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Diabetes mellitus is considered as a risk factor of Alzheimer’s disease (AD), the front
runner of neurodegenerative disorders. Streptozotocin (STZ) is a toxin for pancreatic
β-cell, which can construct a model of insulin deficient diabetes through intraperitoneal
or intravenous injection. A model generated by intracerebroventricular STZ (icv-STZ)
also shows numerous aspects of sporadic AD. The protective roles of tea polyphenols
epigallocatechin-3-gallate (EGCG) on both two diseases were researched by some
scientists. This review highlights the link between diabetes and AD and recent studies
on STZ injection-induced models, and also discusses the protection of EGCG to clarify
its treatment in STZ-induced diabetes and AD.
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INTRODUCTION

Diabetes mellitus (DM) is a prevalent chronic endocrine diseases characterized by increased
serum glucose concentrations, which is classified as type 1, type 2, gestational DM (GDM) and
some other distinctive types. Type 1 diabetes mellitus, namely insulin-dependent DM (IDDM),
is ordinarily caused by the autoimmune damage of pancreatic islet β-cells, resulting in the
pancreas unable to synthetise and secrete insulin (Castano and Eisenbarth, 1990). Type 2 diabetes
mellitus, formerly known as non-IDDM, is caused by a combination of inadequate insulin
secretion and insulin resistance (Reaven, 1988). GDM is more similar to type 2 and attacks
about 7% of pregnancies, usually remits after delivery, and composes a major risk factor for the
development of type 2 diabetes later in life (Sacks et al., 2011). Other types of diabetes are of rarity.
Metabolic impairments of such disease are a substantial cause of severe biochemical, molecular,
and functional complications in many organs, consequently leading to progressive damage to the
whole body.

Alzheimer’s disease (AD) is the most common one of neurodegenerative diseases and the main
cause for dementia. AD is characteristically marked by progressive decline of cognitive functions
and loss of learning and memory. The major pathological hallmarks are amyloid-β(Aβ) plaques
and intracellular neurofibrillary tangles (NFT) and other molecular and biochemical abnormalities,
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including cell loss, impaired cellular metabolism, increased
oxidative stress, and mitochondrial dysfunction (Mattson, 2004).
AD is divided into early onset familial AD and late-onset
sporadic AD. Familial AD constitutes no more than 1% of
all AD patients, and the pathomechanism of most familial
AD is related with the mutations of the proteins, such as
Presenilin 1 (PS1), Presenilin 2 (PS2), and Aβ precursor protein
(APP) (Bird, 2008). More than 99% of AD patients represent
the so-called sporadic form, which is involved with various
etiopathogenic mechanisms, such as brain trauma, inflammation,
impairment of brain glucose metabolism, DM, and the gene dose
of apolipoprotein E type 4 allele (Corder et al., 1993; Iqbal and
Grundke-Iqbal, 2010).

Diabetes has been clinically considered as a risk factor of
AD. Diabetes and AD are always the research focus and aporia
of scientists. Streptozotocin (STZ)-treated rodents have become
a reliable model to investigate the mechanisms and therapy
of diabetes and AD. This article will review the relationship
between diabetes and AD and the STZ-induced models. The roles
of epigallocatechin-3-gallate (EGCG) in diabetes and AD were
studied by some scientists, thus we also summarize the protection
of EGCG in SZT injection-induced models.

