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Diabetes is a metabolic disorder affecting large percentage of population worldwide.
NF-κβ plays key role in pathogenesis of vascular complications of diabetes.
Persistent hyperglycemia activates NF-κβ that triggers expression of various cytokines,
chemokines and cell adhesion molecules. Over-expression of TNF-α, interleukins, TGF-
β, Bcl2 and other pro-inflammatory proteins and pro-apoptotic genes by NF-κβ is key
risk factor in vascular dysfunction. NF-κβ over-expression also triggers calcification of
endothelial cells leading to endothelial dysfunction and further vascular complications.
Inhibition of NF-κβ pro-inflammatory pathway is upcoming novel target for management
of vascular complications of diabetes. Various natural and synthetic inhibitors of NF-
κβ have been studied in management of diabetic complications. Recent preclinical
and clinical studies validate NF-κβ as promising target in the management of vascular
complications of diabetes.

Keywords: NF-κβ, diabetic complications, inflammation, nephropathy, neuropathy, retinopathy, cardiomyopathy,
NF-κβ inhibitors

INTRODUCTION

Diabetes mellitus (DM) and its associated complications are one of the major leading causes
of mortality in public worldwide (IDF, 2015; WHO, 2016). The burden of diabetes has
increased in India from 5.8 to 8.7% since year 2000 to 2015 (Unnikrishnan et al., 2016;
Pradeepa and Mohan, 2017). Chronic hyperglycemic condition has devastating effects on
vasculature that ends into different micro-vascular and macro-vascular complications like
neuropathy, nephropathy, retinopathy and cardiomyopathy (He and King, 2004). Increased
levels of advanced glycation end products (AGEs), receptors for it (RAGE), oxidative stress,
lipoproteins and hyperlipidemia enhance expression of nuclear factor-κβ (NF-κβ) by various
pathways. Furthermore, inappropriately expressed NF-κβ augments apoptosis and inflammatory
process that plays principle role in cell injury and further complications (Singh et al., 2014).

The NF-κβ is a DNA binding protein factor which is involved in transcription of different pro-
inflammatory and inflammatory molecules like cytokines, chemokines, cell adhesion molecules
(CAM) and different enzymes (He and King, 2004). The expression of cytokines and inflammatory
molecules plays an important role in pathophysiology of diabetes and its associated micro-vascular
and macro-vascular complications via modulating different NF-κβ pathways (Patel and Santani,
2009).
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The current review focuses on role of NF-κβ in
pathophysiology of various vascular complications of diabetes
and effect of NF-κβ inhibitors in the management of same.

NF-κβ FAMILY

NF-κβ is an evolutionarily conserved protein form the Rel
family found in all cell types (Lawrence, 2009). Rel family/NF-κβ

regulates the expression of numerous genes involved in control
of various normal cellular and sub-cellular processes like
inflammatory and immune responses, cellular growth, cell
development and cell survival (Gilmore, 2006; Perkins, 2007).
NF-κβ is also involved in control of responses to numerous
stimuli such as free radicals, stress, cytokines, ultraviolet
radiations and viral and bacterial antigens (De Martin et al., 2000;
Lawrence, 2009).

The NF-κβ family includes five related transcription factors:
p50 (NF-κβ1), p52 (NF-κβ2), p65 (RelA), c-Rel, and RelB
(Hayden and Ghosh, 2011). NF-κβ1 and NF-κβ2 are produced
from processing of precursors p105 and p100, respectively
(Ghosh and Karin, 2002; Gilmore, 2006; Patel and Santani, 2009).
These transcription proteins possess dimerization domain to
which DNA binds; Rel homology domain (RHD) at N-terminal
facilitates site for dimerization through which they forms homo
or hetero–dimers (Ghosh and Karin, 2002; Hayden and Ghosh,
2011). The most copious forms of dimers include p65/p65
homodimers and p65/p50 heterodimers (Birbach et al., 2002).
RelA, RelB, and c-Rel contains trans-activation domains (TADs)
at C-terminal that allows binding of DNA and activation of
target gene expression. Despite this, p50/p105 and p52/p100 do
not contains TAD, they participate in target gene expression by
forming heterodimers with RelA, RelB or c-Rel (Li and Verma,
2002; Hayden and Ghosh, 2004). Instead of TAD, p50/p105
and p52/p100 contains long ankyrin repeat–containing domain
(ARD). The NF-κβ1 and NF-κβ2 contains 6–7 ankyrin repeats
containing 33 amino acid sequences that facilitate site for
dimerization (Hayden and Ghosh, 2011; Napetschnig and Wu,
2013).

