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Hydrogen sulfide (H2S), the third bio-active gasotransmitter, is produced endogenously
and tightly involved in the pathogenesis and treatment for various diseases. Adenosine
5′-monophosphate-activated protein kinase (AMPK) plays a paramount role in
maintaining cellular energetic balance. Increasing evidences have also suggested
AMPK as a novel modulator in multiple pathological conditions. In this paper, we will
review the biological principles of H2S and AMPK, and most importantly, the recent
discoveries regarding AMPK-mediated pharmacological actions of H2S. Emphasis
will be laid on AMPK/H2S interactions in the cardiovascular system, autophagy,
diabetic complications, and inflammation. In most cases described in this article, by
promoting AMPK activation, H2S exerts cytoprotective effects or therapeutic potentials,
though there remain some controversies before we can fully understand the involved
mechanisms. Further researches are in need to investigate more closely any relationship
between H2S and AMPK, and to put forward the development of H2S donors for clinical
application.
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INTRODUCTION

Hydrogen sulfide (H2S), the gas with “rotten egg” smell, has been recognized as the third bio-
active gasotransmitter after nitric oxide and carbon monoxide. Mounting studies have revealed its
protective effects in the cardiovascular system, central nervous system as well as in diabetes and
inflammation. Besides the prominent role in metabolic regulation, recent reports have suggested
that adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) also participates in
various physiological and pathological processes and functions as a critical mediator in the effects
of H2S. In this paper, we will review the latest and emerging evidences on AMPK-mediated
therapeutic potentials of H2S.

PRINCIPLES OF H2S BIOLOGY

Biosynthesis of H2S
For 100s of years H2S was thought to be noxious and toxic. What’s interesting is that H2S and
organosulfur compounds could be easily found in recipes, such as garlic products. Dietary garlic is
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well-known for its benefits in lowering blood pressure
and lipid levels (Jung et al., 2014; Ried, 2016). In fact,
Benavides et al. (2007) pointed out that garlic-derived organic
polysulfides were converted rapidly by red blood cell into
H2S, which was responsible for the subsequent vasorelaxation
effects.

In addition to dietary consumption, H2S is endogenously
produced as well. Physiological H2S production in mammal
cells is mainly attributed to three enzymes, including
cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and
3-Mercaptopyruvate sulfurtransferase (3MST).

All these enzymes exhibit tissue-specific expression. CBS is
expressed abundantly in the central nerves system, liver, kidney,
and so on (Fiorucci et al., 2006; Kimura, 2013; Feliers et al.,
2016). It was believed that CSE was mainly produced in the
cardiovascular system (Polhemus and Lefer, 2014), but recent
studies reported that CSE was also detected in the liver, lung,
and kidney (Song et al., 2014; Wang et al., 2017). 3MST was
originally discovered in the brain of Cbs knockout mice (Shibuya
et al., 2009), and further confirmed as a ubiquitous enzyme
expressed in the lung, kidney, liver, and vasculature (Ahmad et al.,
2016).

Moreover, these enzymes differ in cellular localization and
H2S metabolism. CBS and CSE are localized in the cytosol,
while 3MST is produced in both the cytosol and mitochondrial
(Kimura, 2011). In contrary to 3MST, CBS, and CSE are
involved in multiple transsulfuration reactions, with pyridoxal
5′-phosphate as a cofactor and sulfur amino acids as substrates,
including L-cysteine, L-cystine, and homocysteine (Li et al.,
2011). The H2S metabolism has been reviewed in detail elsewhere
by Wang (2012).

Pharmacological Actions of H2S
During the past decades, increasing studies have evidenced the
functions of H2S in mammals, among which cardiovascular
regulation is the most investigated (Polhemus and Lefer, 2014).
Cse knockout leads to severe hypertension in mice, suggesting
H2S as a potential vasodilator (Yang et al., 2008). Indeed,
similar to the other two gasotransmitters, both endogenous
and exogenous-applied H2S exhibits vasorelaxation effects in
multiple types of blood vessels (Kiss et al., 2008). It was
reported that the proliferation of vascular smooth muscle cell
was inhibited by H2S, as opposed to vascular endothelial cells
(Du et al., 2004; Papapetropoulos et al., 2009). Furthermore,
H2S protects mice from myocardial infarction and ischemia-
induced heart failure (Calvert et al., 2010; Miao et al.,
2016).

