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Aging that refers the accumulation of genetic and physiology changes in cells and

tissues over a lifetime has been shown a high risk of developing various complex

diseases, such as neurodegenerative disease, cardiovascular disease and cancer. Over

the past several decades, natural products have been demonstrated as anti-aging

interveners via extending lifespan and preventing aging-associated disorders. In this

study, we developed an integrated systems pharmacology infrastructure to uncover

new indications for aging-associated disorders by natural products. Specifically, we

incorporated 411 high-quality aging-associated human genes or human-orthologous

genes from mus musculus (MM), saccharomyces cerevisiae (SC), caenorhabditis

elegans (CE), and drosophila melanogaster (DM). We constructed a global drug-target

network of natural products by integrating both experimental and computationally

predicted drug-target interactions (DTI). We further built the statistical network models

for identification of new anti-aging indications of natural products through integration

of the curated aging-associated genes and drug-target network of natural products.

High accuracy was achieved on the network models. We showcased several

network-predicted anti-aging indications of four typical natural products (caffeic acid,

metformin, myricetin, and resveratrol) with new mechanism-of-actions. In summary, this

study offers a powerful systems pharmacology infrastructure to identify natural products

for treatment of aging-associated disorders.

Keywords: quantitative and systems pharmacology, natural products, target identification, aging, network-based

INTRODUCTION

Aging is a complex biological process accompanied by accumulation of degenerative damages as
well as the decline of various physiological function, leading to the death of an organism ultimately
(Fontana et al., 2010; Lopez-Otin et al., 2013; Vaiserman et al., 2016). As an inevitable outcome of
life, aging is a primary risk factor for various complex diseases, including cancer, cardiovascular
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diseases, and neurodegenerative disease (Kaeberlein et al., 2015;
Vaiserman and Marotta, 2016). Thus, development of novel
agents for delaying or preventing aging-associated disorders
plays essential roles during drug discovery and development.

Natural products have been demonstrated preclinical or
clinical efficiency for developing anti-aging interveners with few
side effects (Ding et al., 2017). Over the past few decades, several
natural products have been reported as anti-aging agents to
extend lifespan and prevent aging-associated diseases in various
organism and animalmodels (Pan et al., 2012; Correa et al., 2016).
Currently, over 300,000 natural products have been available
for drug discovery and development (Banerjee et al., 2015).
Among of them, 547 natural products and derivatives have been
approved by U.S. Food and Drug Administration (FDA) for
treating or preventing various disorders by the end of 2013
(Patridge et al., 2016). There is pressing need of novel approaches
or tools for systematic identification of natural products with
novel pharmacotherapeutic mechanism-of-action for treatment
of aging-associated disorders.

Traditional drug target identification includes ligand-based
and structure-based approaches, such as machine learning and
molecular docking (Fang et al., 2013, 2017b). However, machine
learning is limited by high quality of negative samples as well
as overfitting issues on small training sets, while molecular
docking is constrained by lack of available crystallographic three-
dimensional (3D) structures of proteins. To overcome the pitfalls
of traditional approaches, several network-based approaches for
prediction of drug-target interaction (DTI) have been proposed
recently (Cheng et al., 2012a,b; Wu et al., 2016, 2017). These
approaches have showed a great promise in drug discovery and
development, since they do not rely on either 3D structures of
proteins or negative DTIs.

Quantitative and systems pharmacology refers to a
multidisciplinary approach for the emerging development
of efficacious drugs with novel mechanisms via integration of
experimental assays and computational strategies (Vicini and van
der Graaf, 2013; Fang et al., 2017b,c). In the past decade, systems
pharmacology-based approaches have demonstrated advance
in drug discovery and development (Lu et al., 2015; Cheng
et al., 2016; Fang et al., 2017a). For example, a recent study has
reported a systems pharmacology approach for identifying new
anticancer indications via integrating drug-gene signatures from
the connectivity map into the cancer driver genes derived from
tumor-normal matched whole-exome sequencing data (Cheng
et al., 2016). They identified several new anticancer indications
of resveratrol with new molecular mechanisms. Recently, the
same group further proposed a system pharmacology approach
that facilitated to identify new anticancer indications of natural
products through integration of known DTI network into
significantly mutated genes in cancer (Fang et al., 2017a).
The high-confidence anticancer indications were identified
computationally and further validated by various literatures
on four natural products, including resveratrol, quercetin,
fisetin, and genistein. They showed that integration of the
computationally predicted DTIs could significantly enhance the
success rate of identifying new anticancer indications of natural
products via reducing the incompleteness of known drug-target

