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Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors
characterized by a poor prognosis and high rates of recurrence. Current treatment
strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy.
However, none of these treatments, alone or in combination, are considered effective
in managing this devastating disease, resulting in a median survival time of less
than 15 months. The efficiency of chemotherapy is mainly compromised by the
blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor
mass. Cancer stem cells (CSCs), with their unique biology and their resistance to
both radio- and chemotherapy, compound tumor aggressiveness and increase the
chances of treatment failure. Therefore, more effective targeted therapeutic regimens
are urgently required. In this article, some well-recognized biological features and
biomarkers of this specific subgroup of tumor cells are profiled and new strategies
and technologies in nanomedicine that explicitly target CSCs, after circumventing
the BBB, are detailed. Major achievements in the development of nanotherapies,
such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and
gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and
polymeric micelles, form the main scope of this summary. Moreover, novel biological
strategies focused on manipulating gene expression (small interfering RNA and clustered
regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9
[Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is
to analyze the gap between CSC biology and the development of targeted therapies.
A better understanding of CSC properties could result in the development of precise
nanotherapies to fulfill unmet clinical needs.

Keywords: cancer stem cell, glioma, nanotechnology, targeted therapy, blood–brain barrier, nanomedicine

INTRODUCTION

Gliomas, demonstrating glial cell characteristics, represent 30% of all brain tumors as
described by American Cancer Society (2016). These tumors, especially high-grade gliomas and
glioblastoma, grow invasively in the central nervous system and cause discernible neurological
symptoms within months with an extremely poor prognosis even after aggressive open
surgery combined with adjuvant chemo/radiotherapy. New assumptions incriminate cancer stem
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cells (CSCs) as a possible cause of tumor treatment resistance.
However, the biological nature of these cells is still undetermined
(Louis et al., 2007; Westphal and Lamszus, 2011).

The development of new technologies based on nanometer-
sized particles (nanotechnology) for cancer treatment has been
extensively investigated in the last decade and this approach
shows potential for glioma diagnosis and treatment. Unique
molecular signatures for each type of tumor have been uncovered
recently, because of advances in proteomics and genomics,
opening new paths for therapies that specifically target and kill
tumor cells (Cruceru et al., 2013).

In this review paper, the challenges in targeting gliomas
are highlighted. The concept of CSCs and their biomarkers is
introduced initially, and finally, developed nanotechnologies,
including some clinical trials, are summarized. Moreover, the
application of therapies already used in different fields to
glioblastoma multiform (GBM) treatment is proposed, focusing
on CSC targeting.

CLINICAL CLASSIFICATION AND
CURRENT TREATMENT OF GLIOMAS

Gliomas are brain tumors that resemble normal stromal
(glial) cells of the brain, such as astrocytes (astrocytomas),
oligodendrocytes (oligodendrogliomas) and ependymal cells
(ependymomas). They are a group of oncological diseases
for which no cure exists and little progress has been made
in order to guarantee a longer life expectancy. Gliomas
can diffusely penetrate throughout the brain and are mainly
classified according to their morphological resemblance to
their respective glial cell types, their cytoarchitecture and their
immunohistological marker profile (Louis et al., 2007; Westphal
and Lamszus, 2011).

There is also a glioma grading system that distinguishes,
astrocytomas, by four World Health Organization (WHO)
grades (I, II, III, and IV); and oligodendrogliomas and
oligoastrocytomas, by two grades (II and III) (Louis et al.,
2007).

The most aggressive and common glioma is glioblastoma
(a grade IV astrocytoma). This tumor demonstrates extensive
vascular endothelial proliferation, necrosis, high cell density and
atypia. It can evolve from a preexisting secondary glioblastoma
(low grade astrocytoma), but usually occurs de novo (primary
glioblastoma) (Westphal and Lamszus, 2011).

Recently, as described in the 2016 WHO report on the
central nervous system (CNS), it has been recommended that
glioblastomas be divided into IDH-wildtype, IDH-mutant and
Nitric oxide synthase (NOS). IDH-wild type (about 90% of cases)
is regarded as primary or de novo glioblastoma and prevailing in
patients over 55 years of age; IDH-mutant (about 10% of cases),
corresponds to secondary glioblastoma that preferentially arises
in younger patients (Louis et al., 2007); and NOS is reserved for
cases in which a full IDH evaluation cannot be performed (Louis
et al., 2016).

In the last two decades, glioblastoma treatment using
chemotherapy has undergone some changes, such as replacing

the use of some alkylating substances like carmustine
(BCNU), nimustine (ACNU), and lomustine (CCNU) with
temozolomide (TMZ). The alkylating agent groups that have
been mostly prescribed in the clinic are: TMZ (8-Carbamoyl-
3-methylimidazo (5, 1-d)-1, 2, 3, 5-tetrazin-4(3H)-one) and
nitrosoureas (BCNU, ACNU, CCNU – also referred to as CNUs)
(Beier et al., 2011).

Temozolomide is rapidly converted into its reactive format,
5-3-(methyl)-1-(triazen-1-yl) imidazole-4-carboxamide, at
physiologic pH, causing DNA damage through methylation
of the O6-position of guanines, blocking DNA replication and
inducing the death of tumor cells (Kaina et al., 1997; Ochs and
Kaina, 2000; Roos and Kaina, 2006) or even cell cycle arrest
(Hirose et al., 2001).

In contrast, the CNUs alkylate the N3-position of adenine
and the N7-position of guanine inducing apoptotic cell death in
p53 wildtype cells and necrotic cell death in p53 deficient cells
(Fischhaber et al., 1999; Johannessen et al., 2008).

Currently, TMZ, together with radiotherapy and surgical
resection, is the most commonly applied glioblastoma treatment.
Despite a boost in overall patient survival with TMZ treatment
and the low toxicity of TMZ, patient prognosis remains poor.
Usually few patients survive longer than 5 years, with a median
survival of approximately 14.6 months (Stupp et al., 2005,
2009).

GBM STEM CELLS AND TREATMENT
RESISTANCE

The possible cause of GBM chemoresistance is the
presence of CSCs. CSCs are tumor cells with stem cell-like
properties that reside in GBM and can readily generate both
proliferating progenitor-like and differentiated tumor cells amid
microenvironment cues (Morokoff et al., 2015). CSCs could be
more resistant towards radio- and chemotherapy and survive
intensive oncological therapies, leading to tumor recurrence
(Modrek et al., 2014). Since GBM is an aggressive tumor, the
development of alternative therapies targeting CSCs is urgently
needed.

