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The arsenal of drugs available to treat infections caused by eukaryotic and prokaryotic
microbes has been declining exponentially due to antimicrobial resistance phenomenon,
leading to an urgent need to develop new therapeutic strategies. Host-directed
immunotherapy has been reported as an attractive option to treat microbial infections.
It consists in the improvement of host defenses by increasing the expression
of inflammatory mediators and/or controlling of inflammation-induced tissue injury.
Although the in vitro antimicrobial and immunomodulatory activities of lectins have
been extensively demonstrated, few studies have evaluated their in vivo effects on
experimental models of infections. This review aims to highlight the experimental use of
immunomodulatory plant lectins to improve the host immune response against microbial
infections. Lectins have been used in vivo both prophylactically and therapeutically
resulting in the increased survival of mice under microbial challenge. Other studies
successfully demonstrated that lectins could be used in combination with parasite
antigens in order to induce a more efficient immunization. Therefore, these plant
lectins represent new candidates for management of microbial infections. Furthermore,
immunotherapeutic studies have improved our knowledge about the mechanisms
involved in host–pathogen interactions, and may also help in the discovery of new drug
targets.
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INTRODUCTION

Through centuries, microbial infectious diseases continue to be among the leading causes of
mortality and morbidity worldwide (Morens and Fauci, 2013; Sands et al., 2016; Rogalski et al.,
2017). No doubt, the antibiotics discovery in the 1930s has revolutionized medicine and changed
the treatment of infectious diseases, resulting in a dramatic increase in life expectancy and quality
(Aminov, 2016). However, ever since these drugs were introduced, microbial resistance has evolved
and spread very rapidly (Davies and Davies, 2010). Indeed, eukaryotic and prokaryotic microbes
can acquire drug resistance by several mechanisms [for review see (Van Acker et al., 2014; Blair
et al., 2015; Fairlamb et al., 2016; Goncalves et al., 2016; Hall and Mah, 2017)]. This fact critically
reduces the shelf life of antibiotics that are not efficient to combat the emerging multidrug-resistant
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strains (Holmes et al., 2016; Laxminarayan et al., 2016). In
addition, pathogens have developed several mechanisms to evade
and suppress the host defenses and/or to induce exacerbated
inflammation (which may cause host tissue injury) (Chaves et al.,
2016; Gomes et al., 2016; Ko, 2016; Malachowski et al., 2016;
Sha et al., 2017). This scenario encourages the development
of new approaches to treat microbial infection, such as those
based on the modulation of the host immune system. The
immunomodulatory therapies are based in the stimulation of
specialized and specific host immune responses against microbes
rather than target microbe viability or virulence (Hancock et al.,
2012; Czaplewski et al., 2016; Fura et al., 2017).

Among the natural products, plant lectins are known as
potent immunomodulatory agents, able to act in both innate
and adaptive immune system. They modulate the production
of cytokines and other mediators of immune response (such
as reactive oxygen and nitrogen species), and, thus, improve
the defenses against microbes (Souza et al., 2013; da Silva and
Correia, 2014; Coelho et al., 2017). Plant lectins comprise one
heterogeneous class of proteins with at least one non-catalytic
carbohydrate-binding domain (Coelho et al., 2017). The lectin–
carbohydrate interactions have been associated with several
biotechnology applications (Komath et al., 2006; de Oliveira
Figueiroa et al., 2017). In several cases, the immunomodulatory
activity of plant lectins was associated with their interaction with
glycan moieties present on the surface of immune cells. Such
interaction can result in signal transduction which triggers the
effector mechanisms involved in the response against microbial
infections (Souza et al., 2013).

