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Background and Purpose: Epidemiological data suggests an excess risk of

cardiovascular disease (CVD) at low doses (0.05 and 0.1 Gy) of ionizing radiation (IR).

Furthermore, the underlying biological and molecular mechanisms of radiation-induced

CVD are still unclear. Because damage to the endothelium could be critical in IR-related

CVD, this study aimed to identify the effects of radiation on immortalized endothelial cells

in the context of atherosclerosis.

Material andMethods: Microarrays and RT-qPCRwere used to compare the response

of endothelial cells irradiated with a single X-ray dose (0.05, 0.1, 0.5, 2 Gy) measured

after various post-irradiation (repair) times (1 day, 7 days, 14 days). To consolidate and

mechanistically support the endothelial cell response to X-ray exposure identified via

microarray analysis, DNA repair signaling (γH2AX/TP53BP1-foci quantification), cell cycle

progression (BrdU/7AAD flow cytometric analysis), cellular senescence (β-galactosidase

assay with CPRG and IGFBP7 quantification) and pro-inflammatory status (IL6 andCCL2)

was assessed.

Results: Microarray results indicated persistent changes in cell cycle progression and

inflammation. Cells underwent G1 arrest in a dose-dependent manner after high doses

(0.5 and 2 Gy), which was compensated by increased proliferation after 1 week and

almost normalized after 2 weeks. However, at this point irradiated cells showed an

increased β-Gal activity and IGFBP7 secretion, indicative of premature senescence. The

production of pro-inflammatory cytokines IL6 and CCL2 was increased at early time

points.

Conclusions: IR induces pro-atherosclerotic processes in endothelial cells in a

dose-dependent manner. These findings give an incentive for further research on the

shape of the dose-response curve, as we show that even low doses of IR can induce

premature endothelial senescence at later time points. Furthermore, our findings on
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the time- and dose-dependent response regarding differentially expressed genes, cell

cycle progression, inflammation and senescence bring novel insights into the underlying

molecular mechanisms of the endothelial response to X-ray radiation. This may in turn

lead to the development of risk-reducing strategies to prevent IR-induced CVD, such as

the use of cell cycle modulators and anti-inflammatory drugs as radioprotectors and/or

radiation mitigators.

Keywords: X-ray, endothelium, atherosclerosis, cardiovascular disease, cell cycle

INTRODUCTION

At higher doses of ionizing radiation (>0.5 Gy), epidemiological
data show a significant excess risk of late occurring cardiovascular
disease (CVD; Hildebrandt, 2010; Shimizu et al., 2010; Darby
et al., 2013). The term CVD encompasses coronary heart disease
and peripheral arterial disease, and is most often related to
atherosclerosis (Lusis, 2000). In the clinics, these doses are used
in 50 to 60% of all cancer patients during radiotherapy (Gottfried
et al., 1996). During these treatments, normal surrounding tissues
also receive a part of the dose. For example, the mean dose
of radiation to the heart during breast cancer radiotherapy
ranges from 0.03 to 27.72 Gy, with an overall average of 4.9
Gy (Darby et al., 2013). Still, knowledge of the underlying
biological and molecular mechanisms of radiation-induced CVD
is limited (Little et al., 2008; Hildebrandt, 2010) and should be
complemented with experimental findings.

In addition to higher doses, low doses of ionizing radiation
(≤0.1 Gy Fazel et al., 2009) are also increasingly used in the
clinics, mainly for diagnostic medical purposes (UNSCEAR,
2008). Consequently, the possibility of an excess risk of CVD
following exposure to ionizing radiation is of great societal
concern. However, the current radiation protection system is
based on the assumption that there is a threshold at 0.5
Gy where epidemiological evidence for non-cancer effects is
suggestive (Hildebrandt, 2010). Indeed, over recent years, a
growing body of epidemiological data suggested an excess risk
of late occurring CVD at much lower doses, without a clear-cut
threshold (Hildebrandt, 2010; Shimizu et al., 2010; Darby et al.,
2013). However, due to a lack of statistical power, these data are
suggestive rather than persuasive.

