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Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating
therapeutic strategies imply either modulation of endogenous oligodendrocyte
precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy,
however, still lacks identification of an adequate source of oligodendrocyte present
in adulthood and able to efficiently produce transplantable cells. Recently, a neural
stem cell-like population has been identified in meninges. We developed a protocol
to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult
rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently
expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte
lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived
oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and
express specific oligodendrocyte markers, such as galactosylceramidase and myelin
basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord
model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating
potential. This oligodendrocyte lineage cell population derives from an accessible and
adult source, being therefore a promising candidate for autologous cell therapy of
demyelinating diseases. In addition, the described method to differentiate meningeal-
derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro
model to dissect oligodendrocyte differentiation and to screen for drugs capable to
promote oligodendrocyte regeneration.

Keywords: oligodendrocyte precursor cells, meninges, meningeal neural stem cells, myelin, oligodendrocyte
differentiation, adult neural stem cells, spinal cord

INTRODUCTION

Loss of oligodendrocytes in the CNS impairs neuronal transmission and increases neuronal frailty,
eventually leading to cognitive and motor deficits (Karoutzou et al., 2007; Schmahmann et al., 2008;
Duncan and Radcliff, 2016). The white matter of the adult CNS hosts a population of OPCs capable
of generating myelinating oligodendrocytes in physiological conditions (Franklin and Ffrench-
Constant, 2008; Rivers et al., 2008; Nishiyama et al., 2009). OPCs retain a degree of remyelinating
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ability in disease (Decimo et al., 2012a): in response to
demyelinating insults, OPCs are activated, increase their
proliferation and migrate to demyelinated sites, where they start
to restore myelin coverage (Picard-Riera et al., 2002; Powers et al.,
2013). However, in case of persisting and excessive demyelinating
pathological microenvironment, such as in MS, ischemic, and
traumatic injuries, OPCs are progressively depleted and their
remyelination efficiency decrease (Guest et al., 2005; Franklin
and Ffrench-Constant, 2008; Shi et al., 2015; Traka et al.,
2016).

Restoration of adequate oligodendrocyte cell number and
function can be envisaged either by manipulation and stimulation
of the endogenous OPC pool or by transplantation of
oligodendrocytes (Franklin and Ffrench-Constant, 2008; Gallo
and Deneen, 2014; Najm et al., 2015; Steinbeck and Studer,
2015). Currently, there are no successful therapies available to
promote remyelination (Franklin and Ffrench-Constant, 2008),
and several limitations prevent oligodendrocytes transplantation
(Franklin, 2015; Trounson and McDonald, 2015; Goldman,
2016). Ideally indeed, oligodendrocytes source should have the
following properties: (i) be of adult origin; (ii) be accessible
for sampling; (iii) be easily expanded in vitro and (iv) be
collected and transplanted, after cell expansion, in the same
patient (named autologous setting) without causing major
adverse effects. Different cell populations have been evaluated
for regenerative purposes, including OPCs (Nishiyama et al.,
1999), ESCs (Trounson and McDonald, 2015), iPSCs (Ben-
David and Benvenisty, 2011), and olfactory-ensheathing cells
(OECs) (Murrell et al., 2008). Endogenous OPCs have been
identified as NG2-expressing cells in the adult CNS; however,
they are scattered throughout in the brain and spinal cord
parenchyma (Nishiyama et al., 1999). Therefore, NG2-derived
OPC extraction from the patient own reservoir is inapplicable
due to the extended tissue sample required to obtain a sufficient
number of cells (Nishiyama et al., 1999; Franklin and Ffrench-
Constant, 2008; Schmahmann et al., 2008). On the other hand,
ESCs are a potential unlimited source of oligodendrocytes.
Ethical issues, however, raised by isolation from embryonic tissue
together with the requirement of life-long immunosuppressive
therapy for the transplant recipient, significantly compromise
their clinical application (Trounson and McDonald, 2015).
iPSCs are of adult origin and can efficiently differentiate
into oligodendrocytes (Douvaras and Fossati, 2015) in large
numbers; however, their clinical translation is dampened by
their high risk of tumorigenicity (Ben-David and Benvenisty,
2011). Adult remyelinating cells from OECs represent a safer

Abbreviations: Aqp4, aquaporin 4; Cnp, 2′,3′-cyclic-nucleotide 3′-
phosphodiesterase; CNS, central nervous system; Dcx, doublecortin; EGF,
epidermal growth factor; ESCs, embryonic stem cells; FGF2, human basic
fibroblast growth factor; GalC, galactosylceramidase; GFAP, glial fibrillary
acidic protein; iPSCs, induced-pluripotent stem cells; LFB, Luxol Fast Blue;
LPC, lysophosphatidylcholine; MAP2/Mtap2, microtubule-associated protein 2;
MBP/Mbp, myelin basic protein; MS, multiple sclerosis; NF160, neurofilament
160; NG2, chondroitin sulfate proteoglycan; NSCs, neural stem cells; OECs,
olfactory ensheathing cells; OPCs, oligodendrocyte precursor cells; PDGF-AA,
platelet-derived growth factor-AA; PDGFRα, platelet-derived growth factor
receptor type α; Plp1, proteolipid protein 1; SVZ, subventricular zone; Syt1,
synaptotagmin 1; T3, 3,3′,5-triiodo-L-thyronine; Tub3, class III β tubulin.

alternative (Fouad et al., 2005), as they can be expanded
in vitro and transplanted in autologous settings (Murrell et al.,
2008). Clinical trials using these cell sources showed promising
results in terms of safety of cells grafting (Chen et al., 2014).
Nevertheless, the presence and degree of remyelination obtained
using these cell sources have not been described yet (Mackay-
Sim et al., 2008). Overall, the identification of a cell source
combining all these four properties (adult origin, accessible
sampling, high yield of oligodendrocytes, and transplantable in
an autologous setting) and that may represent a useful tool for
high-throughput drug-screening assays for the identification of
novel pharmacological targets for demyelinating disease is still
under investigation (Franklin and Ffrench-Constant, 2008; Pino
et al., 2017).