Plant lectins play a crucial role in the protection against
microbial phytopathogens (Hwang and Hwang, 2011; Kim et al.,
2015). Based on this, the antimicrobial and antivirulence actions
of several lectins have been demonstrated in vitro against different
bacteria of medical importance, as reviewed by several authors
(Islam and Khan, 2012; Dias Rde et al., 2015; Coelho et al.,
2017; Palharini et al., 2017). Other works have demonstrated
the antibacterial effects of lectins using in vitro cell-based
assays. For example, a lectin isolated from Aegle marmelos fruit
inhibited the adherence and invasion of Shigella dysenteriae to
human colonic epithelial cells (HT29 cells), protecting these
cells against cell death (induced through apoptosis) (Raja et al.,
2011). Similarly, the chitin-binding lectin isolated from the juicy
sarcotesta of Punica granatum (named PgTel) showed to have
broad-spectrum antibacterial action (inhibiting Gram-positive
and Gram-negative bacteria). PgTel was also able to inhibit the
invasion of some bacteria to HeLa cells (human epithelioid cervix
carcinoma) (Silva et al., 2016b).

The immunomodulatory effects of plant lectins on different
immune cells have been also addressed by several authors (Unitt
and Hornigold, 2011; Pereira-da-Silva et al., 2012; Souza et al.,
2013; da Silva and Correia, 2014; Coelho et al., 2017). Based
on this, some works have demonstrated that some well-known
immunomodulatory lectins are able to enhance the phagocytic
ability of immune cells and their cytokine production in the
presence of bacteria (da Silva et al., 2015b; Batista et al., 2017).
This review aims to highlight the use of immunomodulatory
plant lectins in contending infection provoked by bacterial,

fungal, and protozoan pathogens. The lectins selected for this
review did not exhibit direct inhibition of microbial growth
(using in vitro assays), thus their in vivo actions are related to
their ability to target the immune system. Initially, these in vivo
studies were primarily focused on mouse models of infection and
are summarized in Table 1.

PLANT LECTINS TO COMBAT
BACTERIAL INFECTIONS

As mentioned before several papers have investigated the
potential of plant lectins direct inhibit bacterial growth (Souza
et al., 2013; da Silva and Correia, 2014; Coelho et al., 2017),
however, only few experimental studies are available about their
in vivo effects (as illustrated in Figure 1). These lectins are well
known due to their ability to modulate the host immune system).

Benefits of Prophylactic and Therapeutic
Treatments with Concanavalin A in
Klebsiella pneumoniae Infection
The most studied plant lectin is Concanavalin A (ConA) which is
isolated from Canavalia ensiformis. ConA is able to stimulate the
proliferation of immune cells and enhance the expression of toll-
like receptors (Sodhi et al., 2007; da Silva and Correia, 2014). In
order to evaluate whether ConA immunomodulatory properties
could inhibit a bacterial infection, a murine model based on
intragastrical inoculation of Klebsiella pneumoniae was employed
(Kuo et al., 2007). K. pneumoniae is a pathogen commonly
associated with nosocomial infections that can invade tissues
provoking damage on essential organs (such as liver necrosis)
and sepsis (Wu et al., 2017). Although ConA had no effect on
the in vitro bacterial growth, beneficial effects were observed
when infected mice were submitted either to prophylactic or
therapeutic treatment with this lectin. The pretreatment (2 h
before infection) with single doses of ConA (1 mg/kg or 2 mg/kg)
enhanced the mice survival to 55% after 9 days of infection
(the survival rate for untreated infected mice was 10%). When
ConA (2 mg/kg) was administered in consecutives doses (2 h
before infection followed by other doses at 48 and 96 h), the
animal survival rate was 83% (the best effect observed in this
study). The last treatment was based on the administration of two
successive doses at 24 or 72 h after infection, resulting in a 50%
of mice survival for ConA at 2 mg/mL. The effects of ConA were
further demonstrated by the inhibition of liver necrosis induced
by K. pneumoniae, reduced levels of aspartate aminotransferase
and alanine aminotransferase, and bacterial survival in blood and
liver (Kuo et al., 2007).