The mechanisms by which radiation causes CVD are at
present unknown, but radiation acts, at least in part, by
causing or promoting atherosclerosis (Borghini et al., 2013).
Atherosclerosis is a multifactorial disease characterized by
a chronic inflammatory process of the arterial wall. It is
believed to be initiated by irritative stimuli (e.g., hypertension,
dyslipidemia, and pro-inflammatory mediators) leading to
endothelial dysfunction (Libby et al., 2011), a pathological
state characterized by the loss of endothelial functions that
are normally in place to maintain vascular integrity (Hirase
and Node, 2012). This dysfunctional state induces a pro-
inflammatory reaction in the endothelium, triggering the
expression of adhesion molecules such as selectin P and
intracellular adhesion molecule 1 (ICAM1; Collins et al., 2000)
and the secretion of cytokines such as C-C Motif Chemokine

Ligand 2 (CCL2; Boring et al., 1998) and interleukin-6 (IL6)
(Schieffer et al., 2004). These molecules mediate the attachment
of circulating monocytes and lymphocytes, driving the intimal
immune cell infiltration. Eventually, a chronic inflammatory
reaction ensues, resulting in the formation of an atheroma filled
with foam cells and a necrotic core (Weber and Noels, 2011). By
using bioinformatics and metanalytical approaches, knowledge
on the molecular networks that are common in ionizing
radiation, immune and inflammatory responses is emerging
(Georgakilas et al., 2015). These studies will further help to
understand the underlying molecular mechanisms of radiation-
induced inflammatory reactions and will help to explain the
pathogenesis of radiation-induced CVD.

In the radiobiological context, endothelial cells have been
proposed to be a critical target in radiation-induced CVD
(Little et al., 2008; Hildebrandt, 2010). Indeed, exposure of
the vascular endothelium to IR can result in endothelial
cell dysfunction (Bhattacharya and Asaithamby, 2016), a
well-established cardiovascular risk factor that promotes the
development and progression of atherosclerosis (Vita and
Keaney, 2002; Widmer and Lerman, 2014). Although the
mechanisms of radiation-induced CVD are far from being
understood, inflammatory processes seem to be involved.
Following irradiation, upregulation of several pro-inflammatory
molecules by endothelial cells has been observed. For example,
the expression of ICAM1 and selectin P increased after
irradiation in both in vitro and in vivo experiments (Gallo et al.,
1997; Hallahan and Virudachalam, 1997a,b; Van Der Meeren
et al., 1999; Haubner et al., 2013). Furthermore, endothelial cells
upregulate the secretion of several pro-inflammatory cytokines,
such as IL6 and CCL2, after irradiation (Van Der Meeren et al.,
1999; Haubner et al., 2013).

In this study, we tried to find molecular evidence for the
presence of an excess risk of CVD following exposure of
endothelial cells to low single X-ray doses (0.05 and 0.1 Gy),
a caveat in current radiobiological knowledge. Furthermore,
we aimed to identify underlying biological and molecular
mechanisms of radiation-induced CVD after exposure of
endothelial cells to a single X-ray dose (0.05, 0.1, 0.5, 2 Gy).
Compared to the existing knowledge, our study looks at longer
time spans after radiation exposure combined with the use of
human coronary artery endothelial cells. These endothelial cells
are linked to coronary artery disease, observed after radiation
exposure during radiotherapy in females with breast cancer
(Darby et al., 2013). Endothelial cells were irradiated with a single
X-ray dose (0.05, 0.1, 0.5, 2 Gy) and transcriptomic changes were
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measured after various post-irradiation (repair) times (1 day,
7 days, 14 days). We report that a single X-ray dose induces
dose- and time-dependent transcriptional changes associated
with atherosclerosis-related processes in immortalized human
coronary artery endothelial cells.

MATERIALS AND METHODS

Cells and Irradiation
Human telomerase-immortalized coronary artery endothelial
(TICAE) cells (ECACC) were grown in Human MesoEndo
Endothelial Cell Medium (Cell Applications) and cultured at
37◦C with 5% CO2 in a humidified incubator as described
elsewhere (Lowe and Raj, 2014). Cells were irradiated at >95%
confluence with a dose rate of 0.50 Gy/min, using an AGO
HS320/250 X-ray cabinet (only for microarray samples; 250 kV,
13 mA, 1.5 mm Al, and 1.2 mm Cu) or an Xstrahl RX generator
(for validation samples; 250 kV, 12 mA, 3.8 mm Al, and 1.4 mm
Cu). Cells were not passaged during experiments, but medium
was changed thrice per week.

Microarrays
Total RNA of TICAE cells was extracted according
to manufacturer’s instructions using the AllPrep
DNA/RNA/protein mini kit (Qiagen). RNA was quantified
using a NanoDrop Spectrophotometer and its quality assessed
with an Agilent 2100 Bioanalyzer. Samples with a RNA integrity
number >8 were used for hybridization onto Affymetrix Human
Gene 2.0 ST arrays, following manufacturer’s instructions. Raw
data were uploaded to the Partek Genomics Suite (version 6.6)
and normalized using a customized Robust Multi-chip Analysis
algorithm (background correction for entire probe sequence,
quantile normalization, log2 transformation of intensity signals).
Data are available in the ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress; accession number E-MTAB-5054).