We described the presence of a pool of NSCs in rodent
meninges (Bifari et al., 2009, 2015, 2017; Decimo et al.,
2011, 2012a,b). Meningeal-resident NSCs display in vivo and
in vitro gene expression properties similar to subventricular
NSCs (Decimo et al., 2011; Bifari et al., 2017) and are able
to migrate and differentiate into functional neurons in the
neonatal cerebral cortex (Bifari et al., 2017). We described
that cells with NSC features are present in meninges from
the embryonic period up to adulthood (Bifari et al., 2009,
2015). Meningeal-resident NSCs can be cultured in vitro
as neurospheres and differentiated into electrically functional
neurons and oligodendrocytes (Bifari et al., 2009; Decimo et al.,
2011). Considering the superficial localization of meninges
on the CNS surface, adult meningeal-derived NSCs raise
particular interest for their potential application in autologous
cell transplantation and in vitro drug screening for demyelinating
diseases. In this study, we developed a protocol to obtain high
yield of remyelinating oligodendrocyte lineage cells from adult
rat meningeal biopsy.

MATERIALS AND METHODS

Organotypic Cell Culture
Animal housing and all experimental procedures were approved
by the Istituto Superiore di Sanità (I.S.S., National Institute
of Health; protocol N. 154/2014-B, Italy) and the Animal
Ethics Committee (C.I.R.S.A.L., Centro Interdipartimentale di
Servizio alla Ricerca Sperimentale) of the University of Verona
(Italy). Six to eight weeks old male and female Sprague–
Dawley rats were anesthetized by intraperitoneal injection
with chloral hydrate (350 mg/kg) and sacrificed by cervical
dislocation. Spinal cord meninges were collected under a
stereomicroscope and small samples of approximately 1 cm2

were isolated; then, tissue samples were washed in ice-cold
HBSS and cultured into 6-wells plates in neurosphere expansion
medium (NS, see section Media Compositions). Every 3–4 days,
half of the medium (approximately 3 ml) was substituted
with fresh NS medium. After 7–10 days, neurospheres were
collected, centrifuged, mechanically dissociated to a single-
cell suspension and further expanded in NS medium or
cultured in oligodendrocyte-inducing Step Go1 medium (see
below).
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Media Compositions
NS Medium
Neurobasal medium (Thermo Fisher Scientific), 2% B27
supplement (Thermo Fisher Scientific), 1% N2 supplement
(Thermo Fisher Scientific), 2 mM glutamine (Thermo Fisher
Scientific), 100 U/ml penicillin and 100 µg/ml streptomycin
(Thermo Fisher Scientific), 20 ng/ml human EGF (PeproTech)
and 20 ng/ml FGF2 (PeproTech).

Step Go1 Medium
Neurobasal medium, 2% B27 supplement, 2 mM glutamine,
100 U/ml penicillin and 100 µg/ml streptomycin, 20 ng/ml
human FGF2 and 20 ng/ml human PDGF-AA (PeproTech).

Step Go2 Medium
Neurobasal medium, 2% B27 supplement, 2 mM glutamine,
100 U/ml penicillin and 100 µg/ml streptomycin, 20 ng/ml
human FGF2, 5 ng/ml human PDGF-AA and 15 nM 3,3′,5-
triiodo-L-thyronine (T3) (Sigma–Aldrich).

Step Go3 Medium
Neurobasal medium, 2% B27 supplement, 2 mM glutamine,
100 U/ml penicillin and 100 µg/ml streptomycin, 5 ng/ml human
PDGF-AA and 15 nM T3.

Oligodendrocyte Differentiation
Single-cell suspensions, obtained from dissociated neurospheres,
were cultured in Step Go1 medium to induce the differentiation
into oligodendrocytes. After 7–10 days of culture, oligospheres
are formed. Oligospheres were then dissociated into a single
cell suspension and subsequently plated onto poly-D-lysine
coated flasks for further 7–10 days in Step Go2 medium.
After this period, Step Go3 medium was added for 3 days to
prompt the differentiation process. At each of the four steps
of oligodendrocyte differentiation we collected ∼100 k cells for
immunofluorescence and∼500 k cells for RT-PCR analyses.

Immunofluorescence
Cells were plated onto poly-D-lysine coated glass slides. Staining
procedure was performed as previously described (Bifari et al.,
2015; Lange et al., 2016). Briefly, following fixation in 4%
paraformaldehyde (PFA, Sigma–Aldrich), aspecific binding sites
were blocked by incubation in blocking solution (3% fetal
bovine serum, 1% bovine serum albumin, 0.3% Triton X-100
in PBS). Cells were incubated in primary antibody solution
for 1.5 h at room temperature, washed thrice with blocking
solution and incubated in the proper secondary antibody solution
for 1 h. After three washes in blocking solution, slides were
incubated for 10 min with the nuclear dye TO-PRO3 (Thermo
Fisher Scientific) and mounted on glass microscope slides for
confocal microscope quantification (Zeiss LSM 710 confocal
microscope).

Primary antibodies: nestin (mouse, 1:1000, BD Pharmingen,
cat# 556309), NG2 (rabbit, 1:1000, Merck-Millipore, cat#
AB5320), oligodendrocyte marker O4 (O4) (mouse, 1:200,
Merck-Millipore, cat# MAB345), oligodendrocyte marker O4
(O4) (mouse, 1:40, Sigma–Aldrich, cat# O7139), MBP (rabbit,

1:500, Dako, cat# A0623), MBP (mouse, 1:500, Sigma–Aldrich,
cat# AMAB91064), GalC (rabbit, 1:100, Merck-Millipore, cat#
AB142), NF160 (mouse, 1:200, Sigma–Aldrich, cat# N5264).

Image Analyses and Quantification
To evaluate the oligodendroglial differentiation at each phase of
the protocol, we performed immunofluorescence as described
above. The positive-immunoreactive cells, for each marker,
were determined using the ImageJ software (U.S. National
Institutes of Health) as follow: (i) nestin positivity: cytoplasmatic
elongated signal with single channel RGB color intensity
≥32 (with minimum value 0 = black; maximum value
255 = full color); (ii) NG2 positivity: cytoplasmatic elongated
signal with single channel RGB color intensity ≥30 (with
minimum value 0 = black; maximum value 255 = full
color); (iii) O4 positivity: pointy signal in correspondence to
the glycoprotein on membrane surface; (iv) MBP positivity:
cytoplasmatic signal in cells with ≥3 positive branches; (v)
GalC positivity: cytoplasmatic signal with single channel RGB
color intensity ≥50 (with minimum value 0 = black; maximum
value 255 = full color) and with ≥3 positive branches. We
quantified a minimum of 50 cells for each differentiation stage
for each marker (n ≥ 3 independent samples). Data were
expressed as percentage of positive cells/total number of counted
(TO-PRO3+) cells.