The origin of CSCs can be either mutated embryonic stem
cells or downstream progenitors, that may already exist at birth
or accumulate over time through mutation (Shipitsin and Polyak,
2008). Recent studies have revealed that the “de-differentiation”
of non-CSCs into CSCs can be an alternative mechanism of CSC
creation (Safa et al., 2015), suggesting that diverse cell types, from
stem cells to their related differentiated progeny, are amenable to
oncogenic transformation.

Distinguishing between CSCs and other tumor populations
largely lies in the functional multipotency that stem cells
demonstrate, i.e., the self-renewal and differentiation to multiple
progeny capabilities. Cells that are tumorigenic and can
differentiate hierarchically are commonly regarded as CSCs
(termed alternatively as glioma stem cells, glioma CSCs, or brain
tumor stem cells). Also, CSCs can form sphere-shaped colonies,
however, it is not considered as a default feature (Pastrana et al.,
2011).
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BIOMARKERS FOR GLIOMA STEM
CELLS

The CSC hypothesis states that CSCs escape multimodal therapy,
causing tumor resistance. Some causes of this resistance could be
insufficient drug delivery to CSCs niche or non-specific targeting,
since the therapies generally target more differentiated tumor
cells. Another premise of this hypothesis is that therapies which
efficiently eliminate the CSC fraction of a tumor are able to
induce long-term responses and thereby halt tumor progression.
The best-described marker for CSCs is CD133, and recently
new molecules such as CD15/ stage specific embryonic antigen-1
(SSEA-1) and integrin a6 have been described as novel markers.
However, there is not yet a consensus on the optimal markers
for CSCs in GBM. CSCs have been isolated from cancer to be
analyzed and later used to screen for stem cell-specific biomarkers
in tumor cells, particularly surface biomarkers. Cell-surface
markers are generally cell membrane-surface antigens to which
antitumor drugs can easily bind, consequently increasing the
therapeutic efficiency of the drug. Therefore, membrane surface
markers are more meaningful than nuclear or cytoplasmic
antigens in targeted tumor therapy.

CD133 and its Limitations
CD133 belongs to the Prominin family, and is also known
as Prominin 1, with five transmembrane regions. Singh et al.
(Singh et al., 2004) found that 100 CD133 positive cells is
enough to induce tumorigenesis in the NOD/SCID mouse brain
and whereas 100,000 CD133 negative cells were incapable of
tumorigenesis. Subsequently, CD133 has been widely recognized
as a biomarker of glioma stem cells.

Although many studies have demonstrated transplanted
tumors using CD133+ cells, some researchers have reported on
the limitations of CD133 as tumor stem cell marker. CD133+
cells serve as tumor stem cells in many organs, such as
brain, lung and colon cancers, but expect for gastric or breast
(Su et al., 2015). CD133+ cells only had tumor initiating effects
in some glioma cells and were not found in other brain tumors,
such as CD15+, CD133− medulloblastomas (Read et al., 2009).
Different types of glioblastoma cells derived from different
patients can produce CD133+ or CD133− tumor stem cells
after serum-free culture in vitro, both of whom embrace stem
cell features, tumorigenic characteristics and capability of re-
generating CD133+ and CD133− cell populations. CD133+
glioma stem cells can differentiate into CD133− tumor cells;
CD133− glioma cells injected into nude rats formed tumors
containing CD133+ cells (Joo et al., 2008; Wang et al., 2008).
Therefore, CD133+ cells are not the only cells with the
characteristics of glioma stem cells, and CD133− cells exist as
CSCs.

CD44
Recent studies have demonstrated that some glioma cell
subpopulations highly express CD44, a distinctive cell adhesion
molecule (Xu et al., 2010). CD44 is a glycoprotein commonly
expressed in numerous malignancies (Bradshaw et al., 2016).

CD44 knockdown in GBM xenograft models has inhibited tumor
cell growth while improving the response to chemotherapy (Y. Xu
et al., 2010). CD44 and CD133 are usually co-expressed in GBM
spheres (Brown et al., 2015). Collectively, these data suggest that
CD44 may be useful as a CSC marker.

Integrin-α6
Integrin-α6 is a member of the heterodimer integrin family
and is a laminin member of the extracellular matrix protein
family. Integrin-α6 can be used as a marker of neural stem cells
and the expression of integrin-α6 can be used to detect the
tumorigenic potential of normal neural stem cells (Corsini and
Martin-Villalba, 2010). Integrin-α6 is highly expressed by the
glioma stem cell population and can be used to isolate glioma
stem cells (Lathia et al., 2010; Velpula et al., 2012). The function of
integrin-α6 lies in self-renewal, proliferation, survival and growth
of tumor cells in vitro, and so it can be used as a regulatory
target of tumor growth, while its genetic knockout can reduce
tumorigenesis (Lathia et al., 2010).

CD15
Also known as SSEA-1, it is a carbohydrate antigen on the cell
surface. Read et al. (Read et al., 2009) found that tumor cells
that are CD15+ and CD133− had the characteristics of tumor
stem cells through mouse medulloblastoma experiments. The
tumorigenicity of CD15+ cells is 100 times higher than that
of CD15− cells in human glioblastoma, where all CD15+ cells
were also found to be CD133+, while most CD133+ cells also
expressed CD15, suggesting that CD15 is highly likely to be
another surface marker of glioblastoma stem cells (Son et al.,
2009).

L1CAM
L1 cell adhesion molecule (L1CAM) belongs to the nerve cell
adhesion molecule category and to the type I transmembrane
glycoprotein of immunoglobulin super family and is crucial in
nervous system development. L1CAM supports the survival and
proliferation of CD133+ glioma cells, both in vitro and in vivo,
and can be targeted as CSC-specific marker for precise treatment
in malignant gliomas (Bao et al., 2008). L1CAM activates some
signaling pathways such as fibroblast growth factor receptor
(FGFR) and focal adhesion kinase (FAK) through integrin,
increasing the growth and motility of GBM cells in autocrine
or/and paracrine manner. These effects can be intervened by
using small-molecule inhibitors of FGFR, integrins and FAK
(Anderson and Galileo, 2016).

