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Adenosine receptors (AR) are a family of G-protein coupled receptors, comprised of four
members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all
human body tissues and organs. To date, they are known to participate in a large variety
of physiopathological responses, which include vasodilation, pain, and inflammation. In
particular, in the central nervous system (CNS), adenosine acts as a neuromodulator,
exerting different functions depending on the type of AR and consequent cellular
signaling involved. In terms of molecular pathways and second messengers involved,
A1 and A3 receptors inhibit adenylyl cyclase (AC), through Gi/o proteins, while A2A and
A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely
distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized
mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at
low levels of expression. In addition, AR are able to form heteromers, both among
themselves (e.g., A1/A2A), as well as with other subtypes (e.g., A2A/D2), opening
a whole range of possibilities in the field of the pharmacology of AR. Nowadays,
we know that adenosine, by acting on adenosine A1 and A2A receptors, is known
to antagonistically modulate dopaminergic neurotransmission and therefore reward
systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors,
and A2A receptors with D2 receptors. This review documents the present state of
knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-
mediated effects, including locomotor activity, discrimination, seeking and reward, and
discuss their therapeutic relevance to psychostimulant addiction. Studies presented in
this review reinforce the potential of A1 agonists as an effective strategy to counteract
psychostimulant-induced effects. Furthermore, different experimental data support the
hypothesis that A2A/D2 heterodimers are partly responsible for the psychomotor and
reinforcing effects of psychostimulant drugs, such as cocaine and amphetamine, and
the stimulation of A2A receptor is proposed as a potential therapeutic target for the
treatment of drug addiction. The overall analysis of presented data provide evidence that
excitatory modulation of A1 and A2A receptors constitute promising tools to counteract
psychostimulants addiction.

Keywords: Adenosine A1 receptors, Adenosine A2A receptors, amphetamines, cocaine, dopamine,
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INTRODUCTION

Drug addiction is a complex chronic cognitive disorder
characterized by drug seeking and compulsive use, which is
difficult to control despite its harmful consequences. According
to DSM-5 (American Psychiatric Association, 2013), which is
used to define mental disorders in epidemiologic studies, it is now
accepted that the criteria used to clinically define the terms abuse
and dependence should be combined to form a new category
known as Substance use disorders, including craving as a new
criterion to increase diagnostic accuracy (Hasin et al., 2013). In
terms of epidemiology, drug addiction is currently a global health
problem, as can be deduced from comparison of data obtained
from the Global Burden of Diseases Study between 1990 and
2015. For the period 1990–2015, global exposure to drug use
increased by 30.2% for both sexes. In addition, by 2015 drug use
was a major risk factor for early death and disability in developed
countries like the United States, Canada, Australia, and the
United Kingdom, being the 5th leading global risk factor for men
and the 12th for women (GBD 2015 Risk Factors Collaborators,
2016).

Psychostimulants are a broad class of drugs whose effects
include increases in arousal, wakefulness, cardiovascular
stimulation, vigilance, and attention, and which constitute one
of the most abused classes of prohibited drugs in the world,
including as representative examples cocaine and amphetamine-
like molecules (Chesworth et al., 2016). According to the 2017
report of the European Monitoring Centre for Drugs and Drug
Addiction (European Monitoring Centre for Drugs and Drug
Addiction, 2017), it was estimated that in the year 2016, the
global annual prevalence among Europeans aged 15 or over was
3.5 million users of cocaine, 2.7 million users of MDMA and 1.8
million users of amphetamines which corresponds to 1.0, 0.8,
and 0.5% of the European adults, respectively, which occasional
consumed mentioned psychostimulants during 2016.

To date, the therapies developed to manage drug addiction
are inadequate and unsatisfactory, and many scientists around
the world are focusing on new strategies to improve them.
Even though numerous aspects of this phenomenon are not well
understood, the neurochemical mechanism common to all drugs
causing abuse in humans is the increase of the neurotransmitter
dopamine (DA) released from the ventral tegmental area (VTA),
to a region in the mesocorticolimbic part of the brain, like the
nucleus accumbens (NAc) and the prefrontal cortex (Filip et al.,
2012; Morales and Margolis, 2017). This, in turn, increases the
physiological reward and reinforcement mechanisms (Nestler
and Landsman, 2001). This point is particularly important
because DA not only mediates the effects of acute rewarding,
but is also thought to be involved in the increased motivation to
consume psychostimulants in psychostimulant abusers (Volkow
et al., 2012). Furthermore, abuse of psychostimulants may induce
changes in brain regions not only with relevance for addictive
behavior, but may also promote long-term adverse consequences
in areas related to memory and cognition (Nyberg, 2014).
In addition, relapse into drug use after abstinence has been
attributed to exposure to cues, stress or re-exposure to the
drug itself that induce drug craving; the incubation of craving

being a common phenomenon reported for most drugs of abuse,
including psychostimulants, that may last from the beginning of
abstinence for extended periods of time. Although little is known
about the molecular mechanisms that lead to the incubation of
craving during drug abstinence, vulnerability to relapse correlates
with changes in the activity and structure of neurons from the
limbic and frontal cortical circuitry, induced by the drug use
(Pickens et al., 2011; Wolf, 2016).

The repeated ingestion of psychostimulants, as for most
substances with marked abuse potential, shares one of the
following two common features consistently reported in the
literature: on the one hand, psychostimulants, by blocking
molecular reuptake, enhance the extracellular neurotransmitter
concentration in the synapses of monoaminergic neurons
(Cooper et al., 1996; Rothman and Baumann, 2003; Wood et al.,
2014); on the other hand, psychostimulants increase DA release
in the NAc, a critical area for the reward circuit (Preedy, 2016).
There is a growing body of scientific evidence demonstrating
that psychostimulants affect dopaminergic neurons in the limbic
reward system, and that this effect underlies addiction to
stimulants (Siciliano et al., 2015).

Adenosine, an ubiquitous endogenous nucleoside, has been
implicated in the reward-related behavior, and represents a novel
and interesting target to interfere with it, as a consequence
of its modulatory function on neurotransmission exerted by
DA, glutamate and acetylcholine (Linden, 2001; Cunha, 2005;
Gomes et al., 2011; Lopes et al., 2011; Borea et al., 2016;
Burnstock, 2017; Jacobson et al., 2017). Interestingly, adenosine
levels are modified following acute or chronic consumption
of drugs of abuse and psychostimulants (Hack and Christie,
2003; Brown and Short, 2008; Filip et al., 2012), suggesting
that a better comprehension of adenosine signaling in the brain
during addiction may open new pharmacological frontiers to
explore potential treatments in preclinical studies and clinical
trials over the next years (Stone, 1981; Clark and Dar, 1989;
Krauss et al., 1993; Bonci and Williams, 1996; Salem and Hope,
1999). The question of whether adenosine signaling can be
used as a potential therapy in abuse disorders remains to be
answered. Therefore, the goal of this review is to discuss current
scientific evidence based on animal models of psychostimulant
addiction, and to suggest promising candidates in the search for
pharmacological interventions. We will include, when available,
the effects of adenosine receptor (AR) ligands on the complex
process of behavior related to psychostimulant consumption,
seeking, withdrawal, craving and relapse, and we will restrict
our discussion to what we can consider psychostimulant drugs,
namely cocaine and amphetamine-like molecules.

BRAIN CIRCUITRY AND ADENOSINE
RECEPTOR INTERACTIONS

The main brain circuitry associated with addiction is distributed
across multiple areas. This circuitry is associated with the three
stages of the addiction cycle (Koob and Volkow, 2010). The
reinforcing effects in an initial binge/intoxication stage are
mediated by DA and opioid neurotransmission, and depend
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FIGURE 1 | Schematic representation of pathways involved in intoxication,
withdrawal and craving stages of addiction. Release of dopamine in the
nucleus accumbens is a common feature of psychostimulants reinforcement
at initial stages of psychostimulants intake (dots in black are regions directly
involved in binge and intoxication). The negative emotional stage of withdrawal
appears to be related to the activation of amygdala (dots in white are regions
directly involved in negative emotional stage) and, finally, the latter stage of
psychostimulant addiction, craving, depends on prefrontal cortex, amygdala
and hippocampal activities (dots in gray). In blue, glutamatergic pathways; in
green, dopaminergic pathways; in red, GABAergic connections. NAc, Nucleus
Accumbens; Amy, Amygdala; dStr, dorsal Striatum; Hipp, Hippocampus;
PFC, Prefrontal Cortex; SN/VTA, Substantia Nigra and Ventral Tegmental
Area; Thal, Thalamus.

on modifications in the VTA and striatum (particularly NAc).
The negative emotional stage of withdrawal may be due to
activation of the amygdala with norepinephrine, dynorphin and
corticotropin-releasing factor. The third stage, craving, depends
on the prefrontal cortex, amygdala and hippocampus, and
glutamate is the major neurotransmitter involved (reviewed
in Kelley and Berridge, 2002; Koob and Volkow, 2010; Kim
et al., 2017; Figure 1). The NAc acts as a hub of convergence
from the different regions, and it has been considered a key
element in the neuronal circuitry of drug addiction. This
nucleus is composed of two distinct populations of medium
spiny neurons (MSN) with different levels of dopamine D1
and D2 receptors and projections (direct and indirect basal
ganglia pathways), which are positively and negatively coupled
to cyclic adenosine monophosphate (cAMP)/protein kinase
A (PKA) signaling, respectively. Striatonigral MSN (direct
pathway) send substantia P and dynorphin projections to
substantia nigra/VTA and globus pallidus interna, and are
enriched with dopamine D1 receptors. Striatopallidal MSN
(indirect pathway) send enkephalin projections to globus pallidus
externa and are enriched with dopamine D2 receptors (Lobo,
2009). Taking together several studies using different approaches
such as analysis of psychiatric disorders, transgenic mice,
neuropharmacology and optogenetic techniques, it has been
possible to postulate an integrative representation of the synaptic
connections in NAc and the neurotransmitter systems (Silberberg
and Bolam, 2015; Figure 2).

Adenosine acts in the central nervous system (CNS) as a
neuromodulator, with DA neurotransmission being one of its
targets. The modulation of dopaminergic activity is mediated by
two main subtypes of AR, being the antagonist of DA receptors.

Specifically, A1 receptors colocalize with D1 receptors, and A2A
receptors with D2 receptors in heteromeric complexes (Fuxe
et al., 2010). Building on this rationale, the case of A2A receptors
is particularly important when we are studying the effects of
drugs of abuse, for reasons that have been extensively reviewed
previously (Hack and Christie, 2003; Brown and Short, 2008;
Filip et al., 2012), and that we only briefly enumerate here. First,
A2A receptors are highly expressed in the striatum, a key brain
nucleus for the reward circuitry, and A2A are crucial receptors,
modulating behavioral responses induced by drugs of abuse
(Ferré et al., 2007); indeed, their genetic deletion in mice results
in a selective decrease of locomotor responses to cocaine and
amphetamine (Chen et al., 2000). Furthermore, A2A receptors are
able to form heteromers with other adenosine subtypes, resulting
in, e.g., the A1/A2A heteromer (Ferré et al., 2008a), and also
with families of receptors relevant for the treatment of some
neuropsychiatric disorders and drug addiction, producing, e.g.,
A2A/mGlu5 (Ferré et al., 2002), A2A/D2 (Ferré et al., 2008b;
Bonaventura et al., 2015), and A2A/CB1 receptor heteromers
(Tebano et al., 2012). This spectrum of interaction opens a
wide range of possibilities in the field of AR pharmacology
(Casadó et al., 2009). Interestingly, the oligomer formed by
A2A/mGlu5/D2 receptors confers to the A2A subtype the
ability to modulate the effects of psychostimulants in striatal
neurons, through the balance of GABAergic, dopaminergic and
glutamatergic signaling (Cabello et al., 2009; Kniazeff et al., 2011).
The modulation of dopaminergic and glutamatergic signaling
by A2A receptors has been particularly important in the field of
psychiatric disorders, as DA and glutamate are two key players
in the processing of moods, which could also be very relevant in
drug addiction-related disorders (Cunha et al., 2008).

ADENOSINE RECEPTORS OVERVIEW

Adenosine Metabolism and Adenosine
Receptors Structure
In the CNS, extracellular adenosine exists in basal conditions,
and its concentration may increase under pathological situations,
including hypoxia, ischemia or cell injury. Adenosine is
produced by different mechanisms, including metabolism of
ATP released from neurons or glial cells. Specifically, ATP
undergoes dephosphorylation to ADP and AMP by the
activity of particular enzymes named ectonucleoside triphosphate
diphosphohydrolase (CD39), and to adenosine through a specific
ecto-5′-nucleotidase (CD73) enzyme (Drury and Szent-Györgyi,
1929). Alternatively, adenosine may derive from hydrolysis of
intracellular AMP through a cytoplasmic 5′-nucleotidase, or
S-adenosyl-homocysteine (SAH) by SAH hydrolase, and may
be released through facilitated diffusion, using bi-directional
equilibrative nucleoside transporters (ENT) (Dunwiddie, 1985;
Ledent et al., 1997; Ribeiro, 1999; Hack and Christie, 2003).
Under resting conditions, extra- and intra-cellular levels of
adenosine are very similar, but in pathophysiological states
(inflammation, ischemia, and hypoxia), characterized by high
levels of this nucleoside, transport through ENTs is the main
mechanism responsible for extracellular adenosine removal.
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FIGURE 2 | Integrative scheme of reward circuit in striatum with focus on adenosine and dopamine receptors and their interactions. A1 and A2A receptors are
located pre- and post-synaptically forming homo-, heterodimers and oligomers in the dendritic spines of medium spiny neurons in striatum (MSN). Glutamatergic
input from cortex and dopaminergic input from ventral tegmental area project to both MSNs expressing D1-like and MSNs expressing D2-like dopamine receptors.
A2A, adenosine 2A receptors; CB1, endocannabinoid CB1 receptors; DAT, dopamine active transporters; D1, dopamine D1 receptors; D2, dopamine D2 receptors;
mGlu5, metabotropic glutamate subtype 5 receptors; 5HTRs, serotonin receptors.

Inside the cell, adenosine is deaminated to inosine through
adenosine deaminase (ADA), or phosphorylated to AMP by
adenosine kinase (AK). These enzymes display different affinities
for adenosine, with AK more affine than ADA; thus in physiologic
conditions adenosine is preferentially transformed to AMP,
whilst in pathological states predominantly to inosine, a process
which occurs also in the extracellular milieu (Godinho et al., 2015;
Borea et al., 2016).

Adenosine affects several functions in the body, exerting
its physiological effects through regulation of four G-protein
coupled receptors (GPCRs) named A1, A2A, A2B, and A3,
characterized by different affinities for adenosine, tissue
distribution, and coupling with effector systems. They have
been cloned and pharmacologically characterized in different
species, presenting a sequence homology of around 80–95%,
except for A3 receptors which vary depending on species and
show a variance of 30% in amino-acid composition between
human and rat. The A3 receptor, in contrast to other AR, was
the first to be isolated and then pharmacologically characterized
(Meyerhof et al., 1991). All AR show a common structure,
characterized by seven transmembrane domains connected by
three intracellular and extracellular domains (Fredholm et al.,
2000). At the extracellular level, the N-terminus presents specific
glycosylation sites, while at the intracellular side, the C-terminus
contains phosphorylation and palmitoylation sites, important
for receptor desensitization. The A2A receptor has a longer
C-terminus tail constituted by 122 amino acids, whereas A1, A2B,
and A3 receptors’ C-terminal domains comprise 30–40 amino
acids (Fredholm et al., 2001). Recently, important crystallization

results have determined the structures of human A1 and A2A
receptors, thus allowing better drug design for A1 and A2A
receptor-selective ligands (Jaakola et al., 2008; Lebon et al.,
2011; Xu et al., 2011; Carpenter et al., 2016; Glukhova et al.,
2017; Sun et al., 2017). In the case of A3 receptors, structure-
based molecular modeling techniques have led to the rational
design of potent A3 receptor-selective ligands (Ciancetta and
Jacobson, 2017). Furthermore, AR may be present in the cell
membrane in homomer isolated forms or in heteromers and
oligomers, providing another possibility of intervention for drug
development (Cabello et al., 2009). Specifically, the ability of AR
to interact with many other receptors, such as A2A/D2 receptor
heterodimers located in the striatum (represented in Figure 2),
means they play a pivotal role in the modulation and integration
of neurotransmission, and may be targeted by drugs for the
treatment of neurological diseases, including drug addiction
(Chen et al., 2013).

Adenosine Receptors: Distribution,
Signal Transduction, and Function
AR are widely distributed in almost all organ and tissues,
spanning brain, heart, lung, liver, kidney, bone, eye, skin, joints,
and blood cells, suggesting that these proteins are potentially able
to affect almost every physiological function (Peleli et al., 2017).

Specifically, as for the presence of each AR subtype in CNS,
the A1 receptor is mainly present in the cortex, hippocampus,
cerