors.
Drug Metab. Dispos. 35, 340–344. doi: 10.1124/dmd.106.012765

Westerhoff, H. V., Nakayama, S., Mondeel, T. D. G. A., and Barberis, M. (2015).
Systems pharmacology: an opinion on how to turn the impossible into grand
challenges. Drug Discov. Today 15, 23–31. doi: 10.1016/j.ddtec.2015.06.006

Whittaker, M., Law, R. J., Ichihara, O., Hesterkamp, T., and Hallett, D. (2010).
Fragments: past, present and future. Drug Discov. Today 7, e163–e171.
doi: 10.1016/j.ddtec.2010.11.007

Winter, G. E., Radic, B., Mayor-Ruiz, C., Blomen, V. A., Trefzer, C., Kandasamy,
R. K., et al. (2014). The solute carrier SLC35F2 enables YM155-mediated DNA
damage toxicity. Nat. Chem. Biol. 10, 768–773. doi: 10.1038/nchembio.1590

Wong, A., Soo, R. A., Yong, W. P., and Innocenti, F. (2009). Clinical
pharmacology and pharmacogenetics of gemcitabine. Drug Metab. Rev. 41,
77–88. doi: 10.1080/03602530902741828

Wright, G. D. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance.
Trends Microbiol. 24, 862–871. doi: 10.1016/j.tim.2016.06.009

Wu, F., Zhang, J., Hu, N., Wang, H., Xu, T., Liu, Y., et al. (2014). Effect
of hENT1 polymorphism G-706C on clinical outcomes of gemcitabine-
containing chemotherapy for Chinese non-small-cell lung cancer patients.
Cancer Epidemiol. 38, 728–762. doi: 10.1016/j.canep.2014.08.008

Xiao, J. C., Zhang, T. P., and Zhao, Y. P. (2013). Human Equilibrative Nucleoside
Transporter 1 (hENT1) predicts the asian patient response to gemcitabine-
based chemotherapy in pancreatic cancer. Hepato-Gastroenterology 60,
258–262. doi: 10.5754/hge12687

Yamada, R., Mizuno, S., Uchida, K., Yoneda, M., Kanayama, K., Inoue, H., et al.
(2016). Human equilibrative nucleoside transporter 1 expression in endoscopic
ultrasonography-guided fine-needle aspiration biopsy samples is a strong
predictor of clinical response and survival in the patients with pancreatic ductal
adenocarcinoma undergoing gemcitabine-based chemoradiotherapy. Pancreas
45, 761–771. doi: 10.1097/MPA.0000000000000597

Frontiers in Pharmacology | www.frontiersin.org 22 March 2017 | Volume 8 | Article 155

https://doi.org/10.1007/978-1-60761-938-3_11
https://doi.org/10.1016/j.coph.2009.04.009
https://doi.org/10.1124/dmd.114.061218
https://doi.org/10.1016/j.pharmthera.2014.11.013
https://doi.org/10.1038/onc.2012.179
https://doi.org/10.1080/09687860600942534
https://doi.org/10.3390/cancers2042044
https://doi.org/10.1158/1078-0432.CCR-04-0224
https://doi.org/10.1002/wcms.23
https://doi.org/10.1007/s11306-013-0564-3
https://doi.org/10.1007/s11306-016-1051-4
https://doi.org/10.1038/clpt.2012.236
https://doi.org/10.1038/nrd3480
https://doi.org/10.1002/cncr.25282
https://doi.org/10.1186/s12967-014-0248-4
https://doi.org/10.1038/nbt.2488
https://doi.org/10.2174/1568026611313070008
https://doi.org/10.1126/science.1260419
https://doi.org/10.1007/s11095-011-0467-9
https://doi.org/10.1038/nrd1904
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1158/1535-7163.MCT-08-0137
https://doi.org/10.1139/o02-148
https://doi.org/10.1038/nature14169
https://doi.org/10.1038/clpt.2012.151
https://doi.org/10.1074/jbc.274.4.2298
https://doi.org/10.1074/jbc.275.12.8375
https://doi.org/10.1007/s10822-012-9577-7
https://doi.org/10.1124/dmd.106.012765
https://doi.org/10.1016/j.ddtec.2015.06.006
https://doi.org/10.1016/j.ddtec.2010.11.007
https://doi.org/10.1038/nchembio.1590
https://doi.org/10.1080/03602530902741828
https://doi.org/10.1016/j.tim.2016.06.009
https://doi.org/10.1016/j.canep.2014.08.008
https://doi.org/10.5754/hge12687
https://doi.org/10.1097/MPA.0000000000000597
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Grixti et al. Drug Targeting Binary Weapon Strategy