CD90
Also known as Thy-1, CD90 is a member of the cell adhesion
molecule immunoglobulin super family. CD90 has been found
on the surfaces of nerve cells, thymocytes, fibroblast subsets,
endothelial cells, mesangial cells, and hematopoietic stem cells,
suggesting that CD90 is a surface marker in hematopoietic stem
cells (Kumar et al., 2016), mesenchymal stem cells (Kimura et al.,
2016) and hepatocellular stem cells (Yang et al., 2008). CD90 is
overexpressed in GBM and is almost absent in low-grade gliomas
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or normal brain tissues. All CD133+ glioma cells expressing
CD90, and CD90+/CD133+ and CD90+/CD133− cells have the
same self-renewal ability, indicating that CD133+ glioma stem
cells may be a subtype of CD90+ glioma cells (He et al., 2012).
In addition, CD90+ cells were also found in glioma peritumoral
vessels (Inoue et al., 2016). Therefore, CD90 can be used as a
prognostic index of glioma, a marker of glioma stem cells and
an indicator of glioma angiogenesis as well.

A2B5
A2B5 is a ganglioside on the surface of the glial precursor cell
membrane. Ogden et al. (Ogden et al., 2008) detected more
A2B5+ cells than CD133+ cells in glioblastoma samples, and
CD133+ cells were rarely detected. The cells were screened
and sorted using flow cytometry, and sequential culture of
A2B5+/CD133− and A2B5+/CD133+ cells showed stem cell
proliferative activity while that of A2B5-/CD133− cells did not.
Tchoghandjian et al. (Tchoghandjian et al., 2010) confirmed that
A2B5+/CD133− and A2B5+/CD133+ cells could form tumor
stem cell spheres, while A2B5-/CD133− cells could not. These
studies also show that CD133− cell populations still contain cells
with stem cell activity, and A2B5+ cells may be one type of
such stem cells. CD133−/A2B5+ glioma-initiating cells possess
a strong migratory and invasive capacity; these cells may be an
important subpopulation with high invasive potential in GBM
(Sun et al., 2015).

Recently, some typically expressed embryonic stem cells
markers have been considered as the markers for tumor-initiating
cells, such as c-Myc, SOX2, and OCT-4. These markers could
be useful as a tool to identify and isolate CSCs (Ignatova et al.,
2002). Moreover, Nestin, OCT-4, NANOG, SOX2, c-Myc, and
KLF4 have been described as key players in the transcriptional
regulation of glioblastoma CSCs (Ignatova et al., 2002; Yang et al.,
2008; Guo et al., 2011; Zhu et al., 2014).

APPLICATION OF NANOTHERAPIES IN
GBM

Besides drug discovery, the delivery of drugs to the brain is a
major challenge in treating CNS diseases. Invasive procedures
like tumor resection are not always effective for cancer treatment
and are extremely complicated and delicate. A possible alternative
to overcome this issue is to use systemic delivery; however,
the blood–brain barrier (BBB) is an obstacle because of its
low permeability, requiring higher doses of drugs, which causes
increased side effects. The BBB inhibits the delivery of therapeutic
agents to the CNS and prevents a large number of drugs,
including antibiotics, antineoplastic agents, and neuropeptides,
in passing through the endothelial capillaries to the brain
(Fiandaca et al., 2011; Aryal et al., 2014; Pardridge, 2014). Safe
disruption or loosening of the BBB is highly important to deliver
drugs into brain niches. Successful delivery of drugs can be
achieved through BBB disruption using ultrasound in intra-
arterial infusion therapy. This allows both chemotherapeutic
agents and antibodies to bypass the BBB (Kuittinen et al., 2013).
In addition, K+ (Ca) channels have been identified as potential

targets for modulation of BBB permeability in brain tumors by
assisting the formation of pinocytic vesicles of drugs (Ningaraj
et al., 2003). Moreover, tumor drug delivery can be enhanced if
they are injected into the brain along with a vasodilator, such as
bradykinin, nitric oxide donors or agonists of soluble guanylate
cyclase, and calcium dependent potassium K+ (Ca) channels.
Furthermore, cerebral blood flow could be modulated and the
therapeutic efficacy was augmented after applying a nitric oxide
donor which selectively open the blood tumor barrier in rats with
intracerebral C6 gliomas (Fross et al., 1991; Weyerbrock et al.,
2003, 2011; Black and Ningaraj, 2004).

Aiming to enhance transport through or bypass the
BBB, many research groups have been developing new
nanotechnologies to overcome these obstacles. Many biochemical
modifications of drugs and drug nanocarriers have been
developed, enabling local delivery of high doses while avoiding
systemic exposure. In this review section, BBB properties and
recently discovered nanotechnologies that allow systemic drug
delivery for CNS cancer therapy are discussed.

THE BLOOD–BRAIN BARRIER

The BBB is a barrier that presents selective permeability
carried out by endothelial cells lining the lumen of brain
capillaries, which lack pinocytosis and fenestrations because
of the presence of tight junction complexes (Eichler et al.,
2011; Chacko et al., 2013; Papademetriou and Porter, 2015).
In addition to tight junction complexes, the BBB degrade
drugs preventing them to reach the target location due to
drug metabolizing enzymes presence, besides the existence of
active efflux transporters (AETs) that cargo drugs back to the
blood and enzymes that metabolize the drugs before their
releasing to the destination. (Regina et al., 2001; Ohtsuki and
Terasaki, 2007; Papademetriou and Porter, 2015) (Figure 1).
The tight junctions in the BBB are mainly composed of
claudins and occludins (Nitta et al., 2003; Abbott et al.,
2010; Haseloff et al., 2014). Claudin 5 is critical for the
restriction of small molecules (<800 daltons) and the loss
of some claudins, like claudin 3, is related to the increased
BBB permeability in tumor vasculature and autoimmune
encephalomyelitis (Wolburg et al., 2003). In contrast, the BBB
remains intact in infiltrating gliomas or micrometastatic tumors,
indicating that it is crucial to modulate the BBB permeability in
these regions.

Transport across the BBB is selective for molecules smaller
than 12 nm and is finely regulated; there are mainly two types
of transport, carrier-mediated transport (CMT) and receptor-
mediated transport (RMT) (Papademetriou and Porter, 2015)
(Figure 1).