ACTIVATION OF NF-κβ FAMILY

The activation of NF-κβ is regulated by family of inhibitors
of NF-κβ (IκB). The IκB family contains various regulatory
proteins (IκBα, IκBβ, IκBγ, and Bcl-3) that keep NF-κβ inactive
in cytoplasm (Gilmore, 2006; Baker et al., 2011; Hayden and
Ghosh, 2011). Another participant in NF-κβ pathway is IκB
kinase (IKK) complex which catalyzes IκB to release NF-κβ

(Perkins, 2007). The IKK complex consists of two catalytically
active kinases, IKKα (IKK1) and IKKβ (IKK2) and a regulatory
scaffolding protein NF-κβ essential modifier (NEMO) that keep
NF-κβ inactive in the cytoplasm (Zheng et al., 2010; Liu and
Chen, 2011).

The NF-κβ is activated via two pathways viz. canonical
pathway and non-canonical pathway (Zheng et al., 2010; Baker
et al., 2011). In canonical pathway when signal is transduced,

NEMO-containing IKK complexes are activated and induce
phosphorylation of IKK complex via ubiquitination leading
to release of NF-κβ dimers (Karin and Ben-Neriah, 2000).
Furthermore the NF-κβ dimers enter in the nucleus and
modulate target gene expression. In non-canonical pathway, NF-
kβ inducing kinase (NIK) enhance phosphorylation of IKKα

and IKKβ, NEMO independently to release NF-κβ dimers
(Hayden and Ghosh, 2011; Liu and Chen, 2011; Shih et al.,
2011).

ROLE OF NF-κβ IN PATHOGENESIS OF
VASCULAR COMPLICATIONS

Prolonged hyperglycemia and insulin resistance are key
players in diabetic vascular complications (Ruderman et al.,
1992). Hyperglycemia induces formation of AGEs and
overproduction of reactive oxygen species (ROS) (Paneni
et al., 2013; Tobon-Velasco et al., 2014). The key pathways
involved in production of AGEs and ROS due to hyperglycemia
includes increased polyol flux, activation of protein kinase –
C (PKC), increased intracellular formation of AGEs and
increased hexosamine flux (Brownlee, 2001, 2005; Xing
et al., 2016). Consecutively, ROS and AGEs initiate pro-
inflammatory response and endothelial dysfunction via
activation of NF-κβ (Paneni et al., 2013; Xing et al., 2016).
AGEs bind to RAGE present on cell surface of vascular
smooth muscles and directly activate NF-κβ (Lander et al.,
1997).

Evidence suggests that activation of NF-κβ is essential
for cell proliferation and cell migration (Bellas et al., 1995).
In hyperglycemic condition the NF-κβ activity is enhanced
significantly leading to release of cytokines, TGF-β, chemokines
and vesicular cell adhesion molecules (VCAMs) (Patel and
Santani, 2009). Consequently, up-regulation of TNF-α, IL1β,
IL6, CD36, MCP-1 leads to endothelial cell apoptosis and
inflammatory process (Reddy and Natarajan, 2011; Evans and
Goldfine, 2016). Additionally, over-activated NF-κβ carry out
abnormal transcription of DNA and various genes involved
in vascular complications (Zheng et al., 2010). Over-activity
of NF-κβ also leads to altered gene expression of vascular
endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), endothelin-1 (ET-1), activated protein C
(APC) and transforming growth factor-β (TGF-β) that ends
in to vascular cell damage and angiogenesis (Kitada et al.,
2010).

Increased TNF- α, IL-6 and IL-10 have been observed
in adipose tissues in obese rats (de Luca and Olefsky,
2008). TNF-α, and cytokines activates NF-κβ and recruit
monocytes producing macrophages M1 and M2 that
promote β-cell destruction and insulin resistance. This is
key factor in pathophysiology of atherosclerosis (Baker et al.,
2011). AGE/RAGE increases vascular calcification through
activation NF-κβ activation and increased expression of TGF-β,
mitogen activated protein kinase (MAPK), and PKC leading
to hardening of medial layer of blood vessels (Kay et al.,
2016).

Frontiers in Pharmacology | www.frontiersin.org 2 November 2017 | Volume 8 | Article 798

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-08-00798 November 4, 2017 Time: 10:17 # 3

Suryavanshi and Kulkarni NF-κβ and Diabetic Complications

NF-κβ AND DIABETIC NEPHROPATHY

Diabetic nephropathy (DN) is the leading cause of cardiovascular
mortality and chronic kidney disorder (CKD) in diabetic patients.
DN is characterized by persistent microalbuminuria, decreased
glomerular filtration (GFR) rate and increased albumin to
creatinine ratio (Reutens and Atkins, 2011). Glomerular changes
such as thickening of capillary basement membrane, mesangial
expansion and glomerulosclerosis are pathological indications
of DN (Patel and Santani, 2009; Lopez-parra et al., 2012). The
recent reports endorse about 12–55% incidences of end stage
renal disorders (ESRD) are attributed to diabetes (WHO, 2016).
The prevalence of microalbuminuria among diabetic patient in
India was found to be 24.3% (Pradeepa and Mohan, 2017).