RELATIONS BETWEEN DIABETES
AND AD

There is a close relationship between diabetes and AD. Some
studies have detected the associations between metabolism
and neuroplasticity at the cellular level and the systems level,
where mitochondrial function, activation of insulin receptor,
and expression of surface glucose transporter-3 (GLUT3)
have all been linked with synaptic mechanisms for learning
and memory. Proliferator-activated receptor γ co-activator-
1α and mitochondrial biogenesis have important roles in the
formation and maintenance of hippocampal dendritic spines
and synapses (Cheng et al., 2012). Insulin receptor signaling
regulates the formation of dendritic spine and the development
excitatory synapse in hippocampal neurons through activation
of the Rac1 and PI3K/Akt/mTOR signaling pathways (Lee
et al., 2011). NMDA receptor-induced increase of cell surface
GLUT3 represents a new signal pathway for control of energy
supply during neuroactivity that is vital for preserving glucose
homeostasis during neurotransmission (Ferreira et al., 2011).
Diabetes have yet been clinically considered as a cause of
cognitive impairment and dementia since Ott et al. (1996)
reported that type 2 diabetes was associated with dementia in
the Rotterdam study in 1996 and predicted that AD might be
more frequent in senile DM patients administrated with insulin.
Accumulated studies have shown that non-IDDM might be one
risk factor of AD (Arvanitakis et al., 2004). Oxidative stress,
mitochondrial dysfunction, impaired cellular metabolism, insulin
resistance, inflammation and encephalatrophy are the common
denominators in type 2 diabetes and AD (De Felice and Ferreira,
2014). Early brain abnormalities in AD are known as cerebral
impaired glucose metabolism and insulin signaling (Yan et al.,
2013; Chen et al., 2014).

Glucose Metabolism
One ordinary abnormality of AD brain is the impairment of brain
glucose uptake and metabolism, occurring many years before
the first symptom appears, suggesting that the impairment of
glucose uptake and metabolism may be mechanistically involved
in AD or be a cause of neurodegeneration. Particularly, the
impaired glucose utilization and relevant metabolic pathways
are well-established findings and prominent in initial AD,
analogous abnormalities of metabolism have been found in non-
IDDM. Impairment of cerebral glucose utilization and energy
metabolism arise very early in preliminary stages of cognitive
decline (Cao et al., 2003), especially in sporadic AD which
is characterized by a progressive exacerbation of both energy
metabolism and cognition (Hoyer et al., 1991). It has been
reported that the decrease in cerebral glucose utilization ranges
from 10% to more than 40% in different levels of dementia
(Kumar et al., 1991).

Insulin Signaling
Besides reduced utilization of glucose, insulin receptor signal
pathway is also severely damaged in the hippocampus of AD
brain (Steen et al., 2005). Insulin signaling is related to massive
cerebral functions, including cellular metabolism, synaptic
plasticity and cognition (Banks et al., 2012). Recent evidence
reveals that abnormal cerebral insulin signaling contributes to the
development of AD (Ghasemi et al., 2014). Thus, enhancement of
cerebral insulin signaling may be a brighter therapeutic strategy
of AD. Intranasal administration of insulin has been shown to
alleviates cognitive deficits and amyloid pathology in mice and
humans (Benedict et al., 2004; Mao et al., 2016). The intranasal
insulin delivery also has been proved to ameliorate memory in
patients with mild cognitive impairment and AD (Craft et al.,
2012).

Oxidative Damage
In addition, the third major feature of pathophysiology
in sporadic AD is oxidative stress, which can damage all
endocellular biomacromolecules, consequentially resulting in
neuronal dysfunction (Polidori and Mecocci, 2002). There is
a strong relation among oxidative stress, metabolic syndrome,
and AD. The high levels of circulating lipids and glucose
imbalances amplify lipid peroxidation that gradually diminishes
the antioxidant systems, causing high levels of oxidative
metabolism that affects cell structure, leading to neuronal damage
(Rojas-Gutierrez et al., 2017). What’s more, impairment of
insulin signaling has already been associated with incremental
mitochondrial dysfunction and oxidative stress in neurons
(Hoyer and Lannert, 1999; Rains and Jain, 2011).

The pathological characteristics of sporadic AD are highly
analogous to type 2 diabetes, therefore sporadic AD is considered
as non-insulin-dependent diabetes mellitus of the brain (Hoyer,
2004). Numerous features of AD-like neurodegeneration can
be experimentally produced together with increasing oxidative
stress through impairing selectively insulin signaling, and
support that AD represents a neuroendocrine disturbance
related with brain-specific perturbations in insulin signaling
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mechanisms, namely type 3 diabetes (Lester-Coll et al., 2006;
Song et al., 2017). The onomastion, “type 3 diabetes,” exactly
reflects the fact that AD represents a form of diabetes that
specially involves the brain and has biochemical and molecular
characteristics that overlap with both type 1 and type 2 diabetes
(de la Monte and Wands, 2008). Therefore, treatment with
medicines, which promote glucose metabolism, enhance insulin
signaling and reduce oxidative stress, might contribute to
ameliorate the viability and function of brain neurons at the risk
of AD neurodegeneration.

STZ-INDUCED MODELS OF DIABETES
AND AD

Streptozotocin, extracted from the Streptomyces species, is
frequently used to induce model with robust deficits in
neurogenesis (Ho et al., 2015), synaptic plasticity (Stranahan
et al., 2008a), and cognition (Stranahan et al., 2008b) to study
hippocampal plasticity in diabetes. Intraperitoneal (i.p.) injection
of STZ is used to produce diabetes in rodents at wide range of
doses (Baydas et al., 2003). Type 2 diabetes could be induced by
an intraperitoneal injection of STZ. Rats were intraperitoneally
injected with STZ (60 mg/kg) for 1 week and DM models were
adopted only when blood glucose levels were above 16.7 mM
on the third day after injection of STZ (Tian et al., 2016).
In this model of diabetes, the impaired cognitive ability was
evaluated by Morris water maze and decreased synaptic plasticity
was monitored via examining the expression of brain derived
neurotrophic factor (BDNF) and N-methyl-D-aspartate receptor
(NMDAR1).

Intracerebroventricular injection of STZ (icv-STZ) by using
stereotaxic technique is usually used to induce AD model at
a dose of 3 mg/kg. The bregma coordinates are: −1.0 mm
lateral, −0.3 mm posterior, −2.5 mm below (for 6 months
old mice) (Chen et al., 2012, 2013) and +1.5 mm lateral,
−0.8 mm posterior, −3.6 mm below (for 3 months old rat)
(Guo et al., 2017). Icv-STZ provides a relevant animal model of
chronic brain dysfunction that is characterized by progressive
impairments in learning and memory, and cognition, an increase
in Aβ-42, along with a permanent and ongoing cerebral energy
deficit (Halawany et al., 2017). In this model, some glycolytic
enzymatic activities were significantly reduced (Plaschke and
Hoyer, 1993).

Thus it can be seen that either intraperitoneal or
intracerebroventricular injection of STZ successfully induce
models of diabetes and AD. This animal model may be useful for
exploring the pathophysiological relationship between diabetes
and AD and provides a new tool for development of effective
therapy.

PROTECTION OF EGCG IN
STZ-INDUCED DIABETES AND AD

Today there are millions of persons suffering from diabetes and
AD and scientists never stop seeking the effective therapeutic

FIGURE 1 | The chemical structure of EGCG.

drug. Green tea is very popular all over the world, especially
in China. The green tea polyphenols are natural flavonoids that
comprise various catechins, mainly epigallocatechin-3-gallate
(EGCG) which is the most abundant antioxidant component and
comprises approximately one third of green tea dry weight (Yang
et al., 1998), with protective effects related to their antioxidant
property (Sabu et al., 2002). The chemical structure of EGCG is
illustrated in Figure 1. EGCG is a complex molecule formed by
a flavanol core structure with a gallocatechol group and a gallate
ester (Botten et al., 2015). These two gallocatechol rings confer
the potent antioxidant and chelating properties to EGCG (Braicu
et al., 2013). Each of the gallocatechol rings is able to directly
capture reactive oxygen species from the environment with high
efficiency (Nanjo et al., 1996). The pyrogallol group provides
EGCG with strong metal-chelating ability, which allows it to bind
transition metal ions acting as an antioxidant (Zhang et al., 2000).
The galloyl group has also been associated with inhibitory effects
on the microsomal enzyme system (Chen and Zhang, 2007) as
well as with lipid lowering action (Kim et al., 2014). In the last
two decades, scientists paid attention to the protection of EGCG
on diabetes and AD due to its robust antioxidant property.