Functional Enrichment Analysis
Functional gene enrichment was performed and visualized using
GOrilla (Eden et al., 2007, 2009). Settings were: organism: Homo
sapiens; running mode: two unranked lists of genes (target list:
differentially expressed genes, background list: genes expressed
above background in at least 33% of all samples); P-value
threshold: 0.001. To exclude redundant gene ontology terms,
results were reduced using REViGO (Rudjer Boskovic Institute,
Croatia) with an authorized similarity of 0.4 (Supek et al., 2011).
Gene Ontology version used was go_201507-termdb.obo-xml.gz
(http://archive.geneontology.org/full/2015-07-01/).

Transcription Factor Binding Site
Enrichment Analysis
Chromatin immunoprecipitation (ChIP) enrichment analysis
was performed with Enrichr (Icahn School of Medicine at Mount
Sinai, USA) to identify transcription factors that were enriched
for target genes within the list of differentially expressed genes
(Chen et al., 2013; Kuleshov et al., 2016). Databases from all
species, cell types and ChIP methods were interrogated.

Reverse Transcription Quantitative PCR
(RT-qPCR)
RT-qPCR analysis was performed as previously described
(Verreet et al., 2015) on a 7,500 Fast Real-Time PCR system
(Applied Biosystems). Gene expression was normalized to
reference genes RAP2C and INPP1. Gene expression ratios were
calculated using the Pfaffl method (Pfaffl, 2001). Data were
normalized to the values of the respective control samples at the
same time point (either 1 day, 7 days, 14 days) and presented as
the average expression ratio.

DNA Double Strand Break Repair Kinetics
To identify DNA double strand breaks (DSBs) and early DNA
damage repair response, cells were stained for phosphorylated
histone H2AX (γH2AX) and tumor suppressor p53-binding
protein 1 (TP53BP1). After irradiation, cells were fixed (2% PFA),
permeabilized (0.25% Triton X-100 in PBS), blocked (1% normal
goat serum [Themo Fisher] in Tris-NaCl [Perkin Elmer]) and
probed with primary anti-γH2AX (1/300; Merck-Millipore #05-
636) and anti-TP53BP1 (1/1,000; Novus Biologicals #NB100-
304) antibodies (1 h, 37◦C). After washing, cells were incubated
with 1 µg/ml DAPI and secondary Alexa Fluor 488 and 568
(Life technologies) antibodies (1 h, 37◦C). Cells on slides were
visualized with an Eclipse Ti microscope (NIKON) equipped
with a 40 × Plan Fluor objective (NA 0.6) and an Andor
Ixon EMCCD camera. Twelve fields (z-stack of 9 planes
axially separated by 1 µm) were captured per replicate with
a lateral spacing of 500 µm. Images were analyzed with
FIJI software (Schindelin et al., 2012) using the Cellblocks
toolbox (De Vos et al., 2010). In brief, software allowed to
analyze each nucleus based on the DAPI signal using Gaussian
filtering and region of interest identification. Within each
nucleus, pixel size and intensity emitted from the Alexa 488
(γH2AX) and Alexa 568 (TP53BP1) fluorochromes along with
their overlap were analyzed, after which the foci number
per nucleus was determined in a fully automatic manner
using a predefined threshold algorithm combined with multi-
scale Laplacian filtering. Settings used were triangle threshold
algorithm with a Laplacian scale of 2 and a minimum foci size
of 3 pixels. Six biological replicates were screened per condition,
and a minimum of 200 nuclei were analyzed per replicate.

Cell Cycle
TICAE cells were treated with 10 µM of BrdU for 1 h,
followed by ethanol fixation for a minimum of 24 h. Cells were
permeabilized and stained with rat anti-BrdU antibody (AbD
Serotec, #OBT0030CX) and 10 µg/ml 7-amino-actinomycin D
(Sigma-Aldrich). Samples were run on a BD Accuri C6 flow
cytometer, with a maximum flow speed of 300 events/s.