Nevertheless, intra-renal inflammation is key factor in
pathophysiology of DN. Accumulation of macrophages,
monocytes, T-cells, and fibroblasts in diabetic kidney are
responsible for inflammation in DN (Bohle et al., 1991; Sakai
et al., 2005; Sanz et al., 2010). The activation of NF-κβ pathways
by TNF-α and other cytokines are responsible for accumulation
of macrophages in human DN (Sakai et al., 2005; Lenz et al.,
2008). There are two sub types of macrophages; M1 and M2.
M1 macrophages are involved in pro-inflammatory response
while M2 macrophages are involved in tissue repair remodeling
and angiogenesis process (Schmid et al., 2006; Silva et al., 2011;
Lopez-parra et al., 2012). In diabetic patient, increased AGEs and

FIGURE 1 | Role of NF-κβ in diabetic nephropathy.

ROS burden activates leukocytes that release superoxide radicals
and proteases in the kidney (Mohamed et al., 1999; Patel and
Santani, 2009). Additionally, leukocytes up regulate transcription
of NF-κβ in endothelial and mesangial cells (Sanz et al., 2010;
Silva et al., 2011; Borgohain et al., 2017).

Activation of NF-κβ up-regulate monocyte chemoattractant
protein-1 (MCP-1) leading to macrophage infiltration (Cha
et al., 2005), renal injury and increased microalbuminuria
in DN (Lopez-parra et al., 2012). NF-κβ also enhances
expression of TGF-β-activated kinase (TAK-1) from MAPK
family known as MAP3K7. In turn TAK1 induce activation
of transforming growth factor (TGF-β) leading to extracellular
matrix accumulation and fibrosis in the diabetic kidney (Choi
et al., 2012; Kanasaki et al., 2013; Meng et al., 2015). MAPK
also contribute in gene over-expression of various cytokines and
intracellular adhesion molecules (ICAM), c-Jun NH2-terminal
kinase (JNK) and leukocyte infiltration via NF-κβ activation
(Sakai et al., 2005; Pan et al., 2013). Renal podocyte injury and
podocyte protein accumulation is hallmark of DN. Angiotensin
II levels are increased in response to elevated AGEs and oxidized
lipids in DN (Figure 1). This in turn, activates NF-κβ via
angiotensin (AT1 and AT2) receptors and activation of transient
receptor potential canonical (TRPC) (Ilatovskaya et al., 2015).
NF-κβ increase calcium influx and ROS canonically in diabetic
kidney leading to podocyte protein accumulation and injury (Lee,
2004; Campbell et al., 2011).

NF-κβ INHIBITORS IN DIABETIC
NEPHROPATHY

Inhibition of NF-κβ activation may provide treatment option
in DN by inhibiting transcription of genes and blocking
inflammatory process. A few researchers studied the effect of
NF-κβ inhibition on DN. Curcumin is the active polyphenol
component of herbal medicine Curcuma longa well known as
turmeric. Curcumin treatment improved DN in type I diabetic
rats. It inhibited macrophage infiltration via NF-κβ inhibition.
It also inhibited degradation of NF-κβ regulatory protein IκBα

leading to decreased expression of pro-inflammatory (TNF-α, IL-
1β) and profibrotic cytokines (ICAM-1, MCP-1, and TGF-β1)
(Soetikno et al., 2011).

Pal and co-workers studied the effect of mangiferin in rats with
DN. Mangiferin; a natural C-glucosyl xanthone and polyphenol
obtained from bark of Mangifera indica (Mango tree) has
antioxidant activity, thereby it inhibited AGEs and oxidative
stress mediated pro-inflammatory signaling cascade. Mangiferin
inhibited oxidative stress via inhibition of PKC, MAPK and
TGF-β and improved fibrosis in diabetic kidney. It also reduced
expression of pro-apoptotic proteins Bcl-3 and caspase-9 via
inhibition of NF-κβ and TNF-α. Mangiferin also decreased
expression of NF-κβ, IKKα and inhibited degradation of IκBα

(Pal et al., 2014).
Borgohain and co-workers studied effect of naturally

occurring piceatannol on renal inflammation in alloxon-induced
DN in rats. Piceatannol is analog of resveratrol and small
molecule present in plant Euphorbia lagascae. Piceatannol
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decreased superoxide dismutase (SOD) and glutathione (GSH)
and increased malondialdehyde (MDA) and nitric oxide (NO)
levels in kidney restoring oxidative stress. Moreover, treatment
with piceatannol inhibited NF-kB p65/p50 binding to DNA and
reduced renal pro-inflammatory cytokines like TNF-α, IL-1β and
IL-6 (Borgohain et al., 2017).

Xu and co-workers studied the effect of resveratrol on renal
inflammation and mesangial cell proliferation in streptozotocin
induced diabetic mouse. Resveratrol showed renoprotective
action via decreasing activation of NF-κβ and inhibition of
Akt and JNK. Moreover resveratrol also inhibited NF-κβ

dependent activation of plasminogen activator inhibitor (PAI-1)
and ICAM leading to blockade of pro-apoptotic cascade (Xu
et al., 2014).