networks. The aforementioned examples have shed light on the
systems pharmacology-based approaches for drug discovery
through exploiting the polypharmacology of natural products
with pleiotropic effects for treatment of various complex diseases
(Fang et al., 2017b).

In this study, we further proposed an integrated systems
pharmacology framework (Figure 1) to identify new targets of
natural products for potential treatment of aging-associated
disorders. Specifically, we manually collected high-quality aging-
associated human genes or human-orthologous genes covering
four species: caenorhabditis elegans (CE), drosophila melanogaster
(DM), mus musculus (MM), and saccharomyces cerevisiae (SC).
We reconstructed a global DTI network of natural products by
integrating both experimentally reported and computationally
predicted DTIs from our previous predictive network models
(Wu et al., 2016; Fang et al., 2017c). Finally, we built the statistical
network models with high accuracy to prioritize new anti-aging
indications of natural products through integration of the curated
aging-associated genes and drug-target network of natural
products. We computationally identified anti-aging indications
of multiple natural products with novel molecular mechanisms,
providing potential promising candidates for further treatment
of aging-associated diseases. Taken together, this study offers a
powerful systems pharmacology infrastructure for identification
of natural products with new mechanism-of-action for potential
treatment of aging-associated disorders.

MATERIALS AND METHODS

Manual Curation of Aging-Associated
Genes
Aging-associated genes (AAGs) were collected from two
comprehensive databases: the JenAge Ageing Factor Database
(AgeFactDB) (Huhne et al., 2014) and Human Ageing Genomic
Resources database (HAGR) (Tacutu et al., 2013). AgeFactDB
collects and integrates aging phenotype data with both
experimental and computational evidence, while HAGR only
contains AAGs from experiments. In this study, we only
extracted AAGs from AgeFactDB and HAGR with well-known
experimental evidences across five organisms: Homo sapiens
(HS), CE, DM, MM, and SC. After removing the duplicated
genes between two databases, we obtained 309 (HS), 194 (DM),
1,012 (SC), 1,149 (CE), and 143 (MM) AAGs, respectively.
We then obtained high-quality human-orthologous AAGs via
mapping human-orthologous genes across four species (CE, DM,
MM, and SC) from ensemble database (http://www.ensembl.org/
index.html). Finally, 169 (DM), 555 (SC), 331 (CE), and 96 (MM)
human-orthologous AAGs were collected (Table S1).

Construction of a Known Drug-Target
Network of Natural Products
We firstly integrated comprehensive natural products from
six publically available natural product-related data sources:
traditional Chinese medicine database (TCMDb) (He et al.,
2001), Chinese natural product database (CNPD) (Shen
et al., 2003), traditional Chinese medicine integrated database
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FIGURE 1 | Schematic diagram of the systems pharmacology infrastructure for identification of aging-associated indications by natural products. (A) Construction of

drug-target network of natural products. (B) Manual curation of aging-associated genes. (C) Discovery of new anti-aging indications for natural products via

network-based prediction. (D) Identification of new anti-aging mechanism-of-action via network analysis.

(TCMID) (Xue et al., 2013), traditional Chinese medicine
systems pharmacology (TCMSP) (Ru et al., 2014), traditional
Chinese medicine database@Taiwan (TCM@Taiwan) (Chen,
2011), and universal natural product database (UNPD) (Gu et al.,
2013). For each data source, we converted its initial structure
format (e.g., mol2) into unified SDF format. Secondly, wemerged
the unified SDF files from the six data sources into single SDF
file, and removed the duplicated natural products according to
InChIKey by Open Babel (v2.3.2) (O’Boyle et al., 2011). Finally,
259,547 unique natural products were collected. The details are
provided in our previous study (Fang et al., 2017a,c).