ConBr and CFL Have Prophylactic
Effects on Salmonella enterica Infection
Recently, the prophylactic effects of the lectins isolated from
Canavalia brasiliensis (ConBr) and Cratylia argentea (CFL)
were evaluated in an experimental model of Salmonella
enterica serovar Typhimurium infection (Silva et al., 2016a).
Both lectins were previously reported as immunomodulatory
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TABLE 1 | Application of immunomodulatory lectins in in vivo experimental models of microbial infections.

Lectin Plant species Sugar specificity Pathogen Type of use Reference

Artin M Artocarpus integrifolia Mannose Candida albicans Prophylactic Custodio et al., 2011

Paracoccidioides
brasiliensis

Therapeutic Coltri et al., 2008

Leishmania spp. Adjuvant Panunto-Castelo et al.,
2001; Teixeira et al., 2006

Toxoplasma gondii Therapeutic Santana et al., 2014

Neospora caninum Adjuvant Cardoso et al., 2011

CFL Cratylia argentea Glucose/mannose Salmonella enterica Prophylactic Silva et al., 2016a

ConA Canavalia ensiformis Mannose Klebsiella pneumoniae Prophylactic
and therapeutic

Kuo et al., 2007

Candida albicans Prophylactic Loyola et al., 2002;
Moresco et al., 2002

ConBr Canavalia brasiliensis Glucose/mannose Salmonella enterica Prophylactic Silva et al., 2016a

Cramoll Cratylia mollis Mannose Cryptococcus gattii Therapeutic Jandú et al., 2017

Jacalin Artocarpus integrifolia Galactose Trypanosoma cruzi Adjuvant Albuquerque et al., 1999

Neospora caninum Adjuvant Cardoso et al., 2011

ScLL Synadenium carinatum Galactose Leishmania amazonensis Prophylactic Afonso-Cardoso et al.,
2011

Neospora caninum Adjuvant Cardoso et al., 2012

Toxoplasma gondii Therapeutic Santana et al., 2014

agents (de Oliveira Silva et al., 2011). Firstly, the authors showed
that these lectins did not have anti-S. enterica activity in
concentrations ranging from 0.019 to 10,000 µg/mL. Afterward,
each lectin was inoculated into Swiss mice (intraperitoneal route;
i.p.) at different concentrations (1, 5, and 10 mg/kg) 1 day
prior bacterial infection (i.p.). Both lectins showed a 70–80%
dose-dependent survival rate increase effect after 7 days of

treatment, for ConBr and CFL, respectively. When the lectins
were administered (at 10 mg/kg) daily for 3 days prior to bacterial
infection (i.p. route), the survival ratios were 90% for CFL
and 100% for ConBr. The authors also showed reduction of
bacterial growth into the peritoneal cavity, bloodstreams, spleen,
and the liver of lectins pre-treated animals. Furthermore, both
lectins reduced the amounts of TNF-α and IL-10 cytokines in

FIGURE 1 | Schematic representation of studies employing plant lectins in experimental bacterial infection. (A) After inoculation, bacteria can invade cell and
provoke damage by releasing different virulence factors and inducing an exacerbated immune response. The final effect is organ dysfunction and animal death.
(B) Administration of a lectin (for example, ConA) after infection could improve mice response against bacterial infection and increase the animal survival.
(C) Pre-treatment of animal with lectin (such as ConBr) induces an immune response able to protect against bacterial virulence resulting in the improvement of
animal survival. The proteins structures were obtained from Protein Data Bank, the ID codes are 4PF5 and 4P14 for ConA and ConBr, respectively.
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the peritoneal fluid, but IL-1 was only reduced using ConBr
(Silva et al., 2016a). In a later paper, these lectins were shown
to inhibit the colonization of Swiss mice peritoneal macrophage
by Salmonella, through modulation of the expression of TLR
and inflammatory mediators (cytokines and nitric oxide) (Batista
et al., 2017).