Liu and co-workers studied the effect of berberine on
NF-κβ pathway in alloxan induced diabetic renal injury in
mice. Berberine is an isoquinoline alkaloid isolated from
Cortex Phellodendri and Coptidis rhizoma. It has hypolipidemic,
antihyperglycemic and antioxidant activity (Singh and Kakkar,
2009). Berberine showed improvement in diabetic renal injury
through inhibition of NF-κβ and thereby down-regulation of
ICAM, TGF-β1 and fibronectin. It also restored IκBα levels by
inhibiting its degradation in kidney tissue. As a result, berberine
reduced accumulation of extracellular matrix in kidney cells (Liu
et al., 2010).

NF-κβ activation and macrophage infiltration in adipose tissue
has been concerned as key mechanism in development of insulin
resistance in diabetic patients (Zamboni et al., 2007). Celastrol,
a pentacylic triterpenoid compound isolated from the roots of
Celastrus regelii and Tripterygium wilfordii has been studied for
its effect on insulin resistance and renal injury in db/db mice.
Celastrol showed improvement in insulin resistance and renal
injury via inhibition of NF-κβ pathways and inhibiting expression
of inflammatory mediators like IFNγ, NOX4, TLR4, and TNF-α
(Kim et al., 2013).

Jianfang and co-workers studied the effect of Paeoniflorin, a
natural product obtained from plant Paeonia lactiflora in DN in
rats. Paeoniflorin showed improvement in DN by suppressing
expression of iCAM-1 and Collagen – IV via inhibition of NF-
κβ. It also reduced macrophage infiltration and renal hypertrophy
(Jianfang et al., 2009).

Recent studies revealed that (2E,6E)-2,6-bis (2-
(trifluoromethyl) benzylide-ne)cyclohexanone (C66), a
synthesized curcumin analog inhibited JNK2 protein form
MAPK family and thereby inhibited NF-κβ activity and showed
reno-protective action by blocking pro-inflammatory cytokines
expression (Pan et al., 2013). 1,25-Dihydroxyvitamin D3, a
hormonal form of vitamin D have negative effect on rennin
angiotensin system (RAS) and regulate calcium influx in the
kidney (Li et al., 2002). 1,25-Dihydroxyvitamin D3 prevented
renal injury via inhibition of RAS system and NF-κβ induced
pro-inflammatory cascade (Zhang et al., 2007).

Fenofibrate, an antihyperlipidemic drug and peroxisome
proliferator-activated receptor alpha (PPARα) activator was
investigated for anti-inflammatory response through NF-κβ

inhibition in DN rats. Fenofibrate treatment reduced expression
of NF-κβ p65, PAI-1, and ICAM-1 along with remarkable

improvement in lipid profile in rats through activation of
PPARα. Fenofibrate provided renoprotective action via inhibition
of NF-κβ pro-inflammatory pathways (Chen et al., 2008).
Thiazolidinedione a PPARα activator also showed protective
effect in renal injury through anti-inflammatory effects mediated
by inhibition of NF-κβ activation in experimental diabetic rats
(Ohga et al., 2007). Cerivastatin, a synthetic HMG-CoA reductase
inhibitor has been studied for its protective effect in DN in rats.
Cerivastatin showed renoprotective action through inhibition of
NF-κβ, ICAM and macrophage infiltration (Usui, 2003).

Curcumin has been proved clinically for its beneficial effects
in DN via inhibition of NF-κβ in randomized double blind and
placebo controlled clinical trial. Oral administration of curcumin
attenuated expression of TGF-β, IL-8 and proteinuria in type-2
diabetic patients with nephropathy (Khajehdehi et al., 2011; Lv
et al., 2015; Prabhakar, 2017). Administration of alpha lipoic acid
in DN patients reduces oxidative stress via inhibition of NF-κβ

and inflammatory cytokines such as TNF-α and IL-8 (Lv et al.,
2015).

NF-κβ AND DIABETIC NEUROPATHY

Diabetic neuropathy is the most common and stubborn vascular
complication of diabetes and major cause of mortality (Boulton
et al., 2005). It involves the sensory loss or dysfunction of
autonomic, peripheral, somatic sensory and motor nerves (Aslam
et al., 2014). Distal polyneuroathy (DPN) and autonomic
neuropathy are the most common amongst various types
of diabetic neuropathies. Pathological changes include loss
of nerve fibers, axonal thickening, demyelination of nerves
and neuronal capillary narrowing (Thomas, 1999; Aslam
et al., 2014). The prevalence of diabetic neuropathy is
higher as compared to other complications (Yagihashi et al.,
2011).