Protection of EGCG in STZ-Induced
Diabetes
Regular administration of green tea polyphenols, especially
EGCG, have received considerable attention due to its metabolic
effects for preventing metabolic diseases and type 2 diabetes
(Wolfram, 2007). Numerous investigations have reported the
effects of EGCG on the regulation of metabolic and brain
function (Izzo et al., 2017; Mi et al., 2017; Yamamoto et al., 2017;
Ye et al., 2017). Several studies suggest that the anti-diabetic
effects of EGCG are probably due to suppressing appetite,
modifying dietary fat emulsification in the gastrointestinal
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TABLE 1 | The anti-oxidant effects of EGCG in STZ-induced Diabetes and AD.

Disease Species STZ Injection Pattern EGCG dose Protective Mechanism Reference

Diabetes Rats i.p. 25 mg/kg ↑SOD,↓MDA, ↓NO Roghani and Baluchnejadmojarad, 2009

Rats i.p. 60 mg/kg ↑SOD,↓MDA Roghani and Baluchnejadmojarad, 2010

Mice i.p. 100 mg/kg ↑pancreatic islet mass, ↓iNOS Song et al., 2003

Rats i.p. 40 mg/kg ↑SOD,↓nitrite, Baluchnejadmojarad and Roghani, 2012

Rats i.p. 2 g/L (in water) ↓oxidative stress (8-OHdG) Raposo et al., 2015

Rats i.p. 7.6 mg/L (in water) ↓MDA, ↑glutathione peroxidase Mostafa et al., 2013

Rats i.p. 100 mg/kg ↓oxidative stress, ↓MDA, ↑MnSOD Wu et al., 2017

Rats i.p. 50–100 mg/kg ↓oxidative stress Yamabe et al., 2006

Mice i.p. 100 mg/kg ↓oxidative damage, ↑Nrf2 Pan et al., 2017; Sun et al., 2017

AD Rats i.p. 40 mg/kg ↑glutathione peroxidase, ↓reactive
oxygen species, ↓NO production

Baluchnejadmojarad and Roghani, 2011

Rats icv. 10 mg/kg ↑learning and memory,
↓malondialdehyde, ↓NO

Biasibetti et al., 2013

(↑) Increase, (↓) Decrease for STZ + EGCG group vs. STZ group.

tract, inhibiting gastrointestinal lipolysis and reducing nutrient
absorption (Raederstorff et al., 2003; Shishikura et al., 2006).

Antioxidant Effects
The protection of EGCG on STZ-induced diabetes mainly
focuses on its antioxidant activity (Table 1). An elevation
of malondialdehyde (MDA) and an decrease of superoxide
dismutase (SOD) activity were observed in aortic tissue of
STZ-induced diabetic rats. Chronic EGCG treatment could
impede the abnormal functional changes of vascular reactivity
via restoring the SOD activity and further inhibiting oxidative
stress (NO) (Roghani and Baluchnejadmojarad, 2009). EGCG
administration (p.o.) also reversed the incremental MDA
concentration and the decreased SOD activity in liver (Roghani
and Baluchnejadmojarad, 2010). Treatment with EGCG in
STZ-induced diabetes of mice ameliorated the decrease of
pancreatic islet mass and repressed the increase of blood
glucose levels, as well as the expression of inducible NOS
(iNOS) which is in accordance with the above study (Song
et al., 2003). The alleviation of EGCG on STZ-induced
diabetic neuropathic hyperalgesia is also involved in oxidative
stress (Baluchnejadmojarad and Roghani, 2012). The findings
suggested the therapeutic potential of EGCG in diabetic