Carrier-Mediated Transport
The transport of energy production molecules like glucose and
lactate, nucleosides, and ions through the cell membrane by
facilitated or active transport can be mediated by CMT. In
addition, CMT aids the clearance of neurotoxic substances,
metabolites of brain function, and neurotransmitters, through
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FIGURE 1 | The blood-brain barrier (BBB) and the glioblastoma multiform (GBM) niche. The BBB is selective and restrictive to a variety of molecules.
Endothelial cells and the basement membrane, together with strong lateral tight junctions, maintain the selective permeability. A possible strategy to reach the glioma
core is to use nanocarriers coupled with target guiding molecules that, for example, bind to the membrane receptors of both tumor niche infiltrated BBB or healthy
BBB, and which carry nanomedicines. Glioblastoma is composed of heterogeneous cell populations and the cancer stem cells are responsible for treatment
resistance.

AETs (Ohtsuki and Terasaki, 2007; Sanchez-Covarrubias et al.,
2014; Papademetriou and Porter, 2015).

The biochemical modification of small molecules enables
changes in some parameters like solubility, stability, lipophilicity,
and recognition by AETs. Redesign of drug aiming to improve
the recognition by CMT and transportation through BBB
can be achieved by coupling the drug to a regular CMT
substrate. The molecular structure of the drug should mimic
that of the endogenous CMT substrate (e.g., sugars, amino
acids, nucleosides) with pharmacologic activity preserved, but
preferably not affect CMT function to avoid possible side effects
(Misra et al., 2003; Papademetriou and Porter, 2015).

Receptor-Mediated Transport
In contrast to CMT, RMT promotes the permeability of some
macromolecules into the brain, such as lipoproteins, hormones,
nutrients and growth factors (Papademetriou and Porter, 2015).
The RMT process is mediated by the binding of the molecule
to a cell-surface receptor that presents in endothelial cells on
the luminal surface, following endocytosis and transportation of
vesicles to the destination, and sequential exocytosis of the vesicle
to the extravascular space (Abbott et al., 2010; Georgieva et al.,
2014; Papademetriou and Porter, 2015).

The approach targeting RMT requires the involvement of
a specific ligand (e.g., an antibody or antibody fragment,
synthetic peptide, natural ligand), which has affinity for an
endocytic receptor expressed on the endothelial cell surface, to

the chemotherapeutic drug or to a drug-loaded nanocarrier.
Binding to the targeted receptor induces intracellular signaling
cascades mediating invagination and formation of membrane-
bound vesicles in the cell interior, and then intracellular
vesicular trafficking transport to the abluminal endothelial
plasma membrane (Abbott et al., 2010; Georgieva et al., 2014;
Papademetriou and Porter, 2015).

NANOCARRIERS

The discussion of nanosystems in this review mainly focuses
on liposomes, polymeric nanoparticles, solid lipid nanoparticles,
polymeric micelles and dendrimers as carriers (Figure 2).

Liposomes
Lipid-bilayer vesicles, namely liposomes, are popular drug
systems for delivery due to their easy preparation, their
encapsulation capability of a wide array of drugs, their
biocompatibility, efficiency, non-immunogenicity, enhanced
solubility of chemotherapeutic agents, and commercial
availability. The clearance of liposomes by macrophages is
relatively fast, so modifications of the liposome surface or size
can extend their circulation time. Specificity for the nervous
system is possible by coupling liposomes to aptamers or
monoclonal antibodies against transferrin receptors (OX-26),
glial fibrillary acidic proteins or the insulin receptor (Kanai
et al., 2014). The use of liposomes for gene delivery has been
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FIGURE 2 | Nanocarrier characteristics. Nanocarriers have four main features: a shell that can vary in type, length, density and crosslinking molecules; a core,
which can be hydrophobic, anionic or cationic depending on which crosslinked molecule needs to be carried; surface targeting molecules which can be antibodies,
proteins, vitamins, peptides and aptamers; and lastly the cargo, which can be chemotherapeutics, nucleic acids, proteins, fluorophores or other imaging dyes.
Usually nanocarriers are divided into five subtypes: liposomes (lipid bilayer structures), polymeric micelles (lipid monolayers), dendrimers (highly branched structures),
and nanoparticles (organic or inorganic). Recently, new strategies have focused on carrying bio-cargoes, such as plasmids coding for proteins involved in
programmed cell death or agents to silence the genes important for the cancer stem cell survival through genetic knockout using the CRISPR/CAS9 system or
genetic knockdown using siRNAs.

demonstrated by injecting liposomes carrying a plasmid coding
for the green fluorescence protein in rats. Also, in tumor
therapy, liposomes carrying small interfering RNA (siRNA)
have been deployed, while the diesteryl phosphoethanolamine
poly carboxybetaine lipid which promotes endosomal/lysosomal

escape was developed for systemic delivery of siRNA (Dai et al.,
2014; Ozpolat et al., 2014).

Furthermore, trafficking cargo across the BBB is improved
when using nanocarriers that target CMT. For example,
liposomes targeting glucose transporter 1 (GLUT1) enhanced
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transport of daunorubicin (Ying et al., 2010), while doxorubicin
delivery to the brain was 4.8-fold enhanced after equipped with
liposomes that targeted glutathione transporters (2B3–101). This
approach is particular suitable for small molecules delivery rather
than that of large ones. In another study, 2B3–101 was reported as
reaching clinical trials and this will be further detailed along this
review (Birngruber et al., 2014; Papademetriou and Porter, 2015).

Nanoparticles (NPs)
Nanoparticles (NPs) have also been widely studied, because of
their high drug-loading capacity and protection against chemical
and enzymatic degradation. NPs have enormous medical
potential and have emerged as a major tool in nanomedicine,
compared with conventional drug delivery methods. NPs are
solid colloidal particles made of polymers ranging from 1 to
1000 nm, and are divided in two types, nanospheres and
nanocapsules (Couvreur et al., 2002). An interesting application
of NPs is the magnetic format of NPs that are made of a magnetic
core of iron oxide or magnetite and a biocompatible covering
shell of dextran or starch, to be distributed through an organism
that is exposed to a localized magnetic field. In vivo GBM
models have shown that magnetic NPs are promising. Detailed
reviews concerning NP applications have already been published
(Laquintana et al., 2009; Upadhyay, 2014).

Polymeric Micelles
Polymeric micelles range from 10 to 100 nm and have a core-
shell architecture like NPs. They spontaneously self-assemble
in aqueous solutions at concentrations higher than a threshold
concentration termed the critical micelle concentration. The core
is constructed mainly by hydrophobic polymer parts such as
poly(caprolactone), poly (propylene glycol) (PPG), or poly(D,L-
lactide), together with a hydrophilic shell made of poly(ethylene
glycol) (PEG). Pluronic micelles (PEG-PPG-PEG) have emerged
as good candidates for brain therapy, since they can easily cross
the BBB and inhibit drug efflux. Micelles carrying paclitaxel were
able to increase the toxicity of the chemotherapeutic drug in a
LN18 human glioblastoma cell line (Liu et al., 2008; Laquintana
et al., 2009).