Senescence
To determine senescence-associated β-galactosidase activity, cells
were lysed in M-PER reagent (Thermofisher Scientific). Lysates
were incubated at 37◦C for 18 h in reaction buffer (1 mM
MgCl2, 2 mM chlorophenolred-β-D-galactopyranoside in 50
mM phosphate buffer, pH 6.0). Reaction was stopped by adding
1 M of Na2CO3, and absorbance was measured at 570 nm.
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Multiplex Bead Array
C-C motif chemokine 2 (CCL2), interleukin 6 (IL6) and insulin-
like growth factor binding protein 7 (IGFBP7) levels in cell
culture supernatants were analyzed using a multiplex magnetic
bead array (R&D systems). Assays were performed according to
manufacturer’s instructions. Samples were run on a Luminex 200
and analyzed with xPONENT 3.1 (Luminex Corporation).

Statistics
Data show means ± SEM. Microarray data were filtered to
exclude genes expressed below the background signal in at
least 67% of all samples and analyzed using two-way ANOVA.
Differentially expressed genes were identified as those with a fold
change >|1.5| and P < 0.05 after correction for multiple testing
according to Benjamini andHochberg (Benjamini andHochberg,
1995). Other data were analyzed using two-way ANOVA with
Bonferroni post-hoc test. P < 0.05 was considered statistically
significant.

RESULTS

Irradiation with 0.5 and 2 Gy Alters Gene
Expression in Endothelial Cells
Amongst other cardiovascular effects, radiation exposure has
been shown to accelerate age-related atherosclerosis leading to
coronary artery disease (Darby et al., 2013). Since endothelial
cell dysfunction is a well-established risk factor of atherosclerosis
(Vita and Keaney, 2002; Widmer and Lerman, 2014), we tested
whether irradiation of endothelial cells with a single X-ray dose
(0.05, 0.1, 0.5, 2 Gy) measured after various post-irradiation
(repair) times (1 day, 7 days, 14 days) could activate pro-
atherosclerotic processes in vitro. We observed dose- and time-
dependent changes in gene expression using a genome-wide
gene expression analysis. Differentially expressed genes are listed
in Supplementary Tables 1–3, and their number is shown in
Table 1. Single X-ray doses of 0.05 and 0.1 Gy did not affect gene
expression at any of the investigated time points. In contrast,
a single X-ray dose of either 0.5 or 2 Gy induced marked
and comparable (Supplementary Figure 1) differences in gene
expression detected on day 1 post-irradiation.While the response
was essentially transient at 0.5 Gy, a large number of genes were
still differentially expressed in TICAE cells 7 and 14 days after
irradiation with a single X-ray dose of 2 Gy.

TABLE 1 | Irradiation with a single dose of X-rays induces differential gene

expression in TICAE cells.*

1 day 7 days 14 days

0.05 Gy 0 0 1 (−1)

0.1 Gy 0 0 1 (−1)

0.5 Gy 162 (+22/−140) 2 (+1/−1) 4 (−4)

2 Gy 522 (+107/−415) 129 (+79/−50) 59 (+41/−18)

*TICAE cells were analyzed at the indicated time points after irradiation with a single dose

of X-rays. Changes are shown compared to sham irradiation, as described in Materials

and Methods (n = 3). Numbers between brackets indicate up (+) and/or down (−)

regulated genes per condition.

Irradiation of Endothelial Cells Represses
the Expression of Genes Involved in Cell
Cycling and Induces Inflammation
Functional enrichment analysis revealed that, 1 day after
exposure to a single X-ray dose of 2 Gy, the upregulated
differentially expressed genes were involved in cell cycle
arrest and cytokine production and the downregulated
ones in cell cycle-related processes such as mitotic
cell cycle, chromosome organization and microtubule
dynamics (Figures 1A,B). ChiP enrichment analysis was
then used to identify transcription factors that control
sets of differentially expressed genes. The identified
transcription factors were shown to regulate cell cycle
responses to DNA damage [such as p53 (Lane, 1992), Myc
(Wasylishen and Penn, 2010), FOXM1 (Zona et al., 2014)
and members of the E2F family (Bertoli et al., 2013)] and
cytokine production (RELA and NF-κB; Magné et al., 2006)
(Figures 1C,D).

At day 7 and 14 after exposure to a single X-ray dose
of 2 Gy, 129 and 59 genes were differentially expressed,
respectively (Table 1). On day 7, gene ontology analysis
highlighted inflammation-related processes, including induction
of the negative regulation of T-helper 1 type immune response,
cytokine-mediated signaling and suppression of MHC1 antigen
processing and presentation (Figures 1E,F). ChiP enrichment
analysis identified several inflammation-associated transcription
factors (Figures 1F,G), among which PPARδ, known to regulate
multiple pro-inflammatory pathways (Barish et al., 2008),
endothelial cell proliferation and angiogenesis (Piqueras et al.,
2007) and SMAD2/3, involved in TGFβ signaling (Derynck
and Zhang, 2003). Furthermore, transcription factors vitamin D
receptor, which promotes autophagy and cell survival pathways
(Uberti et al., 2014), and BACH1, involved in oxidative stress
response and cell-cycle progression (Wang et al., 2016a), were
identified. Although not listed in the top 10, members of the
E2F and p53 families of transcription factors were also identified
(Supplementary data files), indicating a persistent cell cycle
response. On day 14 following the exposure to a single X-ray dose
of 2 Gy, no enrichment of transcription factors or gene ontology
terms was identified.