hyperalgesia through the inhibition of oxidative stress. Roposo
et al. (2015) reported that EGCG intake (2 g/L in water) could
prevent STZ-induced diabetic neuropathic pain via normalizing
the increase of 8-hydroxy-2′-deoxyguanosine (8-OHdG) though
the neurobiological mechanisms is still unknown. Mostafa
et al. (2013) demonstrated that a lower concentration of
EGCG (7.6 mg/L in water) significantly increased glutathione
peroxidase (GPx) and decreased the cavernous MDA compared
with diabetic rats. EGCG also showed therapeutic potential
on renal damage via suppressing hyperglycemia, proteinuria,
and lipid peroxidation in diabetic nephropathy model rats
treated with STZ (Yamabe et al., 2006). EGCG reduced the
elevated MDA levels and attenuated oxidative stress, and reversed
the expression of manganese superoxide dismutase (MnSOD),
attenuates myocardial injury induced by ischemia/reperfusion in
STZ injection (i.p.)-induced diabetic rats (Wu et al., 2017).

Nuclear factor erythroid 2-related factor (Nrf-2), a primary
antioxidant transcription factor, shows a reduced expression in
type 2 diabetes mellitus patients. Impairments in this antioxidant
system leads to type 2 diabetes mellitus-associated inflammatory
(Vaamonde-Garcia et al., 2017). A recent study showed that
EGCG prevent mice from diabetic nephropathy through
upregulating the expression of Nrf2 and further inhibiting

TABLE 2 | The glucose-lowering, anti-inflammatory, anti-apoptosis and lipid-lowering effects of EGCG in STZ-induced Diabetes.

Species STZ Injection Pattern EGCG dose Effects Reference

Mice i.p. 100 mg/kg ↓blood glucose Song et al., 2003; Yoon et al., 2014

Rats i.p. 50–100 mg/kg ↓serum glucose, ↓lipid peroxidation Yamabe et al., 2006

Rats i.p. 7.6 mg/L (in water) ↓serum glucose Mostafa et al., 2013

Rats i.p. 50 mg/kg ↓plasma glucose, ↑lipid metabolism Li et al., 2007

Mice i.p. 100 mg/kg ↓inflammation Sun et al., 2017

Mice i.p. 100 mg/kg ↓inflammation, ↓endoplasmic reticulum
stress, ↓apoptosis

Pan et al., 2017

Rats i.p. 2 mg/kg ↓inflammation, ↓apoptosis Othman et al., 2017

Rats i.p. 100 mg/kg ↓apoptosis Mohan et al., 2017

Rats i.p. 100 mg/kg ↓apoptosis Wu et al., 2017

(↑) Increase, (↓) Decrease for STZ + EGCG group vs. STZ group.
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diabetes-induced renal oxidative damage (Sun et al., 2017). In
addition, EGCG preserved testicular weight and spermatozoa
count, and attenuated oxidative damage via activating Nrf2
expression and function in STZ-induced diabetic mice (Pan et al.,
2017).

Other Effects
Some studies have showed that EGCG has glucose-lowering,
lipid-lowering anti-inflammatory, and anti-apoptosis effects in
STZ-induced diabetes models (Table 2). STZ (i.p.) treated
mice indicated an increase in levels of blood glucose, which
was significantly reversed with EGCG treatment (Song et al.,
2003; Yoon et al., 2014). EGCG has the potential to control
hyperglycemia by attenuating advanced glycation end products
formation (Sampath et al., 2017). Yamabe et al. (2006)
found that EGCG had a positive effect on serum glucose
and lipid metabolic abnormalities in STZ injection-induced
diabetes. EGCG intake from drinking water also showed a
glucose-lowering effect in STZ injection-induced diabetes rats
(Mostafa et al., 2013). Lipophilic EGCG derivative also showed
antidiabetic activities, including reducing the plasma glucose
and promoting lipid metabolism, in STZ-induced diabetic
rats (Li et al., 2007). In STZ-induced diabetic mice, EGCG
attenuated testicular inflammation, endoplasmic reticulum stress
and apoptotic cell death (Pan et al., 2017). Oral EGCG for
30 days after DM production notably inhibited the increase
of pro-inflammatory cytokines (IL-1 β, IL-6 and TNF-α) in
serum, suggesting its anti-inflammatory potential (Othman et al.,
2017). Mohan et al. (2017) reported that EGCG Supplementation
resisted STZ-induced diabetic nephropathy in rats via inhibiting
mitochondrial apoptosis pathway (downregulating Bax/Bcl-2,
caspase-3). EGCG inhibited the apoptosis via reducing the
elevated lactate dehydrogenase (LDH) and attenuated myocardial
injury induced by ischemia/reperfusion in STZ diabetic rats (Wu
et al., 2017) (Table 2).