Dendrimers
Dendrimers are highly branched polymer molecules smaller than
12 nm. Conjugation to dendrimers confers enhanced delivery
across the BBB, which in polyether-copolyester dendrimers
loaded with methotrexate and D-glucosamine and tested against
avascular glioma spheroids resulted in increased methotrexate
potency. After a week, dendrimers do not affect the viability
of neural cells nor induce local microglia activation even at
submicromolar range of concentration. A better understanding
of dendrimer distribution patterns may facilitate the design of
nanomaterials for future clinical applications (Laquintana et al.,
2009).

Metal Particles
Metal particles have been studied extensively because it has
been demonstrated that they enhance the susceptibility of tumor

tissues to injury induced by radiation exposure, and are therefore
a promising candidate for nanomedicine. Application of gold
NPs prior to radiation produced distinctive DNA damage in
tumors and improved the survival of tumor bearing animals
(Joo et al., 2008; Bobyk et al., 2013). Previous research has
suggested that the enhanced radiosensitization effects were led
by low-energy electrons emission from gold particles and in
a dose-dependent maner (Zheng et al., 2008). Similarly, the
radiosensitization effect of silver NPs is also attributed to their
interactions with the DNA repair system, which eventually
leads to the arrest of DNA duplication and cell apoptosis
(Xu et al., 2009). After irradiation, titanium dioxide (TiO2)
induces tumor cell death by increasing the production of free
radicals. The amount of reactive oxygen species generated
is dose-dependent on the amount of TiO2 applied as a
radiosensitizer when the cells are exposed in X-rays (Park et al.,
2008).

EMERGING STRATEGIES USING
NANOCARRIERS

Hyperthermia
Hyperthermic treatment strategies use a magnetic medium such
as thermoseeds and magnetic NPs to apply moderate heating
in a specific area of the organ where the tumor is located. The
combination of carbon nanotubes (CNTs) with near-infrared
radiation (NIR) was effective in debulking a tumor in rats,
leading to tumor shrinkage without recurrence. Furthermore,
this protocol could eliminate glioma CSCs, both drug-sensitive
and drug-resistant glioma cells due to the broad-spectrum
absorption of CNTs by gliomas. In contrast, normal cells
were merely affected, demonstrating the lower uptake of CNTs
(Santos et al., 2014). Hyperthermia in glioma treatment remains
controversial because it is technically difficult to impose a lethal
dose of heat to all cell populations within the glioma mass. The
heterogeneous response to different grades of hyperthermia may
change the biological nature of the surviving tumor cells. For
example, following moderate thermal preconditioning human
glioma cell lines demonstrate increased proliferation in vitro
and aberrant aggressiveness in a xenograft model. The transient
increase in growth of the CD133 subtype of gliomas after thermal
preconditioning indicates that there might be a compensation
for the loss of the thermal sensitive sub-population (Zeng et al.,
2016).

To further increase selectivity for CSCs, antibodies against the
CD133 surface marker can be employed as a targeting moiety.
Photothermal therapy using single-walled carbon nanotubes
(SWNTs) conjugated with anti-CD133 antibodies (CDSWNTs)
produced a targeted lysis of CD133+GBM CSCs, while CD133−
GBM cells remained intact in vitro. A discernible shrinkage
of tumor after subcutaneous NIR laser irradiation following
CDSWNT administration in this particular ectopic GBM
tumor model (Wang et al., 2011). NIR photoimmunotherapy,
employing a monoclonal CD133 antibody (mAb) conjugated
to an IR700 phototoxic phthalocyanine dye, permitted a
spatiotemporally controlled elimination of tumor cells through
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specific image guidance. Rapid cell death was observed after
CD133 mAb intravenous administration followed by harmless
NIR light applied through the intact skull. This proof of principle
study offers a promising theranostic agent that can be applied in
intraoperative imaging or histopathological evaluation to define
the tumor borders, as well as eradication of CSCs specifically and
efficiently (Jing et al., 2016).

Antitumor Antibiotics
Antitumor antibiotics are a form of chemotherapeutic that
interferes with DNA and slows or stops cancer cells from
multiplying. Antitumor antibiotics demonstrate promise in
treating gliomas. For example, doxorubicin (trade name:
Adriamycin R©), daunorubicin (trade name: Cerubidine R©), and
bleomycin (trade name: Blenoxane R©), show powerful anticancer
activity against gliomas cells in vitro. Their efficacy in vivo
was reported to be poor, which was largely attributed to
their inability to penetrate the BBB (von Holst et al., 1990).
However, once these antibiotics are encapsulated in PEGylated
liposomes (for example, Doxil R© is a PEGylated form of
liposomal doxorubicin), the prolonged survival of treated
animals is observed following an enhanced local antitumor
effect (Sharma et al., 1997). Overall, the antitumor effects of
liposomal doxorubicin, daunorubicin, or bleomycin have been
unsatisfactory against glioma in patients (Fabel et al., 2001;
Fiorillo et al., 2004). Further, to promote the efficacy of liposomal
formulations against brain tumors, more effective drug-delivery
strategies are clearly in need. For example, the combination
of ultrasound-induced microbubbles, which create transient
local BBB permeability, with liposomal doxorubicin has been
reported to have a significant antitumor effect (Aryal et al., 2013,
2015).

Engineering of Cell Genome
Recently, the advance of new technologies that facilitate
the engineering of the cell genome, like clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas 9 and
silencing RNA, has provided new methods to deliver nucleic
acids to the brain, and in particular for glioma treatment.
For this purpose, positively charged and degradable polymers,
including chitosan, poly(beta-amino esters), poly(amidoamines),
and many other cationic polymers have been used, because of
their cationic nature, which allows complexation with negatively
charged molecules like DNA or RNA. Inorganic NPs are
better applied for imaging and drug delivery purposes, because
their synthesis is easily tunable and reproducible (Cardoso
et al., 2007; Tzeng and Green, 2013). Some examples are
injectable superparamagnetic iron oxide NPs, which are used
as contrast agents for magnetic resonance imaging, and gold
NPs that are used to carry a conjugated drug. Coated spherical
gold NPs carrying a highly oriented layer of siRNA are well
protected from nuclease degradation and provide highly efficient
knockdown.