To construct a global drug-target network of natural products,
we pooled DTIs from two commonly used databases: ChEMBL
(v21) (Bento et al., 2014) and BindingDB (v19, accessed in June
2016) (Gilson et al., 2016). All chemical structures were carefully
standardized via removing salt ions and standardizing dative
bonds using Open Babel toolkit (v2.3.2). We further filtered
DTIs with the following five criteria: (i) Ki, Kd, IC50, or EC50

≤ 10µM; (ii) the target organism should be homo sapiens;

(iii) the target has a unique UniProt accession number; (iv)
compound can be transformed to canonical SMILES format;
and (v) compound has at least one carbon atom. Subsequently,
we extracted experimentally validated DTIs for 2,349 natural
products after mapping 259,547 unique natural products into the
global DTIs using the “InChIKey.”

Prediction of New Drug-Target Interactions
of Natural Products
In a recent study, we have developed predictive network
models to predict targets of natural products via a balanced
substructure-drug-target network-based inference (bSDTNBI)
(Fang et al., 2017c; Wu et al., 2017) approach. The bSDTNBI
utilizes resource-diffusion processes to prioritize potential
targets for both known drugs and new chemical entities
(NCEs) via substructure-drug-target network (Wu et al., 2016).
The substructure-drug (or NCE)-target network was built
via integrating the known DTI network, drug-substructure
associations andNCE-substructure associations. Two parameters

Frontiers in Pharmacology | www.frontiersin.org 3 October 2017 | Volume 8 | Article 747

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Fang et al. Discovery of Natural Products for Aging-Related Diseases

were introduced to balance the initial resource allocation of
different node types (α) and the weighted values of different
edge types (β), respectively. The third parameter γ was imported
to balance the influence of hub nodes in resource-diffusion
processes. The fourth parameter k denotes for the number of
resource diffusion processes. Herein, four parameters (α = β

= 0.1, γ = −0.5, and k = 2) in bSDTNBI were adopted based
on our previous study (Wu et al., 2016). Here, the predictive
model based on KR molecular fingerprint (bSDTNBI_KR) with
the best performance was used to predict the new targets of
natural products and top 20 predicted candidates were used (Wu
et al., 2016, 2017).

Identification of New Anti-aging
Indications for Natural Products
Here, we further proposed an integrated statistical network
model to prioritize new anti-aging indications of natural
products by incorporating DTI network of natural products and
the manually curated AAGs. We asserted that a natural product
with polypharmacological profiles exhibits a high possibility to
treat an aging-associated disorder if its targets are more likely
to be aging-associated proteins (AAPs). Then we utilized a
permutation testing to estimate the statistical significance of a
natural product to be prioritized for anti-aging indications. The
null hypothesis asserts that targets of a natural product randomly
locate at AAPs across the human proteome. The permutation
testing was performed as below:

P =
#
{

Sm
(

p
)

> Sm
}

#
{

total permutations
} (1)

A nominal P was computed for each natural product by
counting the number of observed AAPs greater [Sm (p)] than
the permutations (Sm). Here we repeated 100,000 permutations
by randomly selecting 441 proteins (the same number of
AAPs) from protein products at the genome-wide scale, 20,462
human protein-coding genes from the National Center for
Biotechnology Information (NCBI) database (Coordinators,
2017; Table S2). Subsequently, the nominal P-values from the
permutation tests were corrected as adjusted P-values (q) based
on Benjamini-Hochberg approach (Benjamini and Hochberg,
1995) using R package (v3.01). In addition, a Z-score was
calculated for each natural product to be prioritized for anti-
aging indications during permutation testing:

Z =
x− µ

σ
(2)

where x is the real number of AAPs targeted by a given natural
product, µ is the mean number of AAPs targeted by a given
natural product during 100,000 permutations, and σ is the
standard deviation.

Network and Statistical Analysis
The statistical analysis in this study was carried out using
the Python (v3.2, http://www.python.org/) and R platforms
(v3.01, http://www.r-project.org/). Networks were visualized by
Cytoscape (v3.2.0, http://www.cytoscape.org/).