Apart from the cardiovascular system, H2S also contributes
to protective effects in inflammation, oxidative stress,
and nervous system. Despite the controversy regarding
the multiple roles of H2S in inflammatory disorders, it is
generally accepted that H2S ameliorates neuroinflammation,
suppresses inflammatory cytokine production, and inhibits
activation of key transcriptional factors. More details about
the physiological and pharmacological functions of H2S
could be found in reviews by Li et al. (2011) and Wang
(2012).

AMPK AND ITS BIOLOGICAL FUNCTION

AMPK Regulation
Adenosine 5′-monophosphate-activated protein kinase is a
conserved energetic sensor existed in almost all eukaryotes.
Composed of a catalytic α-subunit and regulatory β- and
γ-subunits, AMPK monitors intracellular AMP and adenosine
triphosphate (ATP) levels (Kahn et al., 2005; Li et al., 2015).
In mammals, APMKα catalytic subunits and β-subunits are
encoded by two genes separately (α1, α2, and β1, β2), and
γ-subunit by three genes (γ1, γ2, and γ3), making at least 12
possible heterotrimer combinations, of which the expression
may be tissue restricted (Hardie et al., 2012). For example, γ3
isoform is dominantly expressed in skeletal muscle, and both the
wild type and a mutation of arginine to glutamine at position
225 (R225Q) in the CBS domain results in increased glycogen
concentrations in skeletal muscle of the transgenic mice (Yu et al.,
2006).

During energy deprivation characterized by increased
AMP/ATP ratio, AMPK is phosphorylated at Thr172 and
allosteric activated with a 100-fold increase in kinase activity
(Hawley et al., 1996). In mammals, the typical kinases involved in
canonical AMPK activation include liver kinase B1 (LKB1) and
Ca2+/calmodulin-activated protein kinase kinase β (CaMKKβ).
LKB1, also known as a potent tumor suppressor, is vital for
the basal phosphorylation level of AMPK (Hardie et al., 2012).
Genetic knockout of LKB1 impairs AMPK activation by AMP,
indicating its critical role during energy deprivation (Hardie and
Alessi, 2013). AMPK is also activated in response to calcium
flux, which relies on the intact function of CaMKKβ. It is
noteworthy that this alternative AMPK activation pathway
is independent of any change in cellular AMP level (Hardie
et al., 2012), and is most highlighted in the brain (Green et al.,
2011).

AMPK Activators
In addition to cellular metabolic signal, AMPK can be
activated by a variety of compounds. AICAR (5-amino-4-
imidazolecarboxamide riboside-1-β-D-ribofuranoside) is a
potent AMPK activator. As an adenosine analog, AICAR
is taken in by adenosine transporters and converted into
ZMP (5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5′-
monophosphate). Similar to AMP, ZMP binds directly to AMPK
and induces its allosteric activation (Wong et al., 2009). Natural
products and related derivatives represent another class of
AMPK activators. Metformin, derived from French lilac, is
widely administrated as the first-line medication for type 2
diabetes. Although the involved mechanisms remain partially
understood, it is clear that AMPK plays an important role in the
benefits of metformin (Zhou et al., 2001). Resveratrol, isolated
from grapes and red wine, is reported to activator AMPK and
SIRT1, a NAD+-dependent protein deacetylase sharing crosstalk
with AMPK (Price et al., 2012). Other natural AMPK activators
include epigallocatechin gallate, capsaicin, curcumin, berberine,
and so on (Hwang et al., 2005; Ejaz et al., 2009; Jeong et al.,
2009).
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AMPK on Cellular Metabolism and More
As a master cellular energy gauge, AMPK regulates lipid and
glucose metabolism by phosphorylating downstream targets.
Activated AMPK not only suppresses fatty acid synthesis by
impairing acetyl-CoA carboxylase (ACC), but also facilitates lipid
oxidation by boosting malonyl-CoA decarboxylase (MCD) (Zang
et al., 2004; Zhang et al., 2009). Similar regulating pattern is also
observed in glucose metabolism. By promoting the translocation
of glucose transporter 4 (GLUT4), AMPK activation stimulates
glucose uptake in muscle tissue (Jäger et al., 2007). In parallel,
hepatic gluconeogenesis is inhibited by AMPK through decreased
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-
phosphatase (G6Pase) transcription (Zhang et al., 2009). In
general, AMPK activation leads to metabolic changes toward
relieving energy deprivation.