Cellular branches were manually counted for a minimum of
50 cells/sample/differentiation phase in blind quantification by
three independent observers. Evaluation was performed on cells
immunoreactive for MBP or GalC staining, which allowed visible
identification of cellular branches, using the ImageJ software
(U.S. National Institutes of Health). Data were expressed as mean
number of branches/cell.

NG2-Derived Oligodendrocyte Culture
Primary NG2-derived oligodendrocytes were isolated from
mixed glial cultures prepared from postnatal day (P) 2
Sprague–Dawley rat cortex by shaking cells on an orbital
shaker at 200 rpm, as previously described (Fumagalli et al., 2011,
2015). NG2-derived OPCs were then collected and separated
from microglia by incubation for 20 min on an uncoated
petri dish. Purified NG2-derived OPCs were seeded onto
poly-D,L-ornithine-coated glass coverslips (50 µg/ml, Sigma–
Aldrich) in 60 mm-dishes (300 k cells/dish) in Neurobasal
with 2% B27, 2 mM L-glutamine (EuroClone), 10 ng/ml
human PDGF-BB (Sigma–Aldrich), and 10 ng/ml human
FGF2 (Space Import Export), to promote proliferation.
Cells were maintained in proliferation medium for 4 days
and, then, shifted to a differentiating medium containing
10 ng/ml T3 (Sigma–Aldrich) for 72 h. NG2-derived
oligodendrocytes were lysed in 800 µl of TRIzol (Thermo
Fisher Scientific).

Quantitative Real-time RT (Reverse
Transcription)-PCR Analysis (qRT-PCR)
Cells were collected at each stage of the differentiation protocol
for n≥ 3 replicates for n≥ 2 independent experiments. qRT-PCR
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was performed as previously described (Bifari et al., 2009) using
the following primers (forward and reverse) or TaqmanTM assays
(Thermo Fisher Scientific):

Nestin: F-TTCTGGACCCCAAGCTGAAG;
R-GGGAGCACAGATCCCAGGTA

Olig1: F-TTACAGGCAGCCACCCATCT;
R-GAGCGGAGCTTCAGGCTTCT

Cnp: F-AGGCGTGCTGCACTGTACAA;
R-CCACATCCTGTTGGGCATATT

Mog: F-ATTGCCCTTGTGCCTATGCT;
R-TGCACGGAGTTTTCCTCTCA

Mag: F-CCAGCAGAGGACGGCATCTA;
R-GGGCTTCCAAGGTGCATACA

Plp1: F-TGCGCTGATGCCAGAATGTA;
R-TTGGAACTCGGCTGTTTTGC

Dcx: F-TTGCTTGTGGCCCTGAAAAG;
R-CCAGCTGTGGCAGATGGATT

Tub3: F-CCAAGTTCTGGGAGGTCATCA;
R-CCGAGTCCCCCACATAGTTG

Syt1: F-ACCAGCTGTTGGTGGGAATC;
R-ATCGGATGTACCCCCCATGT

Aqp4: F-CACCACGGTTCATGGAAACC;
R-AATCACAGCTGGCAAAAATGG

Gfap: Probe code Rn00566603_m1 (TaqManTM Assays)

The mRNA levels of the housekeeping gene β-actin were used
as reference to normalize the expression of the genes of interest.

Data are expressed as relative gene expression levels compared
to undifferentiated meningeal-derived stem cells (NS).

Meningeal-Derived Oligodendrocyte
Lineage Cells Transplantation in Focal
Demyelination Rat Model
Animal housing and all experimental procedures were approved
by the Bioethics Committee of The National Hospital of
Paraplegics (Toledo, Spain). Three months old female Wistar
rats, ∼300 g of weight (n = 6 animals for the LPC-control
group, n = 6 animals for the LPC-transplanted group) were
used. Rats were anesthetized with intraperitoneal injections
of pentobarbital (40 mg/kg) and xylazine (10 mg/kg), the
spinal cords were exposed by laminectomy at level of the
T8 vertebra, and LPC (1% in saline solution) was injected
at three points separated by 1 mm in the dorsal columns
(2 µl at each point; 1 µl at each 0.7 and 0.5 mm of depth).
In each injection point, the solution was administered at a
rate of 0.5 µl/min by using a 33G needle and a 10 µl
Hamilton syringe attached to a microinjector and a stereotaxic
apparatus. The post-operative cares included subcutaneous
injection of buprenorphine at 24 hours post injection (HPI)
(0.03 mg/kg) and enrofloxacin (2.5 mg/kg) once daily until
5 days post injection (DPI). Moreover, animals received
subcutaneous injections of saline solution for the first 5 DPI
in decreasing doses, from 5 ml at 24 HPI to 1 ml at
5 DPI.

In order to perform meningeal-derived oligodendrocyte
lineage cells transplantation, LPC-demyelinated animals

were divided in two groups, LPC-control (not transplanted)
and LPC-transplanted (transplanted with meningeal-
derived oligodendrocyte lineage cells). Meningeal-derived
oligodendrocyte lineage cells, at Step Go2, were transduced
with an eGFP-expressing lentiviral vector [10 multiplicity of
infection (MOI)] for 16 h. Spinal cords were again exposed
at the T8 spinal level at 7 DPI, in order to inject vehicle
(Neurobasal medium, LPC-control) or eGFP meningeal-
derived oligodendrocyte lineage cells (LPC-transplanted).
LPC-transplanted animals were injected with 2 µl of Neurobasal
medium containing 100’000 eGFP cells/µl, while LPC-control
group received an injection of 2 µl of Neurobasal medium.
Injections were carried out at a rate of 0.5 µl/min using
a 33G needle and a 10 µl NanoFil syringe attached to a
microinjector and a stereotaxic apparatus. In each injection
point, the needle was maintained for five further minutes
to minimize the reflux of the solution. The bladders were
emptied twice daily until cardiac perfusion for histological
analysis.

Luxol Fast Blue Staining Protocol
Myelin content was assessed in the tissue sections via LFB
staining. Spinal cords from healthy control, LPC-control and
LPC-transplanted animals were extracted after intracardiac
perfusion with 4% PFA/4% sucrose and 25 µm-thick sections
were cryosectioned. Sections from 1 cm-rostral to 1 cm-
caudal to the lesion area were selected and used for analysis.
First, 0.1% LFB solution was prepared solubilizing LFB
(Sigma–Aldrich) in 95% ethanol (EtOH, Carlo Erba) and
1.22% glacial acetic acid (Carlo Erba). Sections were hydrated
in EtOH solutions (100, 95, 70, and 50%), followed by
staining with 0.1% LFB solution at 40◦C for 40 min.
Sections were then rinsed with tap water and differentiated
in 0.05% Li2CO3 solution (Sigma–Aldrich). Sections were
dehydrated in EtOH solutions (50, 70, 95, and 100%),
cleared in xylene (Carlo Erba) and mounted with Entellan
(Merck-Millipore) for light microscopy analysis of myelin
content (Zeiss Axioscop 2).