FIGURE 2 | Overlaps among four gene sets of human-orthologous

aging-associated genes (AAGs) from 4 non-human organisms: Caenorhabditis

elegans (CE), Drosophila melanogaster (DM), mus musculus (MM), and

saccharomyces cerevisiae (SC). The detailed AAGs are provided in Table S1.

RESULTS

A Catalogue of Aging-Associated Genes
We collected the high-quality human-orthologous AAGs from
four species: CE, DM, MM, and SC. In total, 1,006 human-
orthologous AAGs identified in at least one species with
literature-reported experimental evidences were collected after
removing the duplicated AAGs (Figure 2). Among 1,006 genes,
130 human-orthologous AAGs are reported in at least two
non-human organisms (CE, DM, MM and SC) simultaneously.
Meanwhile, 12 human-orthologous AAGs (e.g., AKT1, CAT,
GABARAP,MAPK8,MAPK9,MAPK10, MTOR, PRDX1, PRDX2,
RPS6KB1, SIRT1, and SOD2) were included in at least three
non-human organisms. To improve the quality of gene set, we
only selected the 130 human-orthologous AAGs identified in at
least two non-human organisms. We found that 130 human-
orthologous AAGs are significantly enriched with 309 human
AAGs (28 overlapping genes, P = 1.7 × 10−24, Fisher’s exact
test). Finally, we pooled 130 human-orthologous AAGs and 309
human AAGs and generated 411 AAGs (Table S3) for building
the statistical network models.

Reconstruction of Anti-aging Drug-Target
Network for Natural Products
We constructed a global drug-target network of natural products
by integrating 7,314 high-quality experimental DTIs as well
as 11,940 new computational predicted DTIs as described in
our recent study (Fang et al., 2017c). The global DTI network
(Table 1) was consisted of 17,223 DTIs connecting 2,349 unique
natural products and 732 targets. The average experimental target
degree (connectivity) of a natural product is 2.97, which is
significantly stronger than the average degree 2.22 of non-natural
product drugs in DrugBank database (P= 6.81× 10−72, one-side
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TABLE 1 | The statistics of global drug-target interactions (DTI) network and local

DTI network for natural products.

Data set ND NT(NAT) NDTI Sparsity (%)

Global DTI network 2,349 732 (101) 17,223 1.00

Local DTI network 224 494 (70) 2408 2.17

Local DTI network: a specific drug-target network by focusing on FDA-approved or

clinically investigational natural products, ND, the number of natural products; NT , the

number of targets; NAT , the number of aging-associated targets; NDTI, the number of

DTIs; Sparsity, the ratio of NDTI to the number of all possible DTIs.

Wilcoxon test). The detailed DTI pairs are provided in Table S4.
We further built a specific drug-target network by focusing
on FDA-approved or clinically investigational natural products
(Table S4). Figure 3 displays a bipartite drug-target network
of 2,408 DTIs connecting 224 FDA-approved or clinically
investigational natural products and 494 targets encoded by 70
AAGs and 424 non-AAGs. Network analysis shows that the
average connectivity of experimentally known targets for each
natural product in this network is 6.26, which is significantly
stronger than that (average degree = 2.22) of non-natural
products drugs in DrugBank (P = 4.34 × 10−50, one-side
Wilcoxon test, Table S5). Among 224 FDA-approved or clinically
investigational natural products, eight natural products have
connectivity (K) > 25: quercetin (K = 73), ellagic acid (K = 56),
apigenin (K = 43), haloperidol (K = 32), myricetin (K = 32),
resveratrol (K = 30), genistein (K = 26), and dopamine (K = 25).
Meanwhile, among 70 targets encoded by AAGs, 6 are targeted
by over 15 natural products (D): LMNA (D = 79), MAPT (D
= 33), BLM (D = 22), HIF1A (D = 22), TP53 (D = 20), and
NFKB1 (D = 16), based on current available experimental data.
The targets encoded by these AAGs play essential roles in aging-
associated diseases. For example, products encoded by LMNA are
primarily lamin A and C. Alterations in lamin A and C were
reported to accelerate physiological aging via nuclear envelope
budding (Li Y. et al., 2016). A recent study also showed that
nuclear factor-kappa B (NF-kB) inhibition could delay the onset
of aging symptoms in mice via reducing DNA damage (Tilstra
et al., 2012).