In addition to energy balance, recent studies have suggested
the participation of AMPK in autophagy, atherosclerosis,
inflammation, and cancer, which shares crosstalk with H2S
(Motoshima et al., 2006; Kim et al., 2011; O’neill and Hardie,
2013). The advances in AMPK researches have shed light on novel
therapeutic potentials of AMPK activators and H2S donors, and
provided modern understanding of metabolism. More details will
be discussed in the following sections.

AMPK IN H2S PHARMACOLOGY

Great efforts have been made to elucidate the roles of AMPK
in H2S pharmacology, in which AMPK usually serves as a
key mediator. Despite the fact that AMPK was reported to be
inhibited by H2S in some circumstances (Zhang et al., 2012),
it is generally accepted that H2S exerts its biological activity
by activating AMPK. In this part we will review the recent
discoveries on AMPK-H2S pharmacology.

AMPK in Cardioprotective Effects of H2S
According to latest Global Burden of Disease Study, ischemic
heart disease remained as the global leading cause for death in
2010, accounting for 13.3% of total death worldwide (Lozano
et al., 2013). A great number of patients are suffering from related
diseases including ischemic heart failure and stable arrhythmia
(McMurray et al., 2005). The beneficial effects of H2S on survival
after cardiac arrest in mice was first reported in 2009. By i.v.
application of Na2S, an exogenous H2S donor, 7 min following
cardiac arrest, significant increase in survival rate was achieved
compared with vehicle (Minamishima et al., 2009). The authors
pointed out that the treatment effects of Na2S was associated
with activated AMPK prosurvival signals. In addition, AMPK is
also attributed to the cardioprotective effects of H2S in high fat
diet-induced cardiac dysfunction and impaired left ventricular
function by smoking (Zhou et al., 2014a; Barr et al., 2015).

Myocardial ischemia/reperfusion (I/R) injury is a
complication of inflammation and oxidative damage
encountered when restoring blood supply of ischemic regions.
Previous studies have demonstrated that H2S protects from I/R
injury by multiple mechanisms, including ameliorating oxidative
stress, inflammation, and apoptosis (Sivarajah et al., 2009; Meng

et al., 2015). Xie et al. (2015) reported that AMPK is a critical
mediator in the effects of H2S donor ADT. By maintaining
autophagy flux impaired by I/R, as evidenced by reduced LC3-
II/LC3-I ratio and beclin-1 expression, H2S-activated AMPK
significantly relieved myocardial I/R injury.

Post-conditioning (PC), defined as brief repeated periods
of ischemia performed at the onset of reperfusion, has been
proved to reduce I/R injury in both cardiomyocytes and
coronary vascular endothelium cells (Vinten-Johansen et al.,
2005). Nevertheless PC only exerts cardioprotection in young
but not old hearts (Boengler et al., 2009). Chen et al. (2016)
suggested that by exogenous application of H2S, the treatment
effects of PC could be restored in isolated aged rat hearts and
aged cardiomyocytes. In contrast to the study on I/R, stimulated
AMPK promoted autophagy, which subsequently decreased
apoptosis, reduced myocardial injury, and improved cardiac
function. More studies regarding AMPK-H2S and autophagy will
be discussed in the next section.

AMPK-Regulated Autophagy in H2S
Pharmacology
Autophagy is a lysosome-dependent “self-engulfment” process in
which cells digest their own cytosolic components to maintain
metabolic homeostasis during starvation. Moreover, autophagy
is tightly involved in cancer, cardiac and liver diseases (Levine
and Kroemer, 2008). The autophagy pathway was originally
discovered with Atg1/UNC-51-like kinase (ULK) 1 complex
as an essential initiator, which also senses cellular nutrient
status from the mammalian target of rapamycin (mTOR).
Previous studies have established the prominent role of AMPK
in regulating autophagy. One of the most described mechanism
involves the suppression of mTOR pathway by AMPK, which
promotes the formation of autophagosomes (Kim and Guan,
2015). On the other hand, AMPK directly phosphorylates several
critical sites in ULK1 and subsequently induces its activation
in autophagy and mitochondrial homeostasis (Hardie, 2011).
By inhibiting mTOR and activating ULK1, AMPK regulates
autophagy in response to nutritional signal (Mihaylova and Shaw,
2011).