Myelin Content Quantification
After LFB staining, myelin content within the dorsal column
of the spinal cords was quantified as percentage of the mean
gray level within the dorsal column of each spinal cord slice
(myelin positive pixels in the dorsal column/pixels of the
total area of the dorsal column), using ImageJ software (U.S.
National Institutes of Health). Blind quantification by three
independent observers was performed to calculate the average
value of the myelin content of healthy control, LPC-control
and LPC-transplanted rats (n ≥ 20 slices/animal; n ≥ 3
animals/group).

Statistical Analysis
As described for each methodology, n ≥ 3 animals or
replicates were used for statistical analysis. Differences between
experimental conditions were analyzed using two-way ANOVA
followed by Tukey post-test. P-value < 0.05 was considered
statistically significant.
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RESULTS

High Yield Oligodendrocytes from Rat
Meningeal Biopsies: Development of a
4-Phases Oligodendrocyte
Differentiation Protocol
The possibility to perform in vitro patient-derived
oligodendrocyte culture from adult somatic stem cells represents
a potentially exploitable procedure for the identification of
novel pharmacological targets for demyelinating disease and for
high-throughput drug-screening assays (Franklin and Ffrench-
Constant, 2008; Pino et al., 2017). Furthermore, autologous cell
transplantation is the gold standard approach for cell therapy.
Isolation of high numbers of mature oligodendrocytes from
living adult CNS represents one of the main obstacles in cell
transplantation translation to the clinic. Two major issues need
to be addressed for cell therapy to be exploited as potential
autologous cell transplantation: first, the location and size of the
tissue to be sampled; second, the time needed to obtain a large
number of transplantable cells. To overcome the lack of accessible
adult sources for production of oligodendrocytes, we set up a
protocol to obtain oligodendrocyte lineage cells from one single
biopsy of adult rat superficial meningeal tissue. We optimized the
protocol in order to simultaneously maximize meningeal-derived
oligodendrocyte lineage cell expansion and differentiation. We
divided the protocol into four phases that comprehend changing
ratios of mitogens and differentiating morphogens, allowing both
oligodendrocyte precursor expansion and gradual maturation
into oligodendrocyte lineage cells (Figure 1). To assess the
progressive enrichment of differentiating oligodendrocytes in
culture, we analyzed, at each phase of the protocol, the gene
expression of: NSC marker Nestin (Figure 2A) (Lendahl et al.,
1990), oligodendrocyte precursor marker Olig1 (Figure 2A)
(Xin et al., 2005), and oligodendrocyte lineage markers coding
for the major components of myelin sheaths Cnp (Figure 2B),
myelin associated glycoprotein (Mag) (Figure 2B), myelin
oligodendrocytes glycoprotein (Mog) (Figure 2B), and Plp1
(Figure 2B) (Ranscht et al., 1982; Solly et al., 1996; Dugas et al.,
2006; Cahoy et al., 2008).

NS – Neurosphere Induction
As for spinal cord central canal-derived NSCs, spinal cord
meningeal-derived NSCs can be cultured in vitro and expanded
as undifferentiated neurospheres (Weiss et al., 1996; Decimo
et al., 2011). To obtain spinal cord meningeal-derived NSCs
neurospheres, we sampled 1 cm2 biopsy of adult rat spinal cord
meninges and cultured it directly, avoiding any mechanical-
enzymatic procedure (Figure 1A). We used neurosphere-
inducing medium supplemented with growth factors known to
induce NSCs proliferation, such as EGF and FGF2 (Martens
et al., 2000) (refer to section Media Compositions for media
composition). In this phase, single cells shed form the
meningeal biopsy and then grow as neurospheres in culture.
After 7–10 days of culture, we observed floating neurospheres
(Figure 1B), which consisted of cells expressing the NSC
marker nestin (Figure 2A) (Lendahl et al., 1990) as SVZ-derived

and spinal cord-derived NSCs (as described in Weiss et al.,
1996; Decimo et al., 2011). In addition, meningeal-derived
neurospheres expressed the early oligodendrocyte precursor
marker Olig1 (Figure 2A). We obtained approximately 2.5× 105

undifferentiated meningeal-derived NSCs after 10 days of culture
(Figure 1C).

Step Go1–Oligodendrocyte Induction
To induce oligodendrocyte precursors differentiation and
expansion, we continued to culture NS-dissociated cells in the
presence of the mitogen FGF2 and of the oligodendrocyte
inducing morphogen PDGF-AA (McKinnon et al., 1990; Engel
and Wolswijk, 1996; Calver et al., 1998) for 10 days (Figure 1B).
In this culture condition, cells continue to growth as spheres,
now referred as “oligospheres” (Figure 1B). The proliferation
rate increased compared to the neurosphere expansion phase
(Figure 1C).

Step Go2 – Oligodendrocyte Differentiation and
Proliferation
Subsequently, to induce immature oligodendrocytes
differentiation from oligodendrocyte precursors, we changed
culture conditions by adding the oligodendrocyte-differentiating
hormone 3,3′,5-triiodo-L-thyronine (T3) (Almazan et al., 1985).
To expand immature oligodendrocytes, we maintained in the
medium the mitogens FGF2 and PDGF-AA, though PDGF-AA
concentration was decreased (Figure 1B). Furthermore, to
promote adhesion and extension of cellular processes typical
of oligodendrocyte morphology (Baumann and Pham-Dinh,
2001), dissociated oligospheres were plated onto poly-D-lysine
coated flasks and glass slides. After 7–10 days of culture in Step
Go2 medium, we observed cells with branchings, suggesting a
progression through oligodendrocyte lineage cells differentiation
(Figure 1B). The immature oligodendrocytes statistically
significantly decreased the expression levels of the stemness
gene Nestin and of the oligodendrocyte precursor gene Olig1
(Figure 2A), while the expression of mature oligodendrocyte
markers Cnp, Mag, Mog, and Plp1 (Ranscht et al., 1982;
Campagnoni and Macklin, 1988; Cahoy et al., 2008) slightly
increased (Figure 2B). In this culture condition, while inducing
specific oligodendrocyte differentiation, we further promoted
oligodendrocytes expansion and we were able to expand the cells
∼14-fold (Figure 1C).