Protection of EGCG in STZ-Induced AD
Scientists have revealed that EGCG plays various roles in
AD, including behavior, physiology and pathology. It have
been reported that many articles regards the potential effects
of EGCG in the treatment of AD (Mandel et al., 2007,
2008; Afzal et al., 2015; Walker et al., 2015; Cascella et al.,
2017; Xicota et al., 2017). EGCG ameliorates learning and
memory deficits by adjusting the balance of TrkA/p75NTR
signaling (Liu et al., 2014). EGCG could not only attenuate
Aβ generation (Dasilva et al., 2010; Zhang et al., 2017), but
also facilitate its degradation by increasing neprilysin secretion
from astrocytes through activation of ERK and PI3K pathways
(Yamamoto et al., 2017). Therefore, EGCG could inhibit the
oxidative stress in AD and decrease the apoptosis of neurons.
Protection of EGCG in rodent models of AD has currently
obtained much research attention. Incremental number of
investigations reported that EGCG has neuroprotection in
AD models, for example, Aβ or lipopolysaccharide-injected
mice, and transgenic mice overexpressing Aβ (Rezai-Zadeh
et al., 2005, 2008; Lee J.W. et al., 2009; Lee Y.K. et al.,

2009). Although the STZ-induced model is widely used to
investigate the mechanisms of sporadic AD and the develop
some useful medicines for AD, there are few literatures
about the protective effects of EGCG in STZ-induced AD.
So far as I know, sporadic studies focused on the protection
of EGCG in STZ-induced AD. Baluchnejadmojarad and
Roghani (2011) showed that chronic green tea EGCG
treatment could dose-dependently ameliorate learning and
memory deficits in intraperitoneal injection of STZ-induced
rats through attenuation of oxidative stress and modulation
of NO which is accordance with others’ results. Biasibetti
et al. (2013) indicated that EGCG administration could
ameliorate learning and memory and regulate oxidative stress,
in which glutathione peroxidase activity, NO production and
reactive oxygen species content were reversed in a icv-STZ-
induced rat model of dementia (Table 1). However, EGCG
was not able to restore the reduced glucose uptake by icv-
STZ. The different effect of EGCG on glucose may due
to the diverse doses, species or procedure schedules in the
experiments.

CONCLUSION AND EXPECTATION

Diabetes and AD are two of incurable chronic diseases. There are
the common denominators in type 2 diabetes and AD, such as
energy metabolic dysfunction, inflammation, insulin resistance,
mitochondrial dysfunction, and oxidative stress. It is reasonable
that diabetes is considered as risk factor of AD. Injection of
STZ (i.p. or icv) could induce model of diabetes and sporadic
AD, which is beneficial to research the relationship between the
two and seek effective therapeutic strategies. Based on the above
review, it has been proved that EGCG has protective role in
diabetes and AD, but the investigations are actually limited and
restricted to antioxidant field. In my submission, it should be
well performed to study the effect of EGCG treatment on glucose
metabolism and insulin signaling, as well as the corresponding
mechanisms, which may contribute to easily understand the
pathogeny of diabetes and AD and the protective role, and
promote its clinical application.
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