The AMPK-autophagy pathway has been identified in
multiple pharmacological functions of H2S. As described in
the last section, H2S mitigates cardiac I/R injury and restores
PC protection by regulating AMPK-mediated autophagy.
Similar results were also observed in high glucose conditions.
Vascular endothelial dysfunction induced by hyperglycemia
impairs vasodilation and angiogenic function, leading to
diabetic complications (Hink et al., 2001). Exogenous H2S
markedly preserved arterial endothelial cells by reducing AMPK
phosphorylation and inhibiting excessive autophagy (Liu et al.,
2016). Furthermore, Kundu et al. (2014) suggested that H2S
relieved renal matrix accumulation during hyperglycemia by
LKB1/AMPK cascade. Intriguingly, as opposed to the previous
study, AMPK was activated by H2S, leading to protective
autophagy in glomerular endothelial cells (Kundu et al., 2014).

Hypertriglyceridemia is among the most common
metabolic diseases and is proved as an independent
risk factor for cardiovascular and cerebrovascular events
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FIGURE 1 | A schematic diagram of multiple roles of AMPK in the pharmacological functions of H2S. AMPK, adenosine 5′-monophosphate-activated protein kinase;
H2S, hydrogen sulfide; LKB1, liver kinase B1; CaMKKβ, Ca2+/calmodulin-activated protein kinase kinase β; mTOR, mammalian target of rapamycin; ULK2,
UNC-51-like kinase 2; TG, triglyceride; I/R, ischemia/reperfusion; PC, post-conditioning; ROS, reactive oxygen species.

(Chapman et al., 2011). Lower plasma H2S content was reported
to be associated with dyslipidemia, indicating the potential
regulation of H2S on serum triglyceride (Liu et al., 2006). Indeed,
Sun et al. (2015) claimed that H2S reduced triglyceride and
relieved non-alcoholic fatty liver disease in mice by activating
AMPK and inhibiting mTOR. Consistent regulation of AMPK
and autophagy by H2S was reported in inhibiting colon epithelial
cell proliferation (Wu et al., 2012).

AMPK in H2S Protection against Diabetic
Complications
Chronic hyperglycemia of diabetes leads to damage and
dysfunction of multiple organs, including the kidney, heart,
and blood vessels (American Diabetes Association, 2014). The
anti-diabetic effects of AMPK activators are well-documented,
and numerous evidences have indicated the mitigation of
hyperglycemia and related complications by H2S (Suzuki et al.,
2011; Szabo, 2012). Lee et al. (2012, 2017) suggested that
H2S decreased protein synthesis, cellular hypertrophy, and
matrix protein accumulation of renal cells under high glucose
condition. Moreover, H2S inhibited mTOR activity, mRNA
initiation and elongation by activating AMPK through CaMKKβ.
Corresponding AMPK/mTOR regulation by H2S was also
reported in cardiomyocyte protection from high glucose (Wei
et al., 2014).

Vascular inflammation induced by hyperglycemia is associated
with impaired insulin sensitivity and accelerated atherosclerosis
(Basta et al., 2004; Paneni et al., 2013). Both L-cysteine, the
endogenous precursor of H2S, and exogenous H2S donors

successfully diminished high glucose-stimulated inflammatory
cytokine secretion from monocytic cells, indicating the link
between H2S and vascular inflammation (Jain et al., 2010). It was
further supported that H2S relieved vascular inflammation via
multiple mechanisms including activating AMPK (Manna and
Jain, 2013). These findings might bring light on the therapeutic
potentials of H2S against diabetic complications.