Step Go3 – Oligodendrocyte Terminal Differentiation
To promote the final differentiation from immature
oligodendrocytes to mature oligodendrocyte lineage cells,
we removed the mitogen FGF2 from the medium, while
maintaining the morphogens PDGF-AA and T3 (Figure 1B).
After only 3 days of culture in Step Go3 medium, meningeal-
derived oligodendrocyte lineage cells formed a dense network
of fine processes typical of cultured mature oligodendrocytes
(Figure 1B).

Gene expression analysis confirmed terminal oligodendrocyte
differentiation, as shown by the upregulation of myelin-
specific genes (Dugas et al., 2006) Plp1, (∼130-fold increase,
p < 0.001 for Step Go3 vs. NS relative expression levels),
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FIGURE 1 | Oligodendrocyte differentiation protocol. (A) Schematic representation of spinal cord meningeal biopsy isolation for organotypic culture. Spinal cord was
dissected from adult SD rat and 1 cm of meningeal tissue was isolated and plated in neurosphere expansion medium (NS, day 0). (B) Time course representation of
the oligodendrocyte differentiation protocol from spinal cord meningeal biopsy. From day 0 to day 10: neurosphere expansion (NS), from day 10 to day 20:
oligosphere culture (Step Go1); from day 20 to day 30: oligodendrocyte differentiation (Step Go2); from day 30 to day 33: oligodendrocyte maturation (Step Go3).
Images show meningeal-derived differentiating oligodendrocyte morphology at each stage of the protocol. Insets in (B) are higher magnification images of
representative cells in the boxes. Pictures in (B) are brightfield images. (C) Number of meningeal-derived cells in culture, calculated for every experimental replicate
(n = 4), present at each stage of the differentiation protocol. Data are presented as mean ± SEM. NSCs: neural stem cells; FGF2: human basic fibroblast growth
factor; EGF: epidermal growth factor; PDGF-AA: platelet-derived growth factor type AA; T3: 3,3′,5-triiodo-L-thyronine. Scale bars: 50 µm.

as well as a 8-fold increase of Cnp (p < 0.001 compared to
NS), 56-fold increase of Mag (p < 0.001 compared to NS)
and 76-fold increase of Mog (p < 0.01 compared to NS)
(Figure 2B).

To confirm that meningeal-derived oligodendrocyte
lineage cells expressed the same oligodendrocyte markers
of mature oligodendrocytes, we analyzed the oligodendrocyte
marker expression of NG2-derived mature oligodendrocytes
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FIGURE 2 | Gene and protein analysis confirms differentiation of meningeal-derived NSCs into oligodendrocytes. (A) Relative gene expression analysis of
meningeal-derived oligodendrocyte lineage cells shows significant decrease of the neural-stemness-related gene Nestin and the oligodendrocyte-specification gene
Olig1 through the oligodendrocyte differentiation protocol. (B) Relative gene expression analysis of oligodendrocytes specific genes Cnp, Mag, Mog, and Plp1 in
meningeal-derived differentiating oligodendrocytes at each step of the differentiation protocol and in NG2-derived oligodendrocytes. As expected, Step Go3
meningeal-derived oligodendrocyte lineage cells show significant increase of oligodendrocyte specific genes compared to meningeal-derived cells in NS. (C) Gene
expression analysis of specific astroglial lineage genes (Gfap and Aqp4) and neuronal lineage genes, (Mtap2, Dcx, Tub3, and Syt1) in meningeal-derived
differentiation oligodendrocytes at each step of the differentiation protocol. Gfap, Aqp4, and Mtap2 were not expressed at any step of the differentiation protocol,
and were detected only after a high number of cycles (mean 1Ct: 17.2 ± 2.13 Gfap, 14.7 ± 1.66 Aqp4, and 13.89 ± 0.7 Mtap2). Dcx, Tub3, and Syt1 were
expressed at lower level during all steps of the differentiation protocol. Gene expression levels were normalized to those of the housekeeping gene β-actin and are
expressed as normalized to basal conditions (NS). (D–F) Immunofluorescence analysis, showing that by the end of the protocol the majority of the
meningeal-derived oligodendrocytes express the specific marker of mature oligodendrocyte MBP (D), while none or rare cells express the specific astrocyte [GFAP,
(E)] or neuronal [MAP2, (F)] markers. Data are presented as mean ± SEM; ∗∗∗∗p < 0.0001; ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; n.d., not detectable. Images are
single plane confocal images. Cell nuclei are visualized by TO-PRO3 nuclear staining (blue). Scale bars: 25 µm.

(Fumagalli et al., 2015) (Figure 2B, red bars). Meningeal-derived
oligodendrocyte lineage cells (Step Go3) and NG2-derived
oligodendrocytes expressed comparable levels of Cnp, Mog, Mag,
and Plp1 specific oligodendrocyte genes (Figure 2B).

Altogether, these results indicate that the protocol allows
a gradual in vitro differentiation of meningeal-derived NSCs
toward the mature oligodendroglial lineage. Indeed, meningeal-
derived NSCs progressively increase the specific oligodendrocyte-
related gene expression levels while downregulating immature
NSC genes.

Meningeal-Derived NSCs Differentiated
Homogeneously into Oligodendrocyte
Lineage Cells
Cell transplantation, as well as drug screening assay, requires
high numbers of pure, homogeneously differentiated mature
cells. We therefore tested whether our protocol induced

differentiation of meningeal-derived NSCs specifically into
mature oligodendrocytes, with no contamination of other cell
types. To assess the purity of the differentiated meningeal-derived
oligodendrocyte lineage cell population, we analyzed the gene
expression of neuronal and glial genes during all phases of
the differentiation protocol. We could not detect expression of
the neuronal-specific gene Mtap2 (Izant and McIntosh, 1980)
and of the astrocyte-specific genes Gfap (Eng, 1985) and Aqp4
(Yoneda et al., 2001) (Figure 2C) in each phase of the protocol
analyzed. In line with previous reports (Cahoy et al., 2008), we
detected low levels of expression of the neural precursor marker
Dcx (Brown et al., 2003) the immature neuronal marker class
III β-tubulin (Tub3) and the synaptic protein synaptotagmin 1
(Syt1) (Figure 2C). In accordance to previous findings (Cahoy
et al., 2008), although low in absolute values, Tub3 and Syt1
increased approximately two-fold in the last oligodendrocyte
differentiation phase (Step Go3) (Figure 2C). As confirmation,
immunofluorescence analysis revealed that by the end of the
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protocol, the majority of the cells expressed the oligodendrocyte
specific protein MBP (Figures 2D, 3A,E), while none or rare
cells were positive for the astrocyte marker GFAP (Eng, 1985)
and the neuronal marker MAP2 (Izant and McIntosh, 1980)
(Figures 2E,F).