Chemical Diversity Analysis of Natural
Products Targeting Aging-Associated
Proteins
We extracted 1,877 natural products targeting AAP via mapping
411 high-quality human or human-orthologous AAGs into
the global drug-target network of natural products. Clustering
analysis was performed to examine chemical scaffolds of 1,877
natural products by measuring the root-men-square value of the
Tanimoto distance based on FCFP_6 fingerprint implemented
in Discovery Studio 4.0 (version 4.0, Accelrys Inc.). The 1,887
natural products are clustered into 10 groups with cluster centers:
1,2-propanediol, luteolin, tetrahydroalstoine, ZINC03870415,
chryseriol, benzamide, p-toluidine, L-His, cis-10-octadecenoic
acid, and 3-epioleanolic acid, respectively (Figure 4A). The
structures of each cluster center are shown in Figure 4B.

Among them, cluster 5 (Cluster center: Chryseriol) and cluster
2 (Cluster center: Luteolin) are grouped as flavonoids, with
the largest number of natural products. The structures in
cluster 3 and cluster 9 are represented as alkaloids, while the
structures in cluster 8 are represented as unsaturated aliphatic
hydrocarbon or unsaturated fatty acid. Overall, 1887 natural
products share diverse chemical scaffolds (Figure 4), providing
a valuable resource for systems pharmacology-based anti-aging
drug discovery.

Mechanism-of-Action of Anti-aging
Indications by Natural Products
To investigate the anti-aging mechanism-of-action (MOA) of
natural products, we performed KEGG pathway, molecular
function, and biological process enrichment analysis using
ClueGO (Bindea et al., 2009). Here, we focused on 54 AAPs
with connectivity larger than 10 in the global drug-target
network of natural products (Table S6). Figure S1 showed that
54 anti-aging targets are significantly enriched in several aging-
associated pathways: longevity regulating pathway (adjusted-P
= 1.9 × 10−5), MAPK signaling pathway (adjusted-P = 1.6
× 10−5), ERBB signaling pathway (adjusted-P = 7.8 × 10−7),
estrogen signaling pathway (adjusted-P = 3.3 × 10−4), and
insulin signaling pathway (adjusted-P = 2.1 × 10−3) (Hall et al.,
2017). Similar trends were observed for molecular function and
biological process enrichment analyses (Table S7). To further
showcase the aging-associated mechanisms, we selected four
typical natural products: caffeic acid, hesperetin, myricetin and
resveratrol.

Caffeic Acid
Caffeic acid is a natural phenol found in fruits, tea and wine
(Magnani et al., 2014), with a wide range of aging-associated
pharmacological activities, such as antioxidant (Deshmukh
et al., 2016), anti-inflammatory (da Cunha et al., 2004), and
neuroprotective (Pereira et al., 2006). For example, caffeic acid
phenethylester (CAPE) was reported to extend lifespan in CE
via regulation of the insulin-like DAF-16 signaling pathway
(Havermann et al., 2014). The detailed molecular mechanisms
of anti-aging effects by caffeic acid remain unclear. Figure 5
shows that caffeic acid interacts with 5 AAPs (LMNA, MAPT,
NFKB1, PTPN1 andMAPK1) and 22 non-AAPs, consisting of 23
experimentally validated and 4 computationally predicted ones.
Protein tyrosine phosphatase 1B (PTP1B), encoded by PTPN1,
is a potential target for treatment of type-2 diabetes (Gonzalez-
Rodriguez et al., 2012) and Alzheimer’s disease (Vieira et al.,
2017). A recent study showed that caffeic acid is a moderate
inhibitor of PTP1B with an IC50 value of 3.06µM (He et al.,
2009).