Ionizing Radiation Causes a
Dose-Dependent Repression of the
Expression of Genes Controlling Mitotic
Endothelial Cell Proliferation
To confirm the effect of a single X-ray dose on the proliferation
of endothelial cells, as observed in the microarray data, we
performed RT-qPCR analysis on independent samples. BUB1,
FAM111B and MKI67 genes were selected for their involvement
in mitotic cell cycle progression: BUB1 is a mitotic checkpoint
kinase (Bolanos-Garcia and Blundell, 2011), MKI67 encodes
proliferation marker Ki67 (Gerdes et al., 1983) and FAM111B
has an unknown function but could be related to DNA
replication (Aviner et al., 2015). Microarray and RT-qPCR
data matched for BUB1 (Figure 2A), MKI67 (Figure 2B) and
FAM111B (Figure 2C), with a significant decrease in gene
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FIGURE 1 | Irradiated TICAE cells differentially express genes controlling cell cycling and inflammation. Gene ontology and ChIP enrichment analysis

(ChEA) was performed on differentially expressed genes in irradiated vs. sham-irradiated TICAE cells. (n = 3). (A) Top 10 GO enrichment terms among upregulated

differentially expressed genes 1 day after irradiation with a single X-ray dose of 2 Gy. (B) As in (A) but showing downregulated differentially expressed genes. (C) Top

10 enriched predicted upregulated transcriptional regulators in TICAE cells 1 day after irradiation with a single X-ray dose of 2 Gy. (D) As in (C) but showing

downregulated transcriptional regulators. (E) As in (A) but at 7 days post-irradiation. (F) As in (B) but at 7 days post-irradiation. (G) As in (C) but at 7 days

post-irradiation. (H) As in (D) but at 7 days post-irradiation. PubMed ID numbers are included in the ChIP enrichment analysis graphs. Enrichment was scored using

FDR-corrected P-value. Full gene ontology and ChIP enrichment analysis results are listed in the Supplementary data files.

expression at a single X-ray dose of 0.5 or 2 Gy on day 1
post-irradiation, followed by a slight increase on day 7 and
a return to basal expression on day 14. However, contrary
to microarray results, RT-qPCR indicated a dose-dependent
increase in the expression of all three genes at all irradiation
doses on day 7 post-irradiation. This could be due to differences
in the normalization technique used in the assays (Morey et al.,
2006).

Radiation Exposure Activates DNA
Damage Signaling, Induces an Acute G1
Arrest and Leads to Premature
Senescence
To consolidate and mechanistically support the endothelial
cell response to a single X-ray dose exposure identified
during microarray analysis, we performed immunocytochemical
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FIGURE 2 | Irradiation induces dose- and time-dependent repression of the expression of genes controlling mitotic endothelial cell proliferation.

Graphs show changes in gene expression of (A) BUB1, (B) MKI67 and (C) FAM111B. Left graphs show data obtained using microarrays (n = 3) and right graphs

using RT-qPCR (n = 6). Of note, FAM111B expression was below detection threshold by RT-qPCR on day 14 post-irradiation. *P < 0.05, †P < 0.005, ‡P < 0.001

compared to sham, using 2-way ANOVA with Bonferroni post-hoc test.

stainings for γH2AX and TP53BP1, two markers of DNA DSB
repair (Wang et al., 2014) that interact during DNA damage
response and are linearly related to DSB number and radiation

dose (Wang et al., 2014; Kleiner et al., 2015). Irradiation with
a single X-ray dose rapidly and dose-dependently increased the
number of γH2AX, TP53BP1 and colocalized γH2AX+TP53BP1
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foci (Figures 3A–D, Supplementary Figures 2–5). Foci numbers
were maximal 30 min to 1 h after irradiation, followed by
an almost complete decline at 24 h, except for 2 Gy where
residual foci were probably indicative of lethal DNA damage
(Banáth et al., 2010). To study the effect of a single X-
ray dose on cellular proliferation, we performed a cell cycle
analysis to study the cell cycle progression. On day 1 after
irradiation, we detected a dose-dependent increase in the
percentage of cells in G0/G1 and a decrease in the percentage
of cells in S and G2/M phases, indicating that the cells
arrested at the G1 checkpoint (Figure 4A). On day 7 post-
irradiation, cells reached a state of contact inhibition and
were mostly in G0/G1 in the sham condition. Irradiated cells
displayed a cell cycle profile similar to that of control cells,
except for the 2 Gy dose, where significantly more cells