The patients with uncontrolled high blood sugar levels
experience uncomfortable sensory symptoms especially in lower
limbs. The vibration perception threshold and nerve conduction
velocity is drastically reduced in diabetic neuropathy (Thomas,
1999; Yagihashi et al., 2007). High blood sugar levels triggers
the production of oxidative stress and AGE/RAGE formation
in neuronal cells (Vincent et al., 2002; Xing et al., 2016).
Increased glycated hemoglobin (HbAc1), and stromal collagen
level in peripheral nerves, schwann cells and endoneurial vessels
is another risk factor for progression of peripheral nerve injury
(Sugimoto et al., 1997). Increased AGE/RAGE, ROS, and HbAc1
in nerve fibers activates apoptosis and insulin resistance via
activation of NF-κβ and release of TNF-α (Haslbeck et al., 2005;
Yagihashi et al., 2007, 2011).

Increased polyol flux by aldose reductase contributes in
accumulation of sorbitol and generation of ROS in neuronal cells
(Brownlee, 2005). Sorbitol and ROS in nerves affects Na+,K+
ATPase activity that delays nerve conduction velocity (Zhao
et al., 2011). NF-κβ over-expression due to increased ROS, PKC,
and AGEs leads to leukocyte infiltration and decreased neuronal
growth factor (NGF), IL6, IL1β, and TNF-α in nerve cell
(Okamoto et al., 2001; Vincent et al., 2002; Pittenger et al., 2003).
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Arachidonic acid pathway is activated in response to NF-κβ

activation that increases COX-2 concentration nerve cells
(Yagihashi et al., 2011). Increased oxidative stress activates
stress kinase MAPK leading to nerve injury (Tomlinson,
1999). Increased ICAM and NF-κβ expressions are observed
in microvessels of sciatic–tibial nerves of diabetic rats leading
to narrowing of vessels and ischemic conditions following
inflammatory response (Wang et al., 2006). Peroxisome
proliferator-activated receptors (PPARs) are reduced in nerves in
response to increased chemokines that enhance gene expression
and neuronal death (Figure 2; Freitag and Miller, 2014).

NF-κβ INHIBITORS IN DIABETIC
NEUROPATHY

Various natural and synthetic NF-κβ inhibitors have been studied
for their protective effect in diabetic neuropathy. Curcumin was
studied for its analgesic activity in diabetic neuropathy in mouse
(Sharma et al., 2006) and rat (Li et al., 2013). Curcumin inhibited
inducible nitric oxide synthase (iNOS) levels and serum TNF-
α and TNF-α receptor 1 in nerve fiber by inhibiting NF-κβ

expression. Curcumin also reduced neuropoietic cytokines such
as IL-1, IL-6 (Joshi et al., 2013).

Another natural compound resveratrol provide
neuroprotective and anti-inflammatory activity through

FIGURE 2 | Role of NF-κβ in diabetic neuropathy.

inhibition of NF-κβ activation (Kumar and Sharma, 2010).
Resveratrol also inhibited TNF-α, COX-2, and IL-6 levels
contributing to NF-κβ activation. Additionally resveratrol also
inhibited degradation of IκB-α protein.

The role of NF-κβ and erythroid 2-related factor 2 (Nrf2) has
been explored in diabetic neuropathy (Li et al., 2008; Ganesh
Yerra et al., 2013; Wardyn et al., 2015). It is clear that Nrf2
up-regulation is linked with the NF-κβ inhibition. Sulforaphane,
a natural isothiocyanate present in Brassica oleracea (broccoli)
has been studied in diabetic neuropathy. Sulforaphane is a potent
inducer of Nrf2 and inhibitor of NF-κβ. Sulforaphane inhibited
mechanical hyperalgesia. It also inhibited IKKβ phosphorylation,
IL-6 and TNF-α levels in sciatic nerve indicating inhibition
of NF-κβ activation. From above study it is clear that NF-κβ

inhibition by sulforaphane provides protective effect in diabetic
neuropathy (Negi et al., 2011a).

The traditional herbal medicine Acorus calamus, has
been studied for its antihyperglycemic activity, insulin
sensitizing activity (Wu et al., 2009) and neuroprotective
effect (Muthuraman and Singh, 2011). Alcoholic extract
of A. calamus showed anti-diabetic activity by suppressing
Glucose-6-phosphatase and Fructose-1,6-bisphosphatase
enzyme activities (Prisilla et al., 2012). The ethyl acetate fraction
of AC showed insulin sensitizing activity by α-glucosidase
inhibition and PPAR-γ agonist activity (Wu et al., 2009). The
hydroalcoholic extract of AC attenuate neuropathic pain via its
anti-inflammatory property (Muthuraman and Singh, 2011).
AC possess anti-inflammatory activity probably via inhibition
of NF-κβ activation (Kim et al., 2009). From literature it can
be said that A. calamus may provide neuroprotection, and
analgesic activity in diabetic neuropathy via inhibition of
NF-κβ.

