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Notch signaling is a major intercellular coordination mechanism highly conserved
throughout evolution. In vertebrates, Notch signaling is physiologically involved in
embryo development, including mesenchymal cell commitment, formation of heart
tissues and angiogenesis. In post-natal life, Notch signaling is maintained as a
key mechanism of cell–cell communication and its dysregulations have been found
in pathological conditions such as ischemic and fibrotic diseases. In the heart,
Notch takes part in the protective response to ischemia, being involved in pre- and
post-conditioning, reduction of reperfusion-induced oxidative stress and myocardial
damage, and cardiomyogenesis. Conceivably, the cardioprotective effects of Notch
may depend on neo-angiogenesis, thus blunting lethal myocardial ischemia, as well
as on direct stimulation of cardiac cells to increase their resistance to injury. Another
post-developmental adaptation of Notch signaling is fibrosis: being involved in the
orientation of mesenchymal cell fate, Notch can modulate the differentiation of pro-
fibrotic myofibroblasts, e.g., by reducing the effects of the profibrotic cytokine TGF-β. In
conclusion, Notch can regulate the interactions between heart muscle and stromal cells
and switch cardiac repair from a pro-fibrotic default pathway to a pro-cardiogenic one.
These features make Notch signaling a suitable target for new cardiotropic therapies.
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INTRODUCTION

The Notch pathway is a major intercellular short-range coordination mechanism highly conserved
throughout evolution and similar in all multicellular organisms from invertebrates to mammals
(Kopan and Ilagan, 2009). Notch designates a trans-membrane receptor encoded by a gene
originally identified as that responsible for the appearance of a ‘notch’ in the wings of Drosophila
melanogaster. In mammals, four Notch receptors, 1–4, and five canonical ligands, Jagged 1–2 and
Delta-like (DLL) 1,3 and 4, have been identified as membrane-spanning proteins (Guruharsha
et al., 2012).

The mechanism of Notch signaling does not exploits the classical signal transduction pathways
of most surface receptors: upon ligand binding, the surface metalloprotease ADAM10 clips the
Notch extracellular domain just outside the plasma membrane and releases an extracellular Notch
fragment which remains bound to its ligand and is then endocytosed by the ligand-bearing
cell, which in turn undergoes signaling. Then, the inner membrane protease γ–secretase cleaves
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the Notch intracellular domain (NICD), the active form of
Notch, which is released in the cytoplasm, migrates to the
nucleus and binds to CSL transcription factors (also known as
RBP-Jκ) regulating Notch target gene expression (Guruharsha
et al., 2012). The encoded proteins regulate further expression
of many downstream genes, some of which can either maintain
the cell in an uncommitted state or induce differentiation, while
others regulate cell proliferation and apoptosis (Miele et al.,
2006). The increasing interest in Notch pathway ad a key
regulator of cell function and differentiation has been paralleled
by the development of appropriate methods and tools for its
investigation in cellular and animal models, as exhaustively
reported in a recent review (Zacharioudaki and Bray, 2014).

In Vertebrates, Notch signaling is physiologically involved in
embryo development and morphogenesis which exploit its ability
to mediate intercellular communication. In fact, the formation of
distinct organs and tissues requires adhesion mechanisms which
promote and maintain the sorting of different cell populations.
In post-natal life, Notch signaling is maintained as a key
mechanism of cell–cell communication and its dysregulations are
implicated in tumor development and metastasis and in non-
neoplastic pathological conditions such as ischemic and fibrotic
diseases, sometimes playing a dual role as pathogenic mechanism
or adaptive/compensatory response (Harper et al., 2003; Hori
et al., 2013). In this context the heart, whose complex assembly
requires the precise coordination of diverse cells, represents
an appropriate paradigm to understand the roles of the Notch
pathway in health and disease.

NOTCH PATHWAY IN THE DEVELOPING
AND DISEASED HEART

Notch signaling is a key mechanism of normal heart
morphogenesis, being required for the formation of the
atrioventricular canal and valves, outflow tract and coronary
vessels, and for growth and differentiation of the endocardium,
myocardium and epicardium (High and Epstein, 2008; Luxán
et al., 2016). Among the cellular mechanisms operating during
cardiac morphogenesis, Notch signaling has been shown to
mediate epithelial-mesenchymal transition (EMT) of endocardial
precursor cells: in particular, Notch signaling down-regulates
surface cadherin expression and disables intercellular adhesion
among these cells, allowing them to move, reach the atrio-
ventricular and outflow tract regions, and pattern the cardiac
valves (Timmerman et al., 2004). Moreover, during growth and
three-dimensional organization of the ventricular myocardium,
Notch signaling is required to sustain cardiomyocyte precursor
proliferation and differentiation as well as compaction of the
primitive trabecular myocardium (High and Epstein, 2008; Luxán
et al., 2016). Finally, the Notch pathway is crucial for coronary
vasculogenesis, namely the formation of primary vascular
rudiments from the epicardial mesenchyme, and angiogenesis,
namely the sprouting of new vessels from pre-existing ones. Both
phenomena are regulated by vascular endothelial growth factor
(VEGF), whose downstream pathway involves Notch/Jagged
up-regulation by endothelial cells (Ferrara et al., 2003). Notch

signaling appears a homeostatic regulator of the endothelium,
since it can mediate either proliferation and resistance to
apoptosis during active angiogenesis or contact inhibition and
cell cycle arrest during blood vessel stabilization. In this latter
phase, Notch also favors the recruitment of pericytes from the
mesenchyme and stimulates growth, migration and resistance
to apoptosis of vascular smooth muscle cells, thereby promoting
the build-up of functional blood vessels (Sainson and Harris,
2008).