Yao, S. Y. M., Ng, A. M. L., Cass, C. E., Baldwin, S. A., and Young, J. D.
(2011). Nucleobase transport by human equilibrative nucleoside transporter
1 (hENT1). J. Biol. Chem. 286, 32552–32562. doi: 10.1074/jbc.M111.
236117

You, G., and Morris, M. E. (eds.). (2014). Drug Transporters: Molecular

Characterization and Role in Drug Disposition. New York, NY: Wiley.
Young, J. D., Yao, S. Y. M., Baldwin, J. M., Cass, C. E., and Baldwin,

S. A. (2013). The human concentrative and equilibrative nucleoside
transporter families, SLC28 and SLC29. Mol. Aspects Med. 34, 529–547.
doi: 10.1016/j.mam.2012.05.007

Young, J. D., Yao, S. Y., Sun, L., Cass, C. E., and Baldwin, S. A. (2008).
Human equilibrative nucleoside transporter (ENT) family of nucleoside
and nucleobase transporter proteins. Xenobiotica 38, 995–1021.
doi: 10.1080/00498250801927427

Zhang, J., Visser, F., King, K.M., Baldwin, S. A., Young, J. D., and Cass, C. E. (2007).
The role of nucleoside transporters in cancer chemotherapy with nucleoside
drugs. Cancer Metastasis Rev. 26, 85–110. doi: 10.1007/s10555-007-9044-4

Zhang, X. Z. (2010). Modulation of embryonic stem cell fate and somatic
cell reprogramming by small molecules. Reprod. Biomed. Online 21, 26–36.
doi: 10.1016/j.rbmo.2010.03.021

Zhao, S., and Iyengar, R. (2012). Systems pharmacology: network analysis to
identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol.

52, 505–521. doi: 10.1146/annurev-pharmtox-010611-134520
Zhao, X., Zheng, X., Fan, T.-P., Li, Z., Zhang, Y., and Zhang, J. (2015). A novel

drug discovery strategy inspired by traditional medicine philosophies. Science
347, S38–S40.

Zimmermann, G. R., Lehár, J., and Keith, C. T. (2007). Multi-target therapeutics:
when the whole is greater than the sum of the parts. Drug Discov. Today 12,
34–42. doi: 10.1016/j.drudis.2006.11.008

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Grixti, O’Hagan, Day and Kell. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 23 March 2017 | Volume 8 | Article 155

https://doi.org/10.1074/jbc.M111.236117
https://doi.org/10.1016/j.mam.2012.05.007
https://doi.org/10.1080/00498250801927427
https://doi.org/10.1007/s10555-007-9044-4
https://doi.org/10.1016/j.rbmo.2010.03.021
https://doi.org/10.1146/annurev-pharmtox-010611-134520
https://doi.org/10.1016/j.drudis.2006.11.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive

	Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine
	Introduction
	Role of Transporters in Cellular Drug Uptake
	Transporter-Mediated Drug Targeting
	Gemcitabine and Pancreatic Cancer

	Materials and Methods
	Cells and Reagents
	Cell Growth/Viability Assay
	Maybridge Fragment Screening
	Specificity Experiments
	Cheminformatic Analyses
	Maybridge Fragment Titration Experiments
	Cell Culture Treatments for Gene Dysregulation Studies
	Total RNA Isolation and Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
	Design of Primers for RT-qPCR
	Identification of Reference Genes for RT-qPCR Analysis

	Results
	Effects of Gemcitabine and Drug Fragments on the Viability of Panc-1 Cells
	Effect of Indole-3-Carbinol on Gemcitabine Toxicity
	Effect of Fragments on the Growth of Panc1 Cells
	Effect of Gemcitabine and Fragments on the Expression of Selected Transcripts in Panc 1 Cells
	Selectivity of Fragments for Increasing Transporter Expression

	Discussion
	Author Contributions
	Acknowledgments
	References