Pioglitazone, a thiazolidinedione derivative and a PPAR-γ
agonist have been studied in diabetic neuropathy. Pioglitazone
inhibited the PKC pathway by activating PPAR-γ receptors
and improved peripheral nerve function. Pioglitazone also
inhibited NF-κβ activation and MAPK levels in the peripheral
nerves and provided anti-inflammatory activity (Yamagishi et al.,
2007). Pregabalin, a nutraceutical and first drug approved by
FDA for treatment of diabetic neuropathy is a potent NF-κβ

inhibitor. Pregabalin inhibited NF-κβ activation through nuclear
localization of p65 in nerve cells. It also inhibited NF-κβ regulated
cytokine and chemokines such as COX-2, TNF-α, and IL-6
(Verma et al., 2014).

Melatonin also modulates neuro-inflammation through
activation of Nrf2, inhibition of NF-κβ activation and
degradation of IκBα. Treatment with melatonin reduced
pro-inflammatory cytokines such as TNF-α and IL-6. The
COX-2 and iNOS levels were reduced in nerve fibers. The
inhibition of NF-κβ by melatonin reduced DNA fragmentation
and improved diabetic neuropathy. The melatonin reduced
ROS mediated inflammatory mediators like TNF-α, IL-6,
and COX-2; thereby DNA fragmentation. Melatonin reduced
expression of iNOS and degradation of IκBα. Furthermore,
melatonin also inhibited NF-κβ by increasing Nrf2 and heme
oxygenase-1 (HO-1) levels in sciatic nerves diabetic rats (Negi
et al., 2011b).
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Antioxidants such as alpha lipoic acid reduced oxidative stress
and showed anti-inflammatory activity via inhibition of NF-κβ

(Jeong et al., 2011). Alpha-lipoic acid showed promising results
in patients with diabetic neuropathy via inhibition of NF-κβ.
Alpha-lipoic acid dose dependently inhibit expression of NF-κβ

and thereby down regulate expression of iCAM and VCAM
(Vallianou et al., 2009; Sandireddy et al., 2014).

NF-κβ AND DIABETIC RETINOPATHY

Diabetic retinopathy (DR) is one of the most specific micro-
vascular complication and primary cause of blindness
in diabetic patients (WHO, 2016). The etiology of DR
includes loss of pericytes, capillary basement thickening,
microaneurysm, cataract, capillary acellularity, and breakdown
of blood–retina barrier (Zhang et al., 2012). Depending on
severity, DR is generally classified into proliferative DR (PDR),
Non-proliferative DR (NPDR), and diabetic macular edema
(DME) (Wu, 2013).

Recent reports state that in 2010, one third of an estimated 285
million people with diabetes have signs of DR (Yau et al., 2012; Lee
et al., 2015). It is estimated that the number of people with DR will
rise up to 191.0 million by 2030 (IDF, 2015). The prevalence of
DR and vision-threatening DR (VTDR) in United States during
2005 to 2008 was estimated to 28.5 and 4.4%, respectively (Zhang
et al., 2010). In India, the estimate prevalence of DR reported in
clinical examination was 34.1% (Pradeepa and Mohan, 2017).

The pathogenesis of DR is not so far fully understood,
although many mechanisms have been proposed such as
accumulation of AGEs, increased aldose reductase activity,
increased PKC, increased ROS and increased hexosamine flux
(Zhang et al., 2012; Safi et al., 2014). Recent evidences has
shown that a chronic low level of inflammation also plays key

role in pathogenesis of DR (Antonetti et al., 2006; Tang and
Kern, 2011). NF-κβ present in sub-retinal membranes and micro-
vessels is activated in response to increase ROS and AGEs further
activating apoptosis process (Kowluru et al., 2003). The activated
NF-κβ further binds to nuclear DNA and over-express different
genes leading to production of free radicals and further cell death
(Kowluru et al., 2003).

Activated NF-κβ also increases expression of different
cytokines such as IL-1β, IL-6, and IL-8 and pro-apoptotic
molecule caspase - 3 in vitreous fluid and serum leading
to inflammation mediated cell apoptosis (Yuuki et al., 2001;
Kowluru and Odenbach, 2004). Increased inflammatory cascade
up-regulate ET-1 and down regulate endothelial nitric oxide
synthase (eNOS) further leads to narrowing of blood capillaries,
retinal ischemia and blood flow abnormalities (De Martin
et al., 2000). Up-regulation of VEGF activates NF-κβ that
triggers angiogenesis process in diabetic rats (De Martin et al.,
2000; Joussen et al., 2001). Activated NF-κβ also over-express
intercellular adhesion molecule – 1 (ICAM – 1), fibronectin and
CD18 in retinal cells that enhance leukocyte infiltration, retinal
fibrosis and blood retinal barrier breakdown (Joussen et al., 2001;
Roy et al., 2016). Increased PKC and activated NF-κβ leads
to imbalance between proNGF and NGF leading to neuronal
dysfunction in the retina (Mysona et al., 2014). Increased polyol
flux increase MAPK in renal cells. Furthermore it activates NF-κβ

and enhance trans-activation of TNF-α and COX-2 leading to
inflammation (Figure 3; Lorenzi, 2007; Du et al., 2010).

Matrix metalloproteinases (MMPs) also plays an important
role in progression of DR. The MMPs, especially MMP-9 is
involved in angiogenesis and apoptosis in retinal capillary cells
(Kowluru et al., 2012). MMP-9 and MMP-2 are increased
in vitreous and retina of diabetic patients and rodents
with DR models (Kowluru et al., 2012; Li et al., 2012;
Shihab et al., 2015). Activation of NF-κβ, TNF-α and interleukins

FIGURE 3 | Role of NF-κβ in diabetic retinopathy.
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enhance transcription of MMP-9 leading to DNA alkylation
and development of DR (Yan and Boyd, 2007; Kowluru et al.,
2016).

NF-κβ INHIBITORS IN DIABETIC
RETINOPATHY

NF-κβ activation is responsible for inflammation mediated cell
apoptosis, fibrosis and angiogenesis (Jiang et al., 2015). The
inhibition of NF-κβ related may provide promising alternative
treatment for DR. Different natural inhibitors of NF-κβ have
been explored for their effect in DR. Treatment with curcumin
down-regulated expression of IL-1β, VEGF and NF-κβ and
showed significant improvement in DR (Kowluru and Kanwar,
2007).

A clinic based case control study showed that regular Chinese
green tea consumption protects DR via inhibition of NF-κβ

activation. Epigallocatechin-3- gallate; the tannin abundantly
present in Chinese green tea inhibits NF-κβ via inhibition of
oxidative stress (Ma et al., 2015). Another medicinal herb Salvia
miltiorrhiza was explored for its effect in DR. The treatment
with S. miltiorrhiza inhibited ICAM-1, toll like receptor-4
(TLR-4) and NF-κβ in rats with severe acute pancreatitis
(Xiping et al., 2009). S. miltiorrhiza also reduced blood sugar,
MDA levels and inhibited microaneurysm thereby improved
blood retinal barrier in diabetic mice (Zhang et al., 2013).
A randomized, double blind, multicenter clinical trial showed
that S. miltiorrhiza reduced macular edema, neovascularization,
venous beading, and cotton spot in patient with DR (Lian
et al., 2015). Paeoniflorin, a natural monoterpene glycoside
obtained from medicinal plant P. lactiflora was tested for its
effect in DR in mice. Paeoniflorin ameliorated DR via inhibition
of TLR4/NF-κB pathway. It also reduced MMP-9 expression
and IL-1β level in retinal cells and vitreous (Zhu et al.,
2017).

Resolvin D1 a compound derived from w-3-polyunsaturated
fatty acid (PUFA) docosahexaenoic acid (DHA) was studied
for its effect in DR. The treatment with resolving D1
showed improvement in retinal matrix accumulation via down-
regulation of NF-κβ. Furthermore it also inhibited expression of
pro-inflammatory cytokines IL-1β and IL-18 in retina. Resolving
D1 also reduced apoptosis in blood retinal barrier via inhibition
of NF-κβ mediated activation of caspase-3 and leukocyte
infiltration (Yin et al., 2017a). The pyrrolidine dithiocarbamate
(PDTC) has been explored for in DR. PDTC inhibited NF-κβ

mediated expression of IL-8 and TNF-α and showed significant
effect in DR in mice (Yoshida et al., 1999). Astaxanthin,
a natural hydroxycarotenoid abundantly present in sockeye
salmon, red trout and algae showed protective effect in DR
rats. Astaxanthin reduced expression of ICAM-1, and MCP-1
possibly via inhibition of NF-κβ (Yeh et al., 2016). Benfotiamine,
an S-acyl derivative of thiamine present in vegetables from
allium genus prevented DR through blocking NF-κβ activation
by activating transketolase. It also inhibited major three pathways
responsible for retinal damage viz. PKC pathway, AGEs pathway,
and hexosamine pathway (Hammes et al., 2003).

FIGURE 4 | Role of NF-κβ in diabetic cardiomyopathy.

NF-κβ AND DIABETIC CARDIOMYOPATHY

Diabetic cardiomyopathy (DC) is the leading cause of mortality
in diabetic patients. DC is characterized by systolic and
diastolic dysfunction due to reduced contractility, decreased
compliance and prolonged relaxation (Patel and Santani,
2009). Increased susceptibility to ischemia/reperfusion injury,
accumulation of extracellular matrix and loss of normal
micro-vessels are also involved in DC (Bell, 2003; Miki et al.,
2013). The number of diabetic patients with cardiovascular
complications has been increasing worldwide (Danaei
et al., 2011). Some recent studies indicate that the global
prevalence of DC in community population is 1.1%. While,
16.9% diabetic patients met with the criteria for DC and
54.4% patients had diastolic dysfunction (Dandamudi et al.,
2014).