Hesperetin
Hesperetin is flavanone abundant in citrus fruits with a
wide range of biological activities. Recent studies revealed the
potential antioxidant, neuroprotective, and anti-inflammatory
properties (Parhiz et al., 2015; Miler et al., 2016), by hesperetin.
Furthermore, a recent clinical trial (NCT02095873) has reported
that hesperetin in combination with trans-resveratrol can
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FIGURE 3 | A bipartite drug–target interaction network for FDA-approved or clinically investigational natural products. This network contains 2,408 interactions

connecting 224 natural products to 494 target proteins, including proteins encoded by 70 aging-associated genes (AAGs) and 424 non-AAGs. The label font size and

node size are proportional to degree (connectivity).

prevent and alleviate early-stage of aging-associated disorders
(Xue et al., 2016). Network analysis reveals that hesperetin
binds with 9 targets (6 AAPs and 3 non-AAPs), including 4
computationally predicted targets and 5 experimentally reported
ones. Interestingly, 4 predicted anti-aging targets (MAPT,
LMNA, TP53, and NFKB1) suggest potential underlying anti-
aging mechanisms by hesperetin. For example, a previous study
revealed that hesperetin modulated the aging-associated NF-κB
pathway in the kidney of rats (Kim et al., 2006).

Myricetin
Myricetin, a common plant-derived flavonoid, displays several
pharmacological activities against aging-associated indications,
such as anti-aging (Aliper et al., 2016), antioxidant (Wang
et al., 2010), anti-inflammatory (Lee et al., 2007), and

immunomodulatory (Fu et al., 2013) effects. Figure 5 shows
that myricetin binds with 11 AAPs and 25 non-AAPs,
consisting of 4 computationally predicted targets (TP53, LMNA,
ELAVL1, and KMT2A) and 32 experimentally reported ones.
A recent study has suggested that myricetin can extend
lifespan in Caenorhabditis elegans via modulating aging-related
transcription factors (Buchter et al., 2013).

Resveratrol
Resveratrol, a non-flavonoid polyphenol abundant in the skin
of grapes, displays a broad spectrum of anti-aging effects
(Gines et al., 2017). Currently, over 20 clinical trials (http://
clinicaltrials.gov/) are being conducted or completed to treat
aging or aging-associated disorders by resveratrol, such as
anti-aging (NCT02523274 and NCT02909699), aging-associated
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FIGURE 4 | Chemical diversity analysis of natural products targeting aging-associated proteins. (A) Chemical structure clustering of 1,877 natural products via

FCFP_6 fingerprint; (B) The representative structures of 10 cluster centers during chemical structural clustering analysis.

macular degeneration (NCT02625376), and Alzheimer’s disease
(NCT01504854). Figure 5 indicates that resveratrol interacts
with 12 AAPs: ESR1, HIF1A, HTT, LMNA, MAPT, MTOR,
NFKB1, PIK3CA, PIK3CB, PTGS2, RELA, and TP53, suggesting

new potential anti-aging mechanisms of resveratrol. For
example, two AAPs: estrogen receptor alpha (ER-alpha) and
cyclooxygenase-2 (COX-2), play crucial role on the pathogenesis
of several aging-associated diseases, such as Alzheimer’s disease
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FIGURE 5 | A bipartite drug-target network for 4 typical natural products. This network includes 90 experimentally validated and 16 computationally predicted

drug-target interactions connecting 4 natural products (caffeic acid, hesperetin, myricetin and resveratrol) and 70 targets (21 aging-associated proteins and 49

non-aging proteins).

and osteoporosis (Kermath et al., 2014; Kim et al., 2016).
Resveratrol was reported to bind to ER-alpha with a Ki value of
0.78µM (deMedina et al., 2005) and inhibit COX-2 with an IC50

value of 0.99µM (Kang et al., 2009).

Taken together, aforementioned examples demonstrated that
network analysis could assist to identify new potential anti-aging
mechanisms of natural products. Systems pharmacology-based
integration of drug-target networks and known AAPs would

Frontiers in Pharmacology | www.frontiersin.org 8 October 2017 | Volume 8 | Article 747

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Fang et al. Discovery of Natural Products for Aging-Related Diseases

enable to identify new natural products for treatment of aging-
associated diseases.