were in S phase and less in G0/G1, indicating higher cellular
proliferation. Increased proliferation was presumably due to
the absence of contact inhibition resulting from cell death, as
well as a longer and stronger G1 arrest induced at day 1.
On day 14 post-irradiation, we detected no difference for
sham-irradiated cells vs. cells irradiated with a single dose of
0.05, 0.1 and 0.5 Gy. Compared to sham, endothelial cells
irradiated with a single X-ray dose of 2 Gy still had a disturbed
cell cycle progression with more cells in G0/G1 and less in
G2/M, which may be indicative of premature senescence. In
accordance, all radiation doses increased senescence-associated
β-galactosidase activity (Dimri et al., 1995; Figure 4B) and
insulin-like growth factor-binding protein 7 (IGFBP7) secretion
(Wajapeyee et al., 2008; Figure 4C) in TICAE cells on day 14
post-irradiation.

FIGURE 3 | Irradiation induces endothelial DNA damage signaling. Graphs represent the amount of γH2AX (A), TP53BP1 (B) and colocalized γH2AX/TP53BP1

(C) foci 30min, 1, 4, and 24 h after irradiation with a single X-ray dose of 0.05, 0.1, 0.5 and 2 Gy (n = 6). Data show means ± SEM. *P < 0.05, †P < 0.005, ‡P <

0.001 compared to sham on the same day, using 2-way ANOVA with Bonferroni post-hoc test. (D) Representative images showing γH2AX (green), TP53BP1 (red)

and γH2AX+TP53BP1 (yellow) foci in DAPI stained nuclei (blue) of TICAE cells 30 min after irradiation with a single X-ray dose of 2 Gy.
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FIGURE 4 | Irradiation reversibly inhibits cell cycle progression, induces premature endothelial senescence and promotes endothelial cell

inflammation. (A) The histogram represents the % of TICAE cells in the different phases of the cell cycle at the indicated times after irradiation with the indicated

doses (n = 6). (B) The histogram represents the activity of senescence-associated β-galactosidase (SA-β-gal) 14 days after irradiation at the indicated doses (n = 16).

Data are normalized to cell numbers and control values. (C,D,E) Histograms represent the amount of IGFBP7 (C), IL6 (D) and CCL2 (E) secreted by TICAE cells at the

indicated times after irradiation at the indicated doses (n = 8). Data are normalized to cell numbers alone (C) or to cell numbers and control values (D,E). Data show

means ± SEM. *P < 0.05, †P < 0.005, ‡P < 0.001 compared to sham on the same day, using 2-way ANOVA with Bonferroni post-hoc test.
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Irradiation Induces IL6 and CCL2
Expression in Endothelial Cells
To confirm the induction of inflammation in irradiated TICAE
cells, we focused on two pro-inflammatory cytokines involved in
atherosclerosis: IL6 (Schuett et al., 2009) and CCL2 (Harrington,
2000). On days 1, 2 and 7 post-irradiation, IL6 secretion was
significantly increased in endothelial cells irradiated with a single
X-ray dose of 0.5 and 2 Gy (Figure 4D), while CCL2 secretion
increased on days 2 and 7 post-irradiation following a single X-
ray dose of 0.5 and 2 Gy (Figure 4E). Both pro-inflammatory
cytokines returned to control levels after 14 days, thus indicating
the presence of transient radiation-induced inflammation.

Altogether, gene expression, cell cycle and cytokine analysis
unraveled an altered proliferation and an increased inflammatory
state in endothelial cells at 1, 2, and 7 days after exposure
to a single X-ray dose. At 14 days post-irradiation, cellular
proliferation and inflammatory state reverted back to levels
similar to those observed in non-irradiated (control) samples.
However, at this time point the endothelial cells irradiated with
a single X-ray dose, ranging from 0.05 to 2 Gy, demonstrated
an increased senescence-associated-β-galactosidase activity and
IGFBP7 secretion, indicative of premature senescence at all doses
under investigation.