PLANT LECTINS FOR TREATMENT OF
FUNGAL INFECTIONS

Despite the use of antifungal agents, the invasive fungal infections
are responsible for high rates of morbidity and mortality
(Badiee and Hashemizadeh, 2014; Camplesi et al., 2017; Enoch
et al., 2017). For example, cryptococcosis is responsible for
1 million cases of meningoencephalitis, especially in HIV positive
individuals, with 624,000 death per year (McMullan et al., 2013).
Yeasts from Candida genus, particularly Candida albicans, are
commonly found as etiological agent of neonatal bloodstream
infections (Fu et al., 2017; Vaezi et al., 2017).

Other example is the neglected disease
paracoccidioidomycosis, the most important systemic mycosis
in Latin America (mainly in Brazil) with high mortality rates (de
Macedo et al., 2016). In fact, paracoccidioidomycosis is the eighth
most important cause of mortality among chronic infectious
diseases, reaching rates of 1.65 deaths per 106 inhabitants
(de Oliveira et al., 2015). Collectively, these invasive fungal
infections are more prevalent in immunocompromised patients
(Woyciechowsky et al., 2011; Kaur et al., 2017; Sungkanuparph
et al., 2017). In addition, they are in general also associated with
antifungal resistance, making their treatment ineffective for most
cases (Gullo et al., 2013; Chowdhary et al., 2014; Scorzoni et al.,
2017).

Taken together, these factors point out the need of studies,
using both in vitro and in vivo models, for the development
of new therapeutic alternatives to treat fungal infections. In
this scenario, lectins with immunomodulatory compounds have
been emerging as promising options (Armstrong-James and
Harrison, 2012; Datta and Hamad, 2015). Cytokines, antibodies,
opsonins, and immunomodulatory compounds (combined or
not with antifungals drugs) are therapeutic alternatives for the
treatment of fungal infections (Armstrong-James and Harrison,
2012; Datta and Hamad, 2015; Posch et al., 2017; Scorzoni et al.,
2017), such as cryptococcosis (Antachopoulos and Walsh, 2012),
invasive Candida infections (Safdar et al., 2004), and aspergillosis
(Stuehler et al., 2011). In fungal infection models, large number of
lectins have been applied in vitro and in vivo in order to develop
new antifungal strategies (Islam and Khan, 2012; Coelho et al.,
2017). Some examples of plant lectins able to modulate fungal
infections are provided below.

ConA Pretreatment Protects Mice from
Candida albicans Infection
The effects of ConA in an experimental model of C. albicans
infection have been associated with activation of antifungal
responses by increasing of phagocytosis and killing of yeast cells
by macrophages and neutrophils (Loyola et al., 2002; Moresco

et al., 2002). However, the literature does not describe any direct
effects of ConA on C. albicans viability or virulence. In the
first paper, by Loyola et al. (2002), ConA was intraperitoneally
administrated and, after 6 h, the collection of neutrophils and
macrophages from peritoneal exudate was performed. ConA
administration increased the number of peritoneal cells and
their in vitro ability to kill C. albicans (in both yeast and germ
tube forms) and increased the expression of mannose receptors.
Furthermore, ConA pre-treatment also increased the survival
of animals challenged with C. albicans (6 h after the lectin
inoculation) (Loyola et al., 2002). These data were confirmed by
a similar work where ConA efficiently promoted the antifungal
action of peritoneal macrophages from suckling and adult mice
by increasing the phagocytosis and killing of C. albicans. This
paper also showed that ConA protected suckling mice against
intraperitoneal infection with C. albicans (Moresco et al., 2002).

Artin M Has Prophylactic and
Therapeutic Effects on Fungal Infections
The mannose-specific lectin present in Artocarpus integrifolia
(Moraceae) seeds, nominated Artin M, is a well-known
immunomodulatory protein able to stimulate neutrophils
migration by haptotaxis (Ganiko et al., 2005; Souza et al., 2013).
This capacity is due to its interaction with mannose residues,
commonly found at extracellular matrix components (such as
laminin), helping the cell migration into injured tissues. This is
an important phenomenon in the inflammatory response against
infections (Ganiko et al., 2005; Souza et al., 2013). A. integrifolia
seeds are also sources of jacalin, a galactose-binding lectin with
the characteristic beta-prism-I fold (Raval et al., 2004). This
domain consists in four-stranded beta-sheets and the lectins
with this domain are assembled in a family called Jacalin-related
lectins (JRL) (Esch and Schaffrath, 2017).