Discovery of Potential Anti-aging
Indications for Natural Products with Novel
Mechanism-of-Action
We further built statistical network models for comprehensive
identification of new anti-aging indications of natural
products through integrating both experimentally reported
and computationally predicted drug-target network into the
curated APPs (see section Materials and Methods). Here,
we focused on 224 FDA-approved or clinical investigational
natural products annotated in DrugBank database (Law et al.,
2014). Table 2 summarizes number of the predicted anti-aging
indications for the experimentally reported drug-target network
only and the pooled data from both experimentally reported and
computationally predicted drug-network, respectively. We only
identified 56 natural products with significantly predicted anti-
aging indications (q < 0.05) using the experimentally reported
drug-target network, while we identified 143 natural products
with significantly predicted anti-aging indications (q < 0.05) via
integration of both experimentally reported and computationally
predicted drug-target networks (Table S8). Interestingly, among
143 natural products, 92 natural products cannot be identified
to have significant anti-aging indications using experimentally
reported drug-target network only, including some well-known
anti-aging natural products (e.g., metformin, vitamin E, and
huperzine A). We systematically retrieved previously anti-aging
reported data from PubMed for 73 FDA-approved natural
products out of 143 ones. The detailed experimental evidences
are provided in Table S9. Then we found 23 natural products
[with a success rate of 31.5% (23/73)] with reported experimental
data. This suggests a reliable accuracy of our proposed network
model. The remaining 50 natural products without experimental
data provide potential anti-aging candidates that deserve to be
validated by various experimental assays in the future.

In summary, we showed that integration of computationally
predicted drug-target network could improve the chance to
identify new anti-aging indications of natural products via
increasing completeness of current drug-target network.We next
chose three typical natural products (metformin, vitamin E, and

TABLE 2 | Summary of the newly predicted anti-aging indications of natural

products based on the experimentally reported drug-target network only (ExpNet)

and the combination of the experimentally reported and computationally predicted

(ExpNet&ComNet) drug-target networks, respectively.

Data source Number of DTIs (number

of targets, number of

drugs)

# NsaI

(q < 0.05)

# NsaI

(q < 1/10−5)

ExpNet 1,163 (361,113) 56 28

ExpNet&ComNet 2,408 (494, 224) 143 87

NsaI denotes to the number of natural products with significantly predicted anti-aging

indication.

huperzine A) as case studies to illustrate the predicted anti-aging
indications with new mechanism-of-actions.

Metformin
Metformin, originating from Galega officinalis, is a biguanide
drug widely used in clinical practice for treating type-2 diabetes.
Nowadays, metformin is currently being tested as an anti-
aging drug in several clinical trials, such as NCT02432287
and NCT02308228 (Barzilai et al., 2016). Figure 6 shows that
metformin binds with 3 AAPs (BLM, HTT, and LMNA) and
3 non-APPs. In our network model, metformin was predicted
to have significant anti-aging indication (Z = 8.42, q < 10−5)
via integration of one experimentally validated target and five
predicted ones. There is no significant anti-aging indication
for metformin based on experimentally validated DTI only.
Previous studies have shown that metformin extended lifespan in
several model organisms (Anisimov, 2013; Cabreiro et al., 2013;
Martin-Montalvo et al., 2013). Figure 6 shows several potential
anti-aging mechanisms of metformin, including inhibition of
the inflammatory pathway, activation of AMP-activated kinase
(AMPK), and inducing autophagy (Moiseeva et al., 2013; Foretz
et al., 2014; Song et al., 2015).

Vitamin E
Vitamin E, the most potent antioxidant, protects cells from
damage related to oxidative stress (La Fata et al., 2014). Vitamin
E supplementation has been reported to delay or prevent aging
and inflammatory aging-associated diseases via prolonging the
life span in several model organisms (Navarro et al., 2005;
Mocchegiani et al., 2014). However, mechanism-of-action of
anti-aging effects by vitamin E remains unclear. Figure 6 shows
that vitamin E interacts with 2 known and 4 predicted targets,
consisted of 3 AAPs (TP53, LMNA, and MAPT) as well as 3 non-
AAPs. In our network model, vitamin E was predicted to show
potential for anti-aging indication (Z = 8.32, q < 10−5) based on
the pooled data of experimentally validated and computationally
predicted DTIs. However, there is no significance based on
experimentally validated DTIs only. Among 4 predicted targets,
TP53, a well-known AAP, regulates cell cycle progression,
apoptosis, and cellular senescence. A recent study reported
that vitamin E significantly down-regulated TP53 expression in
senescent cells, indicating a potential anti-aging mechanism of
vitamin E (Durani et al., 2015).