DISCUSSION

Our study aimed at investigating whether endothelial cell
irradiation induced pro-atherosclerotic processes as suggested by
epidemiological data (Shimizu et al., 2010; Darby et al., 2013).
Furthermore, we aimed to determine whether low doses (0.05
and 0.1 Gy; doses received during serial diagnostics) of ionizing
radiation could induce the same effects as those observed at
higher doses (0.5 and 2 Gy; doses received on healthy tissues
during radiotherapy) of ionizing radiation. We report dose-
and time-dependent repression of endothelial cell cycling with
an increased senescence-associated β-galactosidase activity and
inflammatory cytokine secretion (Figure 5). These changes are
indicative of a pro-atherosclerotic phenotype in endothelial cells.

A predominant effect of IR exposure is cell cycle arrest.
Accordingly, in endothelial cells we showed that irradiation with
a single X-ray dose≥0.5 Gy represses the expression of genes that
support cell cycle progression. We evidenced a G1 arrest 1 day
after single dose irradiation with 0.5 and 2 Gy of X-rays. G1 arrest
generally results from p53 activation in response to DNA damage
(Bernhard et al., 1995), which was evidenced with enrichment
analysis and the formation of γH2AX and TP53BP1 foci. To
determine the complexity of the DNA damage after exposure to
ionizing radiation, future studies should look at the colocalization
between DSB and non-DSB damage (Nikitaki et al., 2016). G1
arrest was followed by a progressive restoration of cell cycling
for all doses, except for 2 Gy where cell cycling restoration
was followed by an additional G1 arrest, which coincided
with increased senescence-associated β-galactosidase activity and
IGFBP7 secretion. Thus, exposure to a single X-ray dose induced
markers linked to senescence, even at a dose as low as 0.05 Gy.
Persistent p53 family signaling due to persistent DNA damage, as
seen in our enrichment analysis at day 7, could be responsible

for premature senescence (Rufini et al., 2013). Our findings
at low doses of X-rays are consistent with previous studies
having evidenced premature senescence at higher doses in the
same cell line (Lowe and Raj, 2014) and upon chronic exposure
to low dose rates in different endothelial cells (Yentrapalli
et al., 2013a,b; Rombouts et al., 2014). Senescent endothelial
cells are shown to be present in human atherosclerotic plaques
(Minamino et al., 2002) and are emerging as a contributor
to the pathogenesis of atherosclerosis (Wang et al., 2016b).
Therefore, premature senescence could play a role in radiation-
induced CVD (Wang et al., 2016b), and research with cell cycle
modulators as radioprotectors is warranted. However, there is no
universal marker or hallmark of senescence identified so far that
is entirely specific to the senescent state of a cell. Furthermore,
not all senescent cells express all the possible senescence markers
identified so far. As a consequence, future studies are needed
to corroborate our in vitro findings in other in vitro as well
as in vivo models. These studies should use highly sensitive
techniques adapted to determine the presence of endothelial cell
senescence even at low doses of ionizing radiation. One of such
innovative and highly sensitive dyes is Sudan-Black-B, a specific
lipofuscin stain that can be used to detect both replicative and
stress-induced senescence independently of sample preparation
(Evangelou et al., 2017).

Inflammation plays a pivotal role in the development,
progression and final outcome of atherosclerosis (Libby, 2002).
In this study, we evidenced radiation-induced inflammation
in endothelial cells after exposure to a single X-ray dose of
0.5 and 2 Gy. Although the cause of this pro-inflammatory
reaction is not entirely clear, the release of damage-associated
molecular patterns (DAMPs) by stressed and apoptotic cells
could be involved. One of the DAMPs released by apoptotic
cells, called HMGB1, has been described to induce IL6 and
CCL2 secretion as well as the expression of ICAM1 and
VCAM1 in endothelial cells (Sun et al., 2013). Binding of these
DAMPs to Toll-like receptors on endothelial cells upregulates
pro-inflammatory signaling molecules such as NF-κB (Fiuza
et al., 2003). In accordance, transcriptional regulation by pro-
inflammatory factors RELA and PPARδ, negative regulation of
the T-helper 1 type immune response, suppression of MHC1
antigen processing and presentation, and cytokine-mediated
signaling were detected with enrichment analyses. Inflamed
endothelial cells initiate the formation of atherosclerotic plaques
by attracting leukocytes and enabling their extravasation and
migration (Libby, 2002). After activation, leukocytes form a
dynamic andmultilateral relationship with the vascular wall cells,
ultimately driving and determining the course of the disease
(Libby, 2002). Accordingly, we detected increased levels of pro-
atherosclerotic and pro-inflammatory cytokines IL6 and CCL2 in
endothelial cells after irradiation with a single X-ray dose of 0.5
and 2 Gy. IL6 contributes to plaque initiation and destabilization
via a variety of mechanisms that include the release of other pro-
inflammatory cytokines, prothrombotic mediators, acute phase
reactants and lipoprotein oxidation (Schuett et al., 2009). CCL2
recruits monocytes into the subendothelial cell layer, a key step
in the initiation and development of plaques (Harrington, 2000).
Similar to our data, other endothelial cell types were found
to produce significant amounts of pro-inflammatory molecules
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FIGURE 5 | Schematic overview based on our experimental findings and literature that explains the possible role of p53 and NF-κB signaling in

radiation-induced premature senescence. Irradiation of endothelial cells with a single X-ray dose leads to the formation of DNA damage, resulting in both p53 and