Liposomes have also been used to deliver the IFN-β gene in
mouse models of glioma, resulting in immune response induction
and reduced tumor growth. Five malignant glioma patients were
treated using liposomes carrying the IFN-β gene in a pilot clinical

trial and four patients showed > 50% tumor reduction or stable
disease (Yoshida et al., 2004). Moreover, since Apo2L/tumor
necrosis factor-related apoptosis inducing ligand (TRAIL) is
fairly specific for cancer cells, a TRAIL plasmid encapsulated in
PEG-conjugated PLA NPs (<120 nm) was injected intravenously
and caused an increased median survival time (Hawkins, 2004;
Lu et al., 2006).

To avoid GBM recurrence, the protein product of the
delivered gene should be designed to be active in CSCs. In
addition, the construct can be under the control of a cancer-
specific promoter, such as survivin or PEG3, to ensure that
healthy cells are not transfected or transduced (Su et al., 2005;
Van Houdt et al., 2006). The delivery of miRNAs, such as miR-
124 and miR-137, can induce terminal differentiation and cell
death in murine CSCs in vitro (Silber et al., 2008). Moreover,
Gangemi et al. used an shRNA-expressing plasmid in a retroviral
vector for in vitro knockdown of SOX2, leading to inhibited
CSC proliferation, self-renewal, and tumor-initiating capacity
(Gangemi et al., 2009).

Recently, modified siRNAs have been developed that are
protected from nuclease degradation and can be readily taken
up into cells. This type of modification allows researchers to
focus on developing engineered NPs with a prolonged circulation
time and site-specific delivery, instead of siRNA protection, thus
accelerating clinical translation.

CLINICAL TRIALS

Few clinical trials using nanotherapies to target GBM have been
conducted; this review focuses on glioma treatment, and the
information about these clinical trials is summarized in Table 1.

Ang-1005 (also named GRN-1005) was designed to
circumvent BBB under several clinical trials. Ang-1005 is
conjugated to paclitaxel and to the RMT ligand angiopep-2
that targets LRP1. In a phase I trial, the drug tolerance of
maximum dose of 650 mg/m2 was shown. A pharmacokinetics
and tumor resections analysis proved that Ang-1005 kept intact
in blood plasma so as to remain sufficient concentrations for
cytotoxicity when approaching tumor samples (Thomas et al.,
2009; Papademetriou and Porter, 2015; Regina et al., 2015).

To the best of our knowledge, nanocarrier-based RMT-
targeting strategies in GBM treatment have very limit clinical
trial outcomes. It has been described that PEGylated liposomal
doxorubicin without RMT-targeting was evaluated in phase I
studies in GBM patients, showing no improvements in
progression nor survival (Papademetriou and Porter, 2015).
In Phase I/II clinical trials, solid tumors and metastatic brain
cancer or malignant recurrent glioma patients were treated with
2B3–101 encapsulated by a PEGylated liposomal doxorubicin
nanocarrier employing glutathione to target glutathione
transporters (CMT-based targeting) (Birngruber et al., 2014).

SGT-53 is a nanocarrier composed of cationic liposomes that
encapsulate a plasmid for the p53 tumor suppressor, and which
displays scFv-targeting TfR. One phase II clinical trial of SGT-53
is to combine it with TMZ for patients with recurrent malignant
gliomas, aiming to evaluate tumor cells death after accumulation

Frontiers in Pharmacology | www.frontiersin.org 8 March 2017 | Volume 8 | Article 166

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00166 March 29, 2017 Time: 21:1 # 9

Glaser et al. Glioma Stem Cell Targeted Nanotherapy

TA
B

LE
1

|C
lin

ic
al

st
ud

ie
s

fo
r

na
no

m
ed

ic
in

e-
b

as
ed

g
lio

m
a

th
er

ap
y.

A
g

en
t/

Tr
ad

e
na

m
e

Fo
rm

ul
at

io
n/

C
o

m
p

o
si

ti
o

n
In

d
ic

at
io

n/
C

o
ns

eq
ue

nc
e

N
A

N
O

TH
E

R
M

Iro
n

ox
id

e
na

no
pa

rt
ic

le
s

M
ag

ne
tic

hy
pe

rt
he

rm
ia

pl
us

ra
di

ot
he

ra
py

w
ith

N
an

ot
he

rm
fo

r
th

e
tr

ea
tm

en
to

f
gl

io
bl

as
to

m
a

in
14

pa
tie

nt
s

(M
ai

er
-H

au
ff

et
al

.,
20

07
).

H
yp

er
th

er
m

ia
pl

us
ra

di
ot

he
ra

py
w

ith
N

an
ot

he
rm

fo
r

th
e

tr
ea

tm
en

to
fg

lio
bl

as
to

m
a

in
60

pa
tie

nt
s

(M
ai

er
-H

au
ff

et
al

.,
20

11
).

A
ve

ra
ge

su
rv

iv
al

fo
llo

w
in

g
fir

st
re

cu
rr

en
ce

:1
3.

2
m

on
th

s
co

m
pa

re
d

w
ith

6
m

on
th

s
w

ith
co

nv
en

tio
na

lt
re

at
m

en
ts

.

IF
N

-β
IF

N
B

ge
ne

th
er

ap
y

vi
a

ca
tio

ni
c

lip
os

om
es

A
pi

lo
tc

lin
ic

al
tr

ia
lo

fI
FN

B
ge

ne
th

er
ap

y
to

de
m

on
st

ra
te

its
fe

as
ib

ilit
y

an
d

sa
fe

ty
in

gl
io

m
a

tr
ea

tm
en

t(
Yo

sh
id

a
et

al
.,

20
04

).

P
ha

se
Ic

lin
ic

al
tr

ia
lo

fI
FN

B
ge

ne
th

er
ap

y
fo

r
gl

io
m

a.
In

hi
st

ol
og

ic
al

ex
am

in
at

io
ns

of
au

to
ps

y
sa

m
pl

es
m

an
y

tu
m

or
ce

lls
sh

ow
ed

ne
cr

ot
ic

ch
an

ge
s,

an
d

im
m

un
oh

is
to

ch
em

is
tr

y
id

en
tifi

ed
nu

m
er

ou
s

C
D

8+
ly

m
ph

oc
yt

es
an

d
m

ac
ro

ph
ag

es
in

fil
tr

at
in

g
th

e
tu

m
or

an
d

su
rr

ou
nd

in
g

tis
su

es
,w

hi
le

C
D

34
-im

m
un

or
ea

ct
iv

e
ve

ss
el

s
w

er
e

no
ta

bl
y

de
cr

ea
se

d
in

th
e

ve
ct

or
-in

je
ct

ed
br

ai
n

(W
ak

ab
ay

as
hi

et
al

.,
20

08
).