The prophylactic inoculation (3 days before infection) of the
crude extract of A. integrifolia seeds (containing Artin M and
jacalin) resulted in the enhanced survival and reduced liver
injury of Swiss mice infected with C. albicans. These effects
were not observed when mice were treated with jacalin alone.
Using the same protocol, the authors showed that the Artin M
alone or in combination with jacalin induced a Th1 and Th17
response mediated by dectin-1 and mannose receptors, resulting
in a significant increase of TNF-α production, phagocytic and
candidacidal activities (Custodio et al., 2011). Similarly, it was
demonstrated that Artin M increased the TNF-α production and
phagocytic activity of C. albicans by mice macrophages. These
actions of Artin M were mediated by dectin-1 and mannose
receptors (Loyola et al., 2012).

In addition, Artin M (in both native and recombinant
form) also showed efficacy against the infection caused by
Paracoccidioides brasiliensis (Coltri et al., 2008). The authors
performed an elegant work where they first determined that
the best treatment schedule consisted in the subcutaneous
administration of Artin M in single dose (0.5 µg of KM in
50 µL of PBS) and 10 days after infection with P. brasiliensis.
Mice treated with Artin M displayed reduced levels of yeasts on
their lungs and consequently less pulmonary lesions. These effects
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were induced through production of IL-12 by a TLR-2 dependent
mechanism (Coltri et al., 2008).

Cramoll Has Therapeutic Benefits in
Mice Infected with Cryptococcus gattii
A recent paper reported the use of the lectin purified from seeds
of Cratylia mollis (pCramoll or Cramoll 1,4) for the treatment of
mice infected with Cryptococcus gattii. C. mollis is an endemic
plant of Caatinga (Brazil semi-arid area), a plant from the
Brazilian exclusive biome. pCramoll is a mannose-specific lectin
and it has shown several biotechnological applications, including
induction of cell proliferation (Maciel et al., 2004; da Silva et al.,
2015a), in vitro immunomodulation (de Melo et al., 2010; da
Silva et al., 2015b), wound healing (Albuquerque et al., 2017),
and anticancer properties (da Cunha et al., 2016). Particularly, the
immunomodulatory ability of pCramoll has been demonstrated
in an in vivo model of wound healing in immunocompromised
mice (de Oliveira Silva et al., 2011) and in experimental infection
with Schistosoma mansoni (de Oliveira Silva et al., 2011). Cramoll,
however, did not show antimicrobial activity in vitro.

Initially, pCramoll was administered in different
concentrations (1, 250, and 500 µg) 1 day before the intratracheal
infection with C. gattii. Afterward, every 10 days after infection
a new dose of lectin was given to the mice. pCramoll enhanced
the mice survival equally in all tested concentrations. When
combined with fluconazole (azole antifungal drug), the best
results were found for this lectin at 1 µg. pCramoll alone
or in combination with fluconazole decreased pulmonary
fungal burden of mice. These effects were associated with
an increase of inflammatory infiltrate on the lungs, and
modulatory action on cytokines levels (down-regulation
of IFNγ, IL-6, and IL-10 and up-regulation of IL-17A).
The combined treatment of pCramoll and fluconazole also
significantly decrease the fungal load in the brain, reducing
the morbidity and behavior changes caused by the infection
(i.e., neuropsychiatric state, motor behavior, autonomic
function, tone and muscle strength, and reflex/sensory
function). Moreover, in vitro analysis revealed that bone
marrow-derived macrophages treated with pCramoll were
more able to phagocyte C. gattii, with higher production of
reactive oxygen species, and decreased the intracellular fungal
proliferation (Jandú et al., 2017). These findings are summarized
in Figure 2.