These data indicate that the meningeal-derived
oligodendrocyte lineage cell culture does not include cells
belonging to astrocyte or neuronal lineages, suggesting that they
homogenously differentiated into oligodendrocytes.

Evaluation of Meningeal-Derived
Oligodendrocyte Lineage Cell Maturation
To further assess the degree of maturation of the meningeal-
derived oligodendrocyte lineage cells at each phase of the
protocol, we assessed and quantified by immunofluorescence
analysis the number of differentiating cells expressing the NSC
marker nestin (Lendahl et al., 1990) (Figures 3A,B), the
oligodendrocyte precursor marker NG2 (Figures 3A,C), the
immature/intermediate oligodendrocyte progenitor marker O4
(Gard and Pfeiffer, 1989) (Figures 3A,D) the myelin component
MBP (Campagnoni and Macklin, 1988) and GalC (Ranscht
et al., 1982) (Figures 3A,E,F). We found that the majority
of the neurospheres (NS) expressed, as expected, the NSC
marker nestin (Figures 3A,B). Following oligodendrocyte
precursor induction (Step Go1), nestin expression was
decreased, while the early oligodendrocyte precursor marker
(NG2) was statistically increased (Figures 3A–C). At this
stage, the intermediate and mature oligodendrocyte markers
were expressed at low levels (Figures 3C–F). In Step Go2,
the immature oligodendrocyte marker O4 was statistically
increased, while nestin and the early oligodendrocyte marker
NG2 expression was decreased, suggesting that meningeal-
derived NSCs were progressively differentiating into immature
oligodendrocyte lineage cells (Figures 3A–D). The myelin
components GalC and MBP, typically expressed by mature
oligodendrocytes (Campagnoni and Macklin, 1988) were
slightly increased in Step Go2 and were statistically significantly
increased in Step Go3, indicating that meningeal-derived
oligodendrocyte lineage cells have reached the maximum stage of
the maturation process by the end of the differentiation protocol
(Figures 3A,E,F).

Mature oligodendrocytes extend numerous processes; thus, to
evaluate the degree of differentiation of the meningeal-derived
oligodendrocyte lineage cells we quantified the number of cell
branchings (Pfeiffer et al., 1993). To quantify the branchings,
we immunostained for MBP and GalC the differentiating
oligodendrocyte and we counted the branchings extending
from each single cell through every step of the protocol
(Figures 3G–I). We found that the number of branchings for
each cell progressively statistically increased by reaching a mean
of about 20 branchings/cell, typical of mature oligodendrocytes
(Butt et al., 1994) in the last phase of the protocol (Figures 3G–I).

Altogether, those data suggest the meningeal-derived
neurospheres are induced to differentiate progressively to
oligodendrocyte precursors, immature oligodendrocytes and
mature oligodendrocyte lineage cells.

In Vivo-Remyelinating Potential of
Meningeal-Derived Oligodendrocytes
To assess the in vivo remyelinating potential of the meningeal-
derived oligodendrocyte lineage cells, we developed a controlled
model of in vivo focal spinal cord chemical demyelination by
injecting the demyelinating drug LPC in the dorsal columns of
the spinal cord. After 7 days from the injection of LPC (7 DPI), a
focal demyelinated area was clearly evident at the dorsal column
region of the spinal cord parenchyma. We transplanted eGFP+
meningeal-derived oligodendrocytes into the demyelinated area
at 7 DPI and we analyzed their myelinating potential 21 days
after the transplantation (21 DPT) [see Materials and Methods
section Quantitative Real-time RT (Reverse Transcription)-PCR
Analysis (qRT-PCR)]. LFB staining of the spinal cords of healthy
control (not injured), LPC-control (injected with vehicle) and
LPC-transplanted animal group at 21 DPT showed the difference
in the myelin content among the groups (Figures 4A–C).
Importantly, myelin quantification in the dorsal column region
of the spinal cords showed a statistical significant increase of
the percentage of myelin in the spinal cords of LPC-transplanted
group compared to the LPC-control group (Figure 4D).

To confirm the presence of transplanted eGFP+ meningeal-
derived oligodendrocyte lineage cells in LPC-transplanted rats,
we analyzed their location and fate. As expected, at 1 DPT
immunofluorescence analysis revealed that eGFP+ meningeal-
derived oligodendrocyte lineage cells were localized in the
spinal cord parenchyma (Figures 4E,F) of all LPC-transplanted
animals. Healthy and LPC-control rats did not exhibit such
labeling. At 21 DPT, eGFP+ cells persist in the LPC-lesion region
and expressed MBP (Figures 4G–I). The immunostaining for
neurofilament (NF160) suggested that eGFP+ transplanted cells
were in close contact with axons that maintained their integrity
after the treatment with LPC (Figures 4J–L).

DISCUSSION

In this study, we described an efficient method to obtain high
yield of oligodendrocyte lineage cells from a small rat meningeal
biopsy. Our aim was to develop a protocol potentially applicable
for cell therapy and for in vitro drug screening.

Although significant progresses have been made in developing
pharmacological therapies to increase oligodendrocyte lineage
cell number and optimize their differentiation, there is still an
unmet need for translating successful remyelination in clinical
setting. In vitro oligodendrocyte cultures can be useful for both
cell therapy and drug screening purposes. Currently, in vitro
expansion of oligodendrocyte lineage cells can be obtained by
(i) sorting of oligodendrocyte precursors from postnatal or
adult brain tissue (Zhu et al., 2007; Pedraza et al., 2008, 2014;
Fumagalli et al., 2011, 2015; Dugas and Emery, 2013a,b; Emery
and Dugas, 2013; Medina-Rodríguez et al., 2013; Lu et al., 2015);
(ii) culturing and differentiating ESCs into oligodendrocytes
(Glaser et al., 2004; Zhang et al., 2004; Chojnacki and Weiss,
2008; Jiang et al., 2010; Neri et al., 2010; Sundberg et al.,
2010; Sharp et al., 2011; Neman and de Vellis, 2012; Alsanie
et al., 2013; Franco et al., 2015; Kerman et al., 2015; Wang