AMPK in Anti-inflammatory and
Anti-oxidant Stress Properties of H2S
There have been controversies over the exact role of H2S in
inflammation (Whiteman and Winyard, 2011). Despite distinct
results obtained, it appears that the inconsistency in the pro-
and anti-inflammatory effects of H2S might be attributed to
models, doses, and sampling time (Hegde and Bhatia, 2011). It is
generally acknowledged that H2S shows remarkable suppression
on lipopolysaccharide-induced production of inflammatory
cytokines both in macrophages and microglia cells (Hu et al.,
2007; Whiteman et al., 2010). In parallel, the inhibition of
inflammation by AMPK activation has been also been reported
(O’neill and Hardie, 2013). Zhou et al. (2014b) found that
the suppression of microglia inflammation by H2S was largely
dependent on AMPK activation via CaMKKβ pathway, which
was evidenced by multiple H2S donors, CBS overexpression, and
AMPK knockdown.

Anemia of inflammation (AI) is the second prevalent anemia
and a common complication in patients with chronic diseases
(Weiss and Goodnough, 2005). Lower hemoglobin is associated
with increased mortality in diseases such as heart failure
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(Horwich et al., 2002; O’Meara et al., 2006), cancer (Caro
et al., 2001), and chronic kidney disease (Foley et al., 1996;
Vlagopoulos et al., 2005). The pathological changes of AI include
iron disturbance and erythroid system dysfunction (Nemeth
and Ganz, 2014), of which iron dysregulation is the hallmark.
Mounting evidences have indicated that elevated hepatic and
circulating hepcidin, a liver-derived iron-regulating peptide, is
tightly involved in the progression of AI (Ganz, 2003), making
it an ideal target for AI treatment. We first reported that during
inflammation H2S inhibited hepatic hepcidin, a critical factor
in AI pathogenesis (Xin et al., 2016). Our recent investigation
revealed that the effects of H2S was partially mediated by AMPK
(Wang et al., 2017). What’s more, both pharmacological and
genetic activation of AMPK, as well as metformin, ameliorated
chronic AI in mice, which was supported by our clinical samples
and independent groups (Kim et al., 2016; Wang et al., 2017).
Interestingly, metformin was reported to increase H2S content
in various mouse tissues (Wiliński et al., 2013). Much more
work will be needed to broaden our understanding about the
interaction among H2S, AMPK and metformin.

5′-Monophosphate-activated protein kinase also contributes
to the effects of H2S and garlic products against oxidant
stress. Han et al. (2011) claimed that ajoene, a garlic by-
product, reduced oxidative injury and hepatic steatosis by
stimulating LKB1/AMPK pathway. Consistent results were
observed in H2S donors. Sodium hydrosulfide, an inorganic H2S
donor, ameliorated oxidative stress and apoptosis via activating
CaMKKβ/AMPK signaling, finally attenuating experimental
aging process (Chen et al., 2017). Furthermore, reactive oxygen
species production was diminished by H2S-induced AMPK
activation in osteoblast cells treated with dexamethasone (Yang
et al., 2014).

CURRENT RESEARCH GAPS

It is of great importance to understand the specific mechanisms
within H2S-induced AMPK activation. However, few studies

have looked into this topic. Kundu colleagues claimed that
H2S activated AMPK by LKB1 (see section “AMPK in
Cardioprotective Effects of H2S”), while Lee colleagues (see
section “AMPK-Regulated Autophagy in H2S Pharmacology”)
and Zhou colleagues (see section “AMPK in H2S Protection
against Diabetic Complications”) suggested CaMKKβ was
indispensable for AMPK activation by H2S.

It is worth noting that instead of fully elucidating the potential
mechanisms, all these studies mainly pointed out several key
mediators in the H2S-AMPK pathway. Moreover, recent studies
have revealed that H2S might also regulate protein functions
in a more “direct” manner, such as by sulfhydration (Paul
and Snyder, 2012) and forming polysulfides (Greiner et al.,
2013; Kimura et al., 2013). Future studies may help better
understand the role of these novel modifications in H2S-AMPK
interactions.

CONCLUSION

In summary, this minireview provides novel insights into latest
AMPK-mediated H2S pharmacology in various tissues and
diseases (Figure 1). Despite substantial progress, there remains
a long road toward complete understanding of AMPK-H2S
interactions and application of H2S donors in clinical settings.
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