NF-κB signaling, well-known signaling responses in irradiated cells (Yu, 2012). At day 0–2 post-irradiation, induced p53 signaling can result in a G1/S cell cycle block

(Agarwal et al., 1995), which is removed at day 7 post-irradiation. Although not conclusive (question mark symbol), we also suggest the presence of a persistent p53

signaling at this time-point. NF-κB signaling on day 0–2 post-irradiation, on another hand, could induce endothelial inflammation (Kempe et al., 2005) that persists

until day 7 post-irradiation. Both the persistent p53 signaling (Rufini et al., 2013) and inflammatory state (Freund et al., 2010; Kojima et al., 2013) may lead to

premature senescence observed at day 14 after irradiation with a single X-ray dose. Symbols indicate the irradiation dose at which the described effects were

observed: ‡ = 2 Gy, † = 0.5 Gy, * = 0.1 Gy, and $ = 0.05 Gy.

such as IL6, IL8, ICAM1 and VCAM1 following irradiation
with a single X-ray dose of 2 Gy (Van Der Meeren et al., 1999;
Haubner et al., 2013). However, these studies did not address
long-term effects of radiation exposure. The significance of an
inflammatory reaction in irradiated endothelial cells has yet to
be determined as it could induce adverse effects on the vascular
function (Hingorani et al., 2000; Paoletti et al., 2004). In this
context, previous in vivo experiments indicated that irradiation
predisposes ApoE−/− obese mice to atherosclerotic plaques
with an inflammatory phenotype prone to hemorrhage (Stewart
et al., 2006). These prothrombotic changes may also accelerate
atherosclerosis (Hoving et al., 2012). Interestingly, inflammation
has also been identified as a cause of cellular senescence (Freund
et al., 2010), and IL6 has been shown to induce senescence in

fibroblasts through IGFBP-related processes (Kojima et al., 2013).
We found similar responses in endothelial cells.

The current study used telomerase-immortalized human
coronary artery endothelial cells. These endothelial cells are not
tumorigenic (unpublished data), were shown to have a similar
response to IR compared to their primary counterparts (Lowe
and Raj, 2014) and display all major endothelial phenotypic
markers, such as von Willebrand factor, PECAM1 and cadherin-
5 (unpublished data). However, one must stress that our in vitro
study did not integrate several biological aspects related to the
complexity of the development of radiation-induced CVD in
humans. For example, not only macrovascular (e.g., coronary
arteries) but also microvascular injury could be at the basis of
radiation-induced CVD (Darby et al., 2010). In the context of
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the ProCardio FP7 project, our findings will be integrated with
other in vitro, in vivo and epidemiological data to increase our
understanding of radiation-induced CVD.

In conclusion, we found that exposure of endothelial cells
to a single X-ray dose induces a dose- and time-dependent cell
cycle arrest, senescence and inflammation. These findings are
indicative of the activation of pro-atherosclerotic processes and
bring insights into the underlying molecular mechanisms of the
endothelial response to X-ray irradiation. Although we cannot
conclude that there is no threshold effect of irradiation-induced
cardiovascular risk, our findings give an incentive for further
research on the shape of the dose-response curve. Future research
should also explore fractionated radiotherapy in its clinical mode
and should further investigate the link between the possible
release of DAMPs by irradiated endothelial cells and their
response to radiation. Elucidation of the role of inflammation
and premature senescence after radiation exposure, their timing
and their involvement in the onset, progression and outcome of
human atherosclerosis is now warranted in order to optimize the
radiation protection system and to devise cardiovascular risk-
reducing strategies if necessary. Optimization could be sought in
the field of modern radiotherapy techniques, which reduce the
dose to the normal tissues (MacDonald et al., 2013; Beck et al.,
2014; Ngwa et al., 2014), and radiation protectants or mitigators
that could reduce the deleterious effects of irradiation on the
normal tissues (Raviraj et al., 2014).
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