IN
TE

R
LE

U
K

IN
12

R
ep

lic
at

io
n-

di
sa

bl
ed

S
em

lik
iF

or
es

tv
ira

lv
ec

to
r

ca
rr

yi
ng

th
e

hu
m

an
in

te
rle

uk
in

12
(IL

-1
2)

ge
ne

an
d

en
ca

ps
ul

at
ed

in
ca

tio
ni

c
lip

os
om

es
(L

S
FV

-I
L1

2)

Th
is

w
as

a
ph

as
e

I/I
Ic

lin
ic

al
st

ud
y

in
ad

ul
tp

at
ie

nt
s

w
ith

re
cu

rr
en

tG
B

M
w

hi
ch

w
as

ai
m

ed
at

ev
al

ua
tin

g
th

e
bi

ol
og

ic
al

sa
fe

ty
,m

ax
im

um
to

le
ra

te
d

do
se

,a
nd

an
tit

um
or

ef
fic

ac
y

of
LS

FV
-I

L1
2

(R
en

et
al

.,
20

03
).

D
A

U
N

O
R

U
B

IC
IN

Li
po

so
m

e
D

au
no

Xo
m

e,
a

lip
os

om
e

fo
rm

ul
at

io
n

of
da

un
or

ub
ic

in
,a

ch
ie

ve
d

an
d

m
ai

nt
ai

ne
d

po
te

nt
ia

lly
cy

to
to

xi
c

le
ve

ls
in

gl
io

bl
as

to
m

a
fo

r
a

lo
ng

tim
e

in
as

so
ci

at
io

n
w

ith
lo

w
-le

ve
l

sy
st

em
ic

ex
po

su
re

(Z
uc

ch
et

ti
et

al
.,

19
99

).

H
ig

h
co

nc
en

tr
at

io
ns

of
da

un
or

ub
ic

in
an

d
da

un
or

ub
ic

in
ol

w
er

e
fo

un
d

in
m

al
ig

na
nt

gl
io

m
as

af
te

r
sy

st
em

ic
ad

m
in

is
tr

at
io

n
of

lip
os

om
al

da
un

or
ub

ic
in

(A
lb

re
ch

te
ta

l.,
20

01
).

A
co

m
bi

na
tio

n
of

lip
os

om
al

da
un

or
ub

ic
in

an
d

ca
rb

op
la

tin
pl

us
et

op
os

id
e

pr
od

uc
ed

a
m

aj
or

re
sp

on
se

an
d

th
e

29
m

on
th

pr
og

re
ss

io
n-

fre
e

su
rv

iv
al

w
as

38
%

w
ith

lit
tle

an
d

tr
an

si
en

th
em

at
ol

og
ic

al
to

xi
ci

ty
(F

io
ril

lo
et

al
.,

20
04

).

D
O

XO
R

U
B

IC
IN

Li
po

so
m

e
S

ta
bi

liz
at

io
n

of
th

e
di

se
as

e
w

as
ob

se
rv

ed
in

54
%

(7
/1

3)
of

pa
tie

nt
s.

P
ar

tia
lr

es
po

ns
e

an
d

co
m

pl
et

e
re

sp
on

se
w

er
e

no
to

bs
er

ve
d.

M
ed

ia
n

tim
e-

to
-p

ro
gr

es
si

on
w

as
11

w
ee

ks
.

P
ro

gr
es

si
on

fre
e

su
rv

iv
al

at
12

m
on

th
s

w
as

15
%

.M
ed

ia
n

ov
er

al
ls

ur
vi

va
l(

O
S

)a
fte

r
lip

os
om

al
do

xo
ru

bi
ci

n
th

er
ap

y
w

as
40

.0
w

ee
ks

,w
he

re
as

th
e

m
ed

ia
n

O
S

af
te

r
di

ag
no

si
s

re
ac

he
d

20
.0

m
on

th
s

(8
7.

0
w

ee
ks

).
Li

po
so

m
al

do
xo

ru
bi

ci
n

w
as

w
el

lt
ol

er
at

ed
,w

ith
th

e
m

ai
n

si
de

ef
fe

ct
s

be
in

g
pa

lm
op

la
nt

ar
er

yt
hr

od
ys

es
th

es
ia

oc
cu

rr
in

g
in

38
%

of
pa

tie
nt

s
an

d
m

ye
lo

to
xi

ci
ty

(W
or

ld
H

ea
lth

O
rg

an
iz

at
io

n
gr

ad
e

3–
4)

in
31

%
of

pa
tie

nt
s

(F
ab

el
et

al
.,

20
01

).
Th

e
in

ve
st

ig
at

ed
co

m
bi

na
tio

n
w

as
to

le
ra

bl
e

an
d

fe
as

ib
le

,b
ut

ne
ith

er
th

e
ad

di
tio

n
of

P
E

G
-d

ox
or

ub
ic

in
no

r
th

e
pr

ol
on

ge
d

ad
m

in
is

tr
at

io
n

of
te

m
oz

ol
om

id
e

re
su

lte
d

in
a

m
ea

ni
ng

fu
li

m
pr

ov
em

en
to

ft
he

pa
tie

nt
ou

tc
om

es
(B

ei
er

et
al

.,
20

09
).

A
ph

as
e

II
tr

ia
lw

ith
40

pa
tie

nt
s

us
in

g
a

co
m

bi
na

tio
n

of
te

m
oz

ol
om

id
e

an
d

pe
gy

la
te

d
lip

os
om

al
do

xo
ru

bi
ci

n.
Tr

ea
tm

en
tw

as
w

el
lt

ol
er

at
ed

bu
td

id
no

ta
dd

si
gn

ifi
ca

nt
cl

in
ic

al
be

ne
fit

re
ga

rd
in

g
6-

m
on

th
pr

og
re

ss
io

n
fre

e
su

rv
iv

al
an

d
ov

er
al

ls
ur

vi
va

l(
A

na
nd

a
et

al
.,

20
11

).