Huperzine A
Huperzine A (HupA), a natural acetylcholinesterase (ACHE)
inhibitor derived from Huperzia serrate, is a licensed anti-
Alzheimer drug in China (Qian and Ke, 2014). HupA was
reported to show various anti-inflammatory, neuroprotective,
and anti-aging properties (Ruan et al., 2013; Damar et al.,
2016). Figure 6 reveals that HupA binds with one experimentally
reported target (ACHE) and 5 computationally predicted targets
(BCHE, GDA, LMNA, TOP1, and ADORA2A). Among five
predicted targets, LMNA and TOP1 are experimentally reported
AAPs (Li Y. et al., 2016). Here, HupA was predicted to have
significant anti-aging indication (Z = 5.47, q = 0.031) via the
integration of both experimentally reported and computationally
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FIGURE 6 | A discovered anti-aging drug-target network for 3 typical natural products. This network displays the predicted anti-aging indications as well as the

known and predicted drug targets for three typical natural products: metformin, vitamin E, and huperzine A. The thickness of blue line between natural products and

anti-aging indication is proportional to the predicted Z-score (Equation 2, see section Materials and Methods).

predicted targets, while no significance using the experimentally
reported targets alone. Oxidative stress accelerates the chronic
inflammatory process during aging and aging-associated diseases
(Cannizzo et al., 2011). A previous study showed that HupA
alleviated oxidative stress-induced inflammatory damage in
aging rat (Ruan et al., 2014).

Put together, we have suggested that our network model
provided a useful tool for systematic identification of natural
products for treatment of aging-associated disorders with
novel molecular mechanisms. Some newly predicted anti-aging
indications of natural products and the according mechanisms
are suggested to be experimentally validated before clinical uses,
which we hope to be promoted by findings shown here.

DISCUSSION

Natural products are valuable pharmaceutical wealth and
show great promise for developing anti-aging agents (Ding
et al., 2017). In this study, we developed an integrated
systems pharmacology infrastructure to identify new
targets of natural products for treatment of aging-associated
diseases. This computational infrastructure is consisted of
three key components: (i) reconstructing DTI networks of
natural products via integrating known and computationally
predicted DTIs; (ii) curation of high-quality aging-associated
human or orthologous genes from various aging-related
bioinformatics sources; (iii) building statistical network models
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to prioritize new aging-associated indications of natural
products through integrating data from aforementioned two
steps. Overall, this framework has several advantages. First,
we found that assembling computationally predicted drug-
target network could identify more significant anti-aging
indications for natural products by increasing completeness
of currently known drug-target network. Second, our systems
pharmacology-based approach is independent of three-
dimensional (3D) structure of targets, which can be applied in
human targets without known 3D structures (e.g., membrane
proteins).

There are still several potential limitations in the current
systems pharmacology model. First, antagonistic or agonistic
effects of drug–target pairs have not been considered. Drug-
induced gene expression database, such as the Connectivity Map
(CMap), has provided specific biological functions (upregulation
or downregulation) (Lamb et al., 2006). Integration of large-scale
gene expression profiles of natural products may help improve
performance of our network model (Cheng et al., 2016). In
addition, current approach can only predict the potential aging-
associated indications of natural products targeting known or
predicted AAPs. Integrating systems biology resources may assist
on identifying the growing potential AAPs by indirectly targeting
their neighbors in the human protein-protein interaction
network, gene regulatory network, or biological pathways (Li
et al., 2014; Li J. et al., 2016). Finally, we only focused on
three well-known natural products (metformin, vitamin E, and
huperzine A) with more available literature-reported data for
validation. Further in vitro or in vivo experimental assays should
be performed to validate the predicted DTIs and anti-aging
effects of natural products before preclinical and clinical studies.
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