The pivotal role of the Notch pathway in heart morphogenesis
emerges from both studies on Notch or Jagged1 knock-out mice
and clinical reports, showing that defective Notch signaling is
correlated with cardiac malformations such as Tetralogy of Fallot
in Alagille syndrome, aberrant bicuspid aortic valve and left
ventricular non-compaction cardiomyopathy (High and Epstein,
2008; Luxán et al., 2016). In the adult heart, Notch signaling
between mature cells is absent under physiological conditions but
can be roused to take part in the protective response to injury, as
later discussed.

Another morphogenetic effect of the Notch pathway with
major repercussions on the adult diseased heart is the regulation
of stromal cell differentiation and extracellular matrix (ECM)
production (Hu and Phan, 2016). In the embryo, Notch signaling
promotes EMT and generates mesenchymal cells: in turn, these
cells differentiate into different stromal cell lineages, including
the cardiac valves and coronary endothelium. Although in adult
tissues EMT is suspected to play some role in the generation of
new fibroblasts and myofibroblasts, the main pro-fibrotic cells,
during the development of organ fibrosis (Hu and Phan, 2016),
the existing evidence suggests that Notch signaling can rather
exert anti-fibrotic effects on the diseased heart, for instance
by counteracting the pro-fibrotic cytokine transforming growth
factor (TGF)-β and reducing myofibroblast proliferation (Nemir
et al., 2014).

NOTCH PATHWAY IN THE ISCHEMIC
HEART

Myocardial infarction (MI), one of the leading causes of death
worldwide, mainly depends on coronary artery occlusion and
ischemia followed by reperfusion (I/R), in which blood flow
restoration is accompanied by oxidative stress exacerbating
myocardial damage. Noteworthy, the adult myocardium can
re-express fetal genes as an adaptive response to injury: in
this context, increased Notch1 signaling was demonstrated in
surviving cardiomyocytes of the MI border zone (Gude et al.,
2008). Several studies have shown that Notch signaling protects
the heart from I/R-induced myocardial injury: activation of
Notch1 pathway limits the extent of ischemic damage, promotes
coronary neo-angiogenesis and revascularization of the ischemic
myocardium, reduces myocardial fibrosis and improves heart
function (Gude et al., 2008; Kratsios et al., 2010; Li et al.,
2011; Ferrari and Rizzo, 2014). Conversely, in systemic Notch1
deficient mice, I/R leads to the development of a larger
myocardial infarct area and worsening of heart function than
wild-type controls (Li et al., 2011).
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Notch1 plays an important role in the protection of
ischemic myocardium during pre- (IPC) and post-conditioning
(IPost), well-known adaptive responses of the heart to increase
its resistance to I/R injury (Zhao et al., 2003). Notch1
pathway is activated during myocardial IPC and IPost and
leads to reduction of cardiomyocyte apoptosis, infarct size
and contractile impairment. Conversely, inhibition of Notch1
signaling by N1ICD knockdown abrogates IPC- and IPost-
induced cardioprotection (Zhou et al., 2013).

The mechanisms underlying Notch-mediated cardio-
protection are complex and involve an interplay between

mature and immature cardiomyocytes, cardiac progenitors
cells (CPCs) and bone marrow (BM)-derived cells (Figure 1).
Notch1 prevents cardiomyocyte apoptosis by activation of
PI3K/AKT pro-survival signaling and regulation of apoptotic
genes (Kratsios et al., 2010; Pei et al., 2013; Zhou et al., 2013).
Moreover, Notch signaling induces cell cycle re-entry of
immature cardiomyocytes (Campa et al., 2008; Sassoli et al.,
2011), promotes proliferation and myogenic differentiation
of CPCs (Boni et al., 2008), decreases oxidative/nitrosative
stress (Pei et al., 2013) and prevents cardiac fibrosis (Fan et al.,
2011).

FIGURE 1 | Notch signaling in repair and regeneration of the ischemic and reperfused heart.