PLANT LECTINS AND PROTOZOAN
INFECTIONS

Some plant lectins (Jacalin, Artin M, and ScLL) have been
also successfully applied against infections caused by protozoan.
These lectins were used in infections caused by Trypanosoma
cruzi (Albuquerque et al., 1999), Leishmania spp. (Panunto-
Castelo et al., 2001), Neospora caninum (Cardoso et al., 2011,
2012), and Toxoplasma gondii (de Souza et al., 2016). In these
studies, the lectins were used also as adjuvants in combination
to parasite antigens in order to induce a more efficient
immunization.

Jacalin as Adjuvant in Trypanosoma
cruzi Infection
The effects of jacalin in the humoral immune response toward
T. cruzi infection were evaluated using Balb/c mice (Albuquerque
et al., 1999). Jacalin is able to modulate cellular and humoral
immunity, which makes it a potential candidate for use
as an adjuvant compound (Miyamoto et al., 2012; Danella
Polli et al., 2016). Initially, the animals were inoculated with
T. cruzi antigens in the presence or not of Jacalin. The mice
submitted to immunization with T. cruzi antigens plus Jacalin
produced more antibodies (and faster) than animals immunized
only with parasite antigens. The efficiency of immunization
using T. cruzi antigens plus Jacalin was also demonstrated by
challenging 1-month-old immunized mice with trypomastigotes.
These animals showed reduced levels of parasitemia when
compared to non-immunized mice. Similarly, mice immunized
with viable T. cruzi epimastigotes (at 1.0 × 105 or 1.0 × 106)
plus Jacalin produced more antibodies than mice inoculated
with parasites alone. However, the combined inoculation of
1.0 × 105 T. cruzi epimastigotes plus jacalin resulted in
lower levels of parasite after 9 days of infection than animals
immunized only with epimastigotes. Jacalin alone did not
protected the animals from infection (Albuquerque et al., 1999;
Figure 3).

Artin M Is a Potent Adjuvant in
Leishmaniasis Model
The evidence that Artin M could be useful to treat protozoan
infections was obtained from the ability of this lectin to
induce the expression of IL-12p40, which could drive the
production of Th1 cytokines instead of the Th2 pattern, typical
of unresponsive parasite infections (Figure 4). The authors
performed a combined administration of Artin M and soluble
leishmanial antigen (SLA) into the footpad of BALB/c mice. SLA
injected animals showed higher levels of IL-4 than the group
treated with SLA+Artin M, while the IFN-γ concentration was
higher in SLA+Artin M group. The animals treated with Artin
M alone or SLA+Artin M were also more resistant to Leishmania
major infection, and these mice showed smaller lesions than those
groups treated with SLA alone or untreated animals (Panunto-
Castelo et al., 2001).

Recently, it was shown that Artin M improved the in vitro
killing of L. major by neutrophils through modulation of effector
mechanisms, such as enhanced excretion of inflammatory
cytokines, reactive oxygen species, and neutrophil elastase and
myeloperoxidase. In addition, the infected-neutrophils treated
with Artin M did not form neutrophil extracellular traps and
showed shorter life span than untreated infected cells, both
characteristics that may favor the maintenance of host tissue
integrity (Ricci-Azevedo et al., 2016).

Artin M was also effective as an adjuvant of SLA in
immunization against Leishmania amazonensis (Teixeira et al.,
2006). Artin M+SLA administration reduced the parasite
amounts in the footpad of mice infected with L. amazonensis
15 days after immunization, although the lesion size was not
reduced. Mice treated only with Artin M showed smaller lesion
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FIGURE 2 | An overview of the effects of Cramoll alone or in combination with fluconazole in an experimental cryptococcosis model. (A) Cryptococcus gattii
provokes tissue damage and organ dysfunction by releasing different virulence factors and inducing an exacerbated immune response. (B) When Cramoll was
administrated alone (B) or in combination with fluconazole (C), infected mice exhibited increased ratios of survival and reduced levels of morbidity and behavior
alteration. The PDB code for Cramoll structure is 1MVQ.

FIGURE 3 | Application of Jacalin as adjuvant for immunization against T. cruzi. (A) Mice were immunized with T. cruzi antigens and after 1 month infected with
T. cruzi. The antigens failed in inducing an efficient protective humoral response. (B) Animal subjected to immunization with jacalin (PDB ID 1JAC) plus T. cruzi
antigens showed higher antibodies titers and lower parasitemia levels than mice that received only T. cruzi antigens.

and decreased parasite load in relation to the untreated group
(but the levels of parasites were not smaller than Artin M+SLA
group). Other pro-inflammatory plant lectins (ConBr and PAA
purified from Pisum arvense) were not able to inhibit the lesion
size in mice infected with L. amazonensis, even when inoculated
in combination with SLA. However, the association of ConBr
and SLA resulted in smaller number of parasites in the footpad

of immunized animals when compared to the controls (Teixeira
et al., 2006).

ScLL and Prophylactic Treatment of
L. amazonensis
The lectin obtained from leaves latex of Synadenium carinatum
(ScLL) has also shown protective effects in a murine model of
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FIGURE 4 | Therapeutic effects of plant lectins in protozoan infections. Experimental exposure of mice to protozoan results in cell damage, tissue destruction, and
consequently animal death (A). Lectins can improve protozoan-infected animal survival by increasing production of Th1 cytokines. The induction of pro-inflammatory
response leads to a reduction in parasite levels and organ dysfunction (B). The structure of Artin M was obtained from PDB (ID: 1J4U).

leishmaniasis induced by L. amazonensis. In this study, BALB/c
mice received three doses of ScLL (10, 50, or 100 µg/animal)
in the presence or not of SLA (25 µg/animal) with intervals of
15 days. Three days after this immunization, the animals were
infected with L. amazonensis promastigotes in their left footpad.
When administrated alone at 100 µg/animal, ScLL were more
effective than when associated with SLA (as shown by reduction
of lesion size and parasite load). Thus, this lectin showed a better
potential as prophylactic agent than as adjuvant. The mice treated
with SLA also showed higher levels of IgG2a and Th1 cytokine
expression (IFN-γ, IL-12, and TNF-α) (Afonso-Cardoso et al.,
2007). In vitro cell-based analysis showed that ScLL reduced
the association of macrophages and L. amazonensis, inducing
the production of pro-inflammatory cytokines (IL-1, IL-12, and
TNF-α) in a nitric oxide independent pathway (Afonso-Cardoso
et al., 2011).

Adjuvant Properties of Artin M, Jacalin,
and ScLL in Experimental Neosporosis
Neospora caninum (Apicomplexa), etiologic agent of neosporosis,
is a prevalent intracellular parasite associated with cases of
abortion in cattle and neuromuscular disease in dogs (Donahoe
et al., 2015). The potential adjuvant actions of Artin M, Jacalin,
and ScLL have been evaluated in murine models of neosporosis.
In the first report, C57BL/6 mice received (subcutaneously)
three doses with 2-week intervals of N. caninum lysate antigen
(NLA; 25 µg/animal) associated with Artin M (1 µg/animal)
or Jacalin (100 µg/animal). Animals immunized with Artin
M+NLA showed higher levels of specific antibodies against
N. caninum (IgG, IgG1, and IgG2a) than all others groups in all
times evaluated (15, 30, and 45 days after immunization). The
association of Jacalin and NLA also enhanced the levels of total
IgG in relation to animals immunized with NLA alone in all
times, however, the levels of IgG1 were only higher until 30 days

after immunization. Animals immunized with Jacalin and NLA
showed similar levels of IgG2 than NLA group. The mice were
then infected with lethal doses of N. caninum tachyzoites 60 days
after immunization. Artin M+NLA combination resulted in 86%
of protection, while the other immunized groups (NLA+JAC,
NLA, Artin M, or JAC) were partially protected. In addition,
Artin M+NLA reduced the number of parasites in the brain
and induced a more robust inflammatory profile. The results
highlight that Artin M has more potential to be used as adjuvant
for neosporosis than Jacalin (Cardoso et al., 2011).