P
53

Li
po

so
m

es
en

ca
ps

ul
at

in
g

a
no

rm
al

hu
m

an
w

ild
-t

yp
e

p5
3

D
N

A
se

qu
en

ce
in

a
pl

as
m

id
ba

ck
bo

ne

P
ha

se
II

S
tu

dy
of

C
om

bi
ne

d
Te

m
oz

ol
om

id
e

an
d

Ta
rg

et
ed

P
53

G
en

e
Th

er
ap

y
(S

G
T-

53
)

fo
r

th
e

tr
ea

tm
en

to
fp

at
ie

nt
s

w
ith

re
cu

rr
en

tg
lio

bl
as

to
m

a.
Th

is
st

ud
y

is
cu

rr
en

tly
re

cr
ui

tin
g

pa
rt

ic
ip

an
ts

.

5-
FL

U
O

R
O

U
R

A
C

IL
In

je
ct

ab
le

5-
flu

or
ou

ra
ci

l-
re

le
as

in
g

m
ic

ro
sp

he
re

s
P

ha
se

II
st

ud
y

w
ith

a
to

ta
lo

f9
5

pa
tie

nt
s.

S
af

et
y

w
as

ac
ce

pt
ab

le
bu

to
ve

ra
ll

su
rv

iv
al

w
as

no
ts

ig
ni

fic
an

tly
im

pr
ov

ed
(M

en
ei

et
al

.,
20

05
).

Frontiers in Pharmacology | www.frontiersin.org 9 March 2017 | Volume 8 | Article 166

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00166 March 29, 2017 Time: 21:1 # 10

Glaser et al. Glioma Stem Cell Targeted Nanotherapy

FIGURE 3 | Proposed strategy. This proposed therapeutic strategy targeting the GBM cancer stem cells (CSCs) as a novel treatment, would use liposomes as
nanocarriers, because they can shield and carry molecules of different sizes and charges. Liposomes, with a shell coated using aptamers or antibodies specific to
CSC markers, such as CD133, CD15, CD44, integrin-α6, or A2B5, would carry antitumor antibiotics (doxorubicin) or genome editing tools such as SOX2, TRAIL,
miR-124, miR-137, and IFN-β, to modulate tumor survival/death gene expression. Alternatively, the use of gold nanoparticles targeting brain markers, like glial
fibrillary acidic protein, is recommended to bypass the BBB and deliver genome editing tools.

of the drugs, anti-tumor efficacy, safety and overall survival (Yu
et al., 2004; Senzer et al., 2013).

Some trials are now using gene-silencing therapies, including
siRNA coupled to D3 and D5 polylysine dendrimers and melittin-
grafted HPMA oligolysine-based copolymers, for intravenous,
intracerebroventricular, or intranasal administration to the CNS.
A nanoliposomal formulation of irinotecan (CPT-11) is also in
phase I trials for glioma (Krauze et al., 2007).

Moreover, magnetically induced hyperthermia, which uses
a magnetic medium such as thermoseeds and magnetic NPs
to produce moderate heating in a specific area of the organ
where the tumor is located, is under investigation for malignant
glioma, prostatic cancer, metastatic bone tumors and some
other malignant tumors. Thermoseed magnetic induction of
hyperthermia for the treatment of brain tumors was first reported
by Kida et al. in 1990. A Fe-Pt alloy thermoseed with a length of
15–20 mm, a diameter of 1.8 mm and a Curie point of 68–69◦C
was used for seven cases of metastatic brain tumor two to three
times a week, with the tumor tissues reaching 44–46◦C during
the treatment. This resulted in two cases of complete response
and one case of partial response. Kobayashi et al. (1991) used a

thermoseed with a Curie point of 68◦C for the treatment of 23
patients with brain tumors, and reported an overall response rate
of 34.8% (O’Reilly and Hynynen, 2012; Luo et al., 2014).

PLA is a biodegradable and hydrophobic polymer that can
be used as a carrier for hydrophobic chemical drugs for
anti-tumor research. Monomethoxy poly(ethylene glycol)-block-
poly(D, L-lactide) loaded with paclitaxel to form Genexol R©-
PM has been trialed clinically and is now commercially
available for the treatment of breast cancer, ovarian cancer,
and non-small cell lung cancer (Kim et al., 2007; Lee
et al., 2008). Jun Chen et al. used PEG-PLA as a paclitaxel
delivery carrier. The NPs were coupled with the tLyp-1
peptide, which has a high affinity for neuropilin to target
both glioma cells and endothelial cells. The tLyp-1-conjugated
NPs showed greater penetration in C6 glioma spheroids
and enhanced drug access into solid tumors and prolonged
survival time to 37 days in intracranial C6 glioma mice,
compared with approximately 20 days in controls. However,
smart structural design and modification are required for the
proper degradation rate of these bioactive materials (Hu et al.,
2013).

Frontiers in Pharmacology | www.frontiersin.org 10 March 2017 | Volume 8 | Article 166

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00166 March 29, 2017 Time: 21:1 # 11

Glaser et al. Glioma Stem Cell Targeted Nanotherapy

CONCLUSION

In summary, elucidating the biological nature of CSCs offers a
new strategy for targeted cancer therapy. Interdisciplinary efforts
to develop new nanocarriers that can bypass the BBB, protect
the drug from being degraded, and that are specific for tumor
cells or CSCs are ongoing. Some groups prefer to focus on
developing new drugs that can efficiently kill CSCs, which are
responsible for treatment resistance and a poor prognosis in
glioblastoma, while some research groups are using modern and
pioneering molecular biology tools, such as CRISPR/Cas 9 and
siRNA.

To develop a novel treatment based on targeting CSCs,
an effective strategy should use liposomes as nanocarriers,
because of their ability to shield and carry molecules of
different sizes and charges. These liposomes should have
a shell coated with aptamers or antibodies specific for
CSC markers such as CD133, and would carry antitumor
antibiotics (doxorubicin) or genome editing tools that would
modulate the expression of genes important for tumor
survival, such as SOX-2. Another possibility is the use of
gold NPs targeting brain markers, such as glial fibrillary
acidic protein, to facilitate brain penetration, and deliver

siRNA to knockdown tumor survival and proliferation genes
(Figure 3).

Finally, some clinical trials have succeeded in testing new
nanotechnologies that may become available to patients in the
near future.
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