FIGURE 2 | Notch signaling in the regulation of cardiac fibrosis.
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Recent studies indicate that Notch1 is ineffective in promoting
cardiac regeneration in adults due to permanent epigenetic
modifications at the Notch-responsive promoters which render
their transcriptional repression irreversible (Felician et al., 2014).
Consistently, in cardiac-specific Notch1 deficient mice, the loss
of Notch1 in post-natal cardiomyocytes did not affect the severity
of myocardial injury (Li et al., 2011). Hence, the beneficial
effects of Notch1 re-activation previously observed in transgenic
animals (Kratsios et al., 2010) could be mediated via other cell
types, such as CPCs and BM-derived cells. Accordingly, Notch1
recruits BM-derived mesenchymal stem cells (MSCs) in the
infarction border zone, promoting proliferation and preventing
apoptosis (Li et al., 2011). Moreover, transplantation of N1ICD-
overexpressing MSCs reduces – while that of Notch1-deficient
MSCs increases – both infarct size and contractile impairment (Li
et al., 2011). Overall, these findings suggest that the maintenance
or reactivation of Notch signaling in cardiac cells can be a
therapeutic target to protect against myocardial damage.

NOTCH PATHWAY IN CARDIAC
FIBROSIS

Cardiac fibrosis, a late complication of many heart diseases,
can occur as myocardial replacement fibrosis to prevent
cardiac rupture, for instance after MI, or as interstitial
fibrosis without cardiomyocyte loss, an adaptation to chronic
injury by functional overload, ischemia and cardiomyopathies.
Started as compensatory to organ damage, cardiac fibrosis
becomes maladaptive and dysfunctional in the long term
(Rockey et al., 2015; Travers et al., 2016). In general,
fibrosis results from an imbalance between ECM synthesis
and degradation by fibrogenic cells, chiefly myofibroblasts. In
response to pro-inflammatory and pro-fibrotic mediators up-
regulated in cardiac injury, among which TGF-β1 plays a
major role, resident cardiac fibroblasts, CD45+ hemopoietic
stromal cells and, perhaps, EMT-derived fibroblasts, vascular
pericytes and immune cells are recruited and prompted
to differentiate into myofibroblasts, characterized by dual
immunophenotypical and ultrastructural features of fibroblasts
and smooth muscle cells (Bani and Nistri, 2014; Ivey and
Tallquist, 2016; Pinto et al., 2016). Myofibroblast contraction
and excess ECM deposition cause the distortion of the normal
myocardial architecture. Moreover, myofibroblasts secrete a
variety of mediators which stimulate autocrine cell activation
and fibrogenesis and exert paracrine effects on the cells
nearby, causing chronic inflammation and further cardiomyocyte
dysfunction (Travers et al., 2016).

Several studies have shown that Notch signaling is involved
in counteracting cardiac fibrosis, primarily via inhibition
of myofibroblast differentiation. In particular, the expression
of Notch1, 3, and 4 are down-regulated during fibroblast–
myofibroblast transition in neonatal hearts, while Notch
signaling inhibition promotes myofibroblast formation (Fan
et al., 2011). Consistently, in a mouse model of pressure overload,
Notch1 controlled the balance between fibrotic and regenerative
repair by inhibiting myofibroblast proliferation and promoting

mobilization and expansion of cardiac muscle precursor cells
(Nemir et al., 2014). Recently, in vivo intramyocardial delivery
of hydrogels containing the Notch1 ligand Jagged-1 in rats with
MI reduced cardiac fibrosis (Boopathy et al., 2015). Moreover,
augmentation of Notch3 expression by lentiviral transfection
inhibited fibroblast–myofibroblast transition both in TGF-β1-
treated cardiac fibroblasts in vitro and in mice with MI,
minimizing cardiac fibrosis (Zhang et al., 2016). As previously
mentioned, Notch signaling can inhibit EMT (Zhou et al.,
2015; Hu and Phan, 2016), which also contributes to cardiac
fibrosis (von Gise and Pu, 2012). This point, however, remains
controversial: indeed, in Notch transgenic mice undergoing MI
and pressure overload, Notch induced epicardial cells to undergo
EMT and generate a multipotent stromal cell population capable
of differentiating into fibroblasts and producing reparative
fibrosis (Russell et al., 2011).

The main identified mechanism by which Notch signaling
interferes with myofibroblast differentiation consists in its ability
to antagonize TGF-β/Smad3 signaling, the key intracellular
pathway promoting cell activation and fibrogenesis (Zhang et al.,
2016; Travers et al., 2016) (Figure 2).

Targeting the Notch pathway may be a meaningful therapeutic
strategy for cardiac fibrosis. In this context, the hormone relaxin,
known as anti-fibrotic agent and under clinical investigation
in heart failure patients (Moin et al., 2016), was shown to
inhibit the TGF-β1/Smad3 axis and to counteract TGF-β1-
induced transition of neonatal cardiac stromal cells and NIH3T3
fibroblasts to myofibroblasts acting via the up-regulation of
Notch1 signaling (Sassoli et al., 2013; Squecco et al., 2015; Zhou
et al., 2015).

CONCLUSION

The Notch pathway is pivotal in the protection and healing
of the ischemic heart because it regulates key mechanisms
of myocardial resistance to ischemia and controls the balance
between fibrotic and regenerative repair. Targeting Notch
signaling, for example by soluble Notch ligands or Notch pathway
activating molecules delivered intramyocardially or embedded
into suitable biomaterials (Gude et al., 2008; Limana et al., 2013;
Boccalini et al., 2015; Boopathy et al., 2015), may be a worthwhile
therapeutic approach to cardiovascular disease.
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