Frontiers in Pharmacology | www.frontiersin.org 8 October 2017 | Volume 8 | Article 703

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-08-00703 October 10, 2017 Time: 15:45 # 9

Dolci et al. Oligodendrocytes from Spinal Cord Meninges

FIGURE 3 | Stage-specific oligodendrocyte differentiating marker expression. (A) Representative immunostaining images of meningeal-derived differentiating
oligodendrocytes (white) at each stage of the differentiation protocol. In NS stage, meningeal-derived cells express the specific marker of stemness, nestin; in Step
Go1, meningeal-derived cells express the specific marker of oligodendrocyte precursors, NG2; in Step Go2, meningeal-derived cells express the specific marker of
immature oligodendrocytes, O4 and finally in Step Go3 meningeal-derived cells express specific markers of mature oligodendrocytes, MBP and GalC. (B–F) Graphs
representing the percentage number of nestin+ (B), NG2+ (C), O4+ (D), MBP+ (E), and GalC+ (F) cells among the total counted cells at each stage of the
oligodendrocyte differentiation protocol. In (B), nestin+ cells significantly decrease along the oligodendrocyte differentiation protocol (NS vs. Step Go1, NS vs. Step
Go2, NS vs. Step Go3). In (C), NG2+ cells, increase from NS to Step Go1 and decrease in the following steps. In (D), O4+ cells peak at Step Go2 (Step Go2 vs. NS
and Step Go2 vs. Step Go1). In (E,F), MBP+ and GalC+ cells significantly increase in Step Go3. (G–I) Representative immunostaining image (G) and quantification
graphs of the mean number of cellular branches per cells (H,I) in Step Go3 cells, stained with specific markers for mature oligodendrocytes, MBP (H), and GalC
(G,I). These data show that the number of branches significantly increases along the oligodendrocyte differentiation protocol and highlight the maturation of
meningeal-derived oligodendrocytes obtained at Step Go3 (MBP: Step Go2 vs. NS, Step Go3 vs. NS, Step Go3 vs. Step Go1; GalC: Step Go3 vs. NS, Step Go3
vs. Step Go1). Quantitative data are mean ± SEM; ∗∗∗∗p < 0.0001; ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. All the images single plane confocal images. Cell nuclei
are visualized by TO-PRO3 nuclear staining (blue). Scale bars: 25 µm.

et al., 2015; Yamashita et al., 2017; Yao et al., 2017) and (iii)
generating and differentiating oligodendrocytes from patient-
derived iPSCs (Khazaei et al., 2007; Hu et al., 2009; Czepiel
et al., 2011; Ogawa et al., 2011; Sundberg et al., 2011; Douvaras
and Fossati, 2015; Gorris et al., 2015; Li et al., 2016; Kim
et al., 2017; Rodrigues et al., 2017). All these available methods
present some pitfalls that limit their clinical exploitation. In vitro
culture of sorted oligodendrocyte precursors requires sampling
of sizable brain tissue and does not always provide a pure
oligodendrocyte expansion. ESCs have remarkable long-term
proliferative potential, providing the possibility of unlimited
expansion in culture and a broad differentiation potential.
However, there are important ethical and safety issues, including
the need of immunosuppressant therapy that increases the risk of
teratoma formation. The production of oligodendrocyte-like cells
directly from induced patient somatic cells is the most promising
technique for autologous transplantation purposes. The risk
of tumorigenicity, however, dampens its clinical applicability
(Ben-David and Benvenisty, 2011). Transplantation of high
numbers of autologous mature oligodendrocytes from living

adult subject would represent the gold standard approach for cell
therapy.

We identified in meninges the presence of NSCs, endowed
of neural differentiation potential both in vitro and in vivo
(Bifari et al., 2009, 2015, 2017; Decimo et al., 2011, 2012a,b).
Meninges are a more accessible tissue compared to brain
and spinal cord parenchyma. Moreover, NSCs are retained in
adult brain and spinal cord meninges, thus there is no need
of artificial in vitro transformation. We therefore developed
a protocol to obtain oligodendrocyte lineage cells derived
from adult rat meningeal biopsy. We optimized the protocol
to address the most relevant issues for clinical translation
including (i) short time of in vitro cell expansion, (ii) well-
defined media conditions, and (iii) homogeneous phenotype of
differentiated cells. We obtained a high number of meningeal-
derived oligodendrocyte lineage cells (10 million cells) in a
relatively short period of time (approximately 4 weeks). In
addition, in vitro meningeal-derived oligodendrocyte lineage
cell expansion and differentiation were carried out in well-
defined culture media (in the absence of serum) and adhesion
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FIGURE 4 | Remyelinating potential of transplanted meningeal-derived oligodendrocytes. (A–C) Brightfield images of spinal cord transversal sections of healthy,
LPC-control, and LPC-transplanted rats stained with specific myelin staining LFB. LFB allows the identification of the myelin content of the tissue (blue) from the
demyelinated area (white). While spinal cord sections of healthy rat did not show any evidence of demyelination (A), spinal cord sections of LPC-control rats showed
a focal demyelination in the injection sites, as indicated by the blue arrow (B). (C) Spinal cord sections of LPC-transplanted rats showed an higher intensity of the
LFB staining around the injection site compared to LPC-control rat sections. (D) The graph represents the percentage of the myelin content in the dorsal column of
the spinal cord sections of healthy (38.94% ± 1.2%), LPC-control (26.42% ± 0.6%), and LPC-transplanted (33.97% ± 1.1%) rats, calculated as myelin positive
pixels in the dorsal column among the pixels of the total area of the dorsal column. The blue dashed lines in (A–C) indicate the dorsal column areas of the spinal cord
sections of healthy, LPC-control, and LPC-transplanted rats, that represent the LPC-lesioned area considered for the myelin content quantification. The analysis
shows that transplantation of meningeal-derived oligodendrocytes resulted in a significantly increased myelin content percentage in LPC-transplanted sections
compared to LPC-controls sections. Quantitative data are expressed as means ± SEM; n = 3 in healthy animals, n = 6 in LPC animals; ∗p ≤ 0.05, ∗∗∗∗p ≤ 0.0001.
The average value was calculated for healthy control, LPC-control and LPC-transplanted rats (n ≥ 20 slices/animal). (E,F) Immunostaining for GFP (green) and
TO-PRO3 nuclei (blue) in a spinal cord section of a LPC-transplanted rat at 1 DPT, showing that eGFP+ meningeal-derived oligodendrocytes were localized inside
the spinal cord parenchyma close to the LPC lesion site. The white dashed line in (E) indicates the dorsal columns of the spinal cord, (F) is a higher magnification of
the box in (E). (G-I) Immunostaining of a spinal cord section of a LPC-transplanted rat at 21 DPT, showing that eGFP+ meningeal-derived oligodendrocytes (green)
co-express the specific marker for mature oligodendrocytes, MBP (red). Merged image in (G); GFP (green) and TO-PRO3 (blue) in (H); MBP (red) and TO-PRO3
(blue) in (I). (J–L) Immunostaining of a spinal cord section of a LPC-transplanted rat at 21 DPT, showing that eGFP+ meningeal-derived oligodendrocytes (green) are
in close contact to the neuron neurofilament, stained with NF160 (white arrows in (J–L). Merged image in (J); GFP (green) and TO-PRO3 (blue) in (K); NF160 (red)
and TO-PRO3 (blue) in (L). (E) and (F) are maximum Z-projection images of confocal images. Scale bars: 1 mm (A–C), 500 µm (E), 20 µm (F,H,I,K,L), 40 µm (G,J).