Cardoso et al. (2012) demonstrated the adjuvant and
immunomodulatory effects of ScLL in a similar work. The
authors showed that C57BL/6 mice dendritic cells produced
inflammatory cytokines when treated with NLA+ScLL or ScLL
alone. NLA (25 µg/animal) associated with ScLL (1 µg/animal)
were inoculated in C57BL/6 mice three time for 45 days. The
animals that received NLA+ ScLL produced higher levels of IgG
and IgG1 than the NLA immunized mice. The NLA+ScLL and
ScLL groups were also more resistant to infection by N. caninum
tachyzoites (which occurred 60 days after the last immunization)
(Cardoso et al., 2012).

Artin M and ScLL for Therapy of Acute
Toxoplasmosis
Recently, the therapeutic properties of both Artin M and ScLL
were studied in a model of murine toxoplasmosis. For this,
C57BL/6 mice were orally infected with cysts of T. gondii, and
treated intraperitoneally for 6 days with ScLL (50 µg), Artin M
(1 µg), or ScLL (50 µg) plus Artin M (1 µg). The treatment
with ScLL was more efficient, resulting in 100% survival, while
60% of the Artin M + ScLL-treated animals and only 40% of
Artin M-treated group survived. The best results obtained with
ScLL alone are related to its capacity to induce the production
of Th1 cytokines (IL-2, IFN-γ, and IL-6) resulting in reduced
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levels of parasite in the brain (de Souza et al., 2016). Other study
showed the action of eutirucallin on the in vitro infection of
human foreskin fibroblasts (HFF) by T. gondii (Palharini et al.,
2017). Eutirucallin is a RIP-2 type lectin obtained from the latex
of Euphorbia tirucalli, which also displays immunostimulatory
action (increasing neutrophils migration and release of NO,
IL12p40, and TNF-α by peritoneal macrophages) (Santana
et al., 2014). Eutirucallin inhibited infection and intracellular
replication of T. gondii with IC50 of 173.2 and 133.3 µg/mL,
respectively (Palharini et al., 2017).

CONCLUSION AND PERSPECTIVES

The high immunomodulatory abilities of plant lectins were
proven efficient to combat microbial infections in different
experimental models. Depending on the type of lectin and
the kind of infection, the lectin showed better prophylactic
or therapeutic behavior. As inductors of Th1 response, some
lectins were used as adjuvant agents. These immunotherapeutic
studies have also improved our knowledge about the pathogen–
immunity relationship, and could be helpful to provide insights
for the development of new therapeutic strategies. All these
successful examples of plant lectins encourage the study of others
lectins with immunomodulatory capabilities for the treatment of
infectious diseases. However, it is always important to remind
that the possible adverse effects (for example, TNF-α-mediated
hepatitis, renal and intestinal injury) should be evaluated before
the clinical application of these plant lectins. The side effects
depend on type of lectin, dose, and administration route. To the
best of our knowledge, the anti-infective effects of plant lectins
have not been clinically evaluated in humans (although some
lectins have been tested in clinical trials for cancer therapy).

Another challenge is the purification yields that for some
lectins could not be suitable for large-scale production.
The advances in protein engineering (recombinant protein
production, structure–function improvement) and drug delivery
technologies (liposomes, microcapsules, etc.) may improve
the protein production, stability, and their pharmacokinetics
properties (delivery, bioavailability, controlled release, and
targetability). These actions may result in enhanced therapeutic
index and may reduce likely side effects. Furthermore, the
combination of in silico approaches and analytical tools for
protein have provided more insight in lectin and ligand
interactions. In summary, these stimulating research data pave
the way for the future use of plant lectin as immunomodulatory
agents to combat microbial infections.
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