Prolonged hyperglycemia suppresses glucose oxidation,
enhances fatty acid metabolism and modulates intracellular
signaling that leads to myocardial injury (Miki et al., 2013).
The putative mechanisms of DC include insulin resistance,
autonomic dysfunction, and myocardial fibrosis. Hyperglycemia
induces oxidative stress, AGE/RAGE and galectin-3 levels, and
increases TNF-α in myocardial muscles (Patel and Santani,
2009). Increased AGEs and oxidative stress modulate calcium
influx thereby it activates NF-κβ and reduces myocardial
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contractility (Fang et al., 2004). The increased ROS activates
NF-κβ canonically and non-canonically that triggers NF-κβ

dependent gene expression and production of pro-inflammatory
cytokines IL-6, IL-10 and TNF-α in human heart (Esposito et al.,
2002; Jones et al., 2003). The cytokines rapidly degrade IκBα and
further activates NF-κβ (Kumar and Sharma, 2010).

Enhanced fatty acid metabolism in diabetic heart increases
levels of LDL/VLDL. Further, LDL and VLDL activate NF-
κβ and enhance release of vasoactive amines (angiotensin-II,
endothelin-1) and TGF-β that leads to blood flow abnormalities
and myocardial fibrosis (Lorenzo et al., 2011). The activation of
NF-κβ in myocardial cells may induce myocardial hypertrophy
via activation of Toll like receptors (TLRs) (Ha et al., 2005) or
by activation of angiotensin-II via MAPK/PPAR pathways (see
Figure 4; Kawano et al., 2005).

NF-κβ INHIBITORS IN DIABETIC
CARDIOMYOPATHY

The inhibition of NF-κβ may provide effective option in
treatment of DC. Recent studies showed that inhibition of
NF-κβ inhibits activation of nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3) and ameliorates DC.
NLRP3 inflammasomes takes part in apoptosis process via
activation of IL-1β and forming complex with pro-apoptotic
molecule caspase-1 and associated speck like protein (ASC).
Silencing of NLRP3 leads to inhibition of NF-κβ, activation of
IL1β and caspase-1that leads to cardio-protective action (Luo
et al., 2014). Very few natural medicines have been explored for
their NF-kβ inhibition and cardio-protective activity.

Ginsenoside Rg1, an active component of herbal medicinal
plant Panax ginseng has been studied for its cardio-protective
action in diabetic rats. Ginsenoside Rg1 inhibited myocardial
cell apoptosis via inhibition of NF-κβ induced expression
of caspase-12 and TNF-α (Yu et al., 2016). The chronic
treatment with resveratrol inhibited NF-κβ mediated pro-
inflammatory mediators and cell apoptosis. Resveratrol also
reduced oxidative stress by increasing catalase and decreasing
MDA levels (Mohammadshahi et al., 2014). Hesperetin, an
active component of citrus fruit and natural inhibitor of NF-κβ

showed cardio-protective activity in diabetic rats. Treatment with
hesperetin reduced expression of TNF-α, IL-1β and inhibited

myocardial inflammation. It also reduced expression of ICAM-1,
VCAM-1 leading to protection form ischemia/reperfusion injury.
Additionally it also inhibited expression of collagen I and
III leading to reduction in myocardial fibrosis (Yin et al.,
2017b). A novel curcumin analog showed C66 [(2E,6E)-
2,6-bis(2-(trifluoromethyl) benzylidene) cyclohexanone] showed
cardioprotective action via inactivation of NF-κβ. It also inhibited
expression of TNF-α and reduced myocardial cell apoptosis (Ren
and Sowers, 2014).

CONCLUSION

Various preclinical studies have been carried out to study the
effect of natural NF-κβ inhibitors in the management of diabetic
complications; but its implication in clinical setting is limited.
The animal models for diabetic complications depict many
clinical features and phenotypes of disease (Chatzigeorgiou et al.,
2009). However, no animal model exhibit all features of human
diabetic complications. Hence, researchers should consider
closely related data such as transcriptomic data, pathological and
biochemical data (Betz and Conway, 2016).

NF-κβ is an important player in pathophysiology of vascular
complications of diabetes. Inhibition of NF-κβ may provide
effective treatment option for diabetic vascular complications.
There are numerous natural as well as synthetic NF-κβ inhibitors
available but their implications in diabetic complications are very
limited. Clinically, NF-κβ is more focused target to overcome
resistance chemotherapy (Godwin et al., 2013), management of
cancer (Lin et al., 2010), treatment of inflammation (Calzado
et al., 2007). Literature suggests that inflammation is one of
the part in pathophysiology of diabetic complications. There are
limited number of scientific reports with regard to clinical studies
of drug molecules in diabetic complications with special focus on
NF-κβ as a target. So, there is need to explore potential of NF-κβ

inhibitors for their possible effects in diabetic complications with
the help of preclinical studies and clinical set up.
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