substrate (poly-D-lysine), therefore enhancing standardization
and the potential clinical translation of the protocol. We
cultured the whole rat meningeal biopsy avoiding intermediate
steps of enzymatic and/or mechanical dissociation, in order to
minimize in vitro manipulation and maximizing cellular viability.
Meningeal-derived NSCs were differentiated into a homogeneous
culture of mature oligodendrocyte lineage cells as suggested by
the expression of oligodendrocyte markers (GalC and MBP) and
the lack of expression of neuronal and astrocyte markers (Map2
and GFAP) (Figures 2E,F) (Campagnoni and Macklin, 1988; Butt
et al., 1994). Indeed, meningeal-derived oligodendrocyte lineage
cells express comparable levels of oligodendrocyte specific genes
to those of mature NG2-derived oligodendrocytes (Figure 2B)
(Cahoy et al., 2008).

Notably, meningeal-derived oligodendrocyte lineage cells
showed in vivo remyelinating potential (Liu et al., 2000;
Razavi et al., 2017). To assess the in vivo differentiation
and remyelinating potential of the meningeal-derived
oligodendrocyte lineage cells, we used the animal model of focal
spinal cord chemical demyelination, by injecting the drug LPC.
Our results indicate that meningeal-derived oligodendrocyte
lineage cells are endowed of in vivo differentiation and

remyelinating potential. Although LPC-induced demyelination
is a valuable tool for screening candidates for remyelination-
promoting therapies, this model did not include all the complex
interactions (i.e., vascular and autoimmune) occurring in the
most common demyelinating diseases such as stroke and MS.
In this work, we aimed to first assess the in vivo remyelinating
potential rather than the overall therapeutic effect of the
meningeal-derived oligodendrocyte linage cells. We therefore
choose the animal model of chemical LPC demyelination.
Previous works suggest that meningeal resident NSCs react to
brain and spinal cord damage (Decimo et al., 2011; Nakagomi
et al., 2011, 2012; Ninomiya et al., 2013) by increasing their
stemness and differentiation potential. However, whether
meningeal resident NSCs react similarly following complex
demyelinating diseases remains to be determined.

The development of a successful protocol for
OPC/oligodendrocyte lineage cell culture of adult origin
could provide a useful tool for the in vitro screening and testing
of drugs able to influence the biology and remyelinating potential
of OPCs (Allen et al., 2005; Soldatow et al., 2013; Kerman et al.,
2015). Different strategies are now under investigation for in vitro
drug screening, as the use of primary cultures, including OPCs
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(Merrill, 2008; Gonzalez et al., 2016; Lariosa-Willingham et al.,
2016), iPSCs (Iwata et al., 2017; Rana et al., 2017), organoids
(Vrij et al., 2016; Pino et al., 2017), spheroids (Sarkar et al., 2017;
Sirenko et al., 2017), and bioprinted 3D tissues (Chang et al.,
2010; Massa et al., 2017). However, none of these methods is
able to provide adult patient-specific oligodendrocytes without
major in vitro transformation. On the contrary, meningeal-
derived oligodendrocyte lineage cells may be potentially used
for precision medicine to develop a patient-specific assay to test
drugs, starting from a population of meningeal cells extracted
directly from the living patient.

Overall, our protocol has potential of translation and
application in autologous setting. Since, we harvested meninges
covering the spinal cord, we avoided dangerous invasive
sampling of the delicate CNS tissue. Moreover, we developed
a protocol to produce a sufficient number (>10 millions)
of transplantable cells starting from a single donor tissue
extraction. Therefore, this method may be applicable in
autologous settings, as a small meningeal biopsy could potentially
be harvested from a subject and directly cultured in vitro
to obtain high yield of transplantable meningeal-derived
oligodendrocyte lineage cells. Subsequently, in vitro expanded
and differentiated meningeal-derived oligodendrocyte lineage
cells could be transplanted in the same donor from which
the meninges were sampled. This protocol may be exploited
in the future to obtain oligodendrocytes for cell therapy of
different demyelinating disease models, including MS, stroke and
traumatic brain and spinal cord injuries, thus further testing
the therapeutic potential of meningeal-derived oligodendrocyte
lineage cells.

CONCLUSION

The physiological function of adult meningeal-resident NSCs, as
well as their complete cellular and molecular characterization,
is only partially known. The presence of meningeal-resident
progenitor cells has, however, been reported both in adult rodent
and humans (DeGiorgio et al., 1994; Bifari et al., 2009, 2015,
2017; Decimo et al., 2011, 2012a,b; Petricevic et al., 2011).
Meningeal-resident NSCs have been shown to react to CNS
damage (Decimo et al., 2011; Nakagomi et al., 2011, 2012;
Ninomiya et al., 2013). With this work, we identified meninges

as an optimal source of adult NSCs, that can be easily isolated,
expanded, and differentiated into oligodendrocyte lineage cells.
These cells express the phenotypic and genetic markers of bona
fide oligodendrocytes, are functional and able to restore myelin
content in a chemical demyelinating model. However, how these
in vitro generated meningeal-derived oligodendrocyte lineage
cells may survive and what is their regenerative potential in
different demyelinating pathological microenvironment, such
as MS, ischemic, and traumatic injuries, will need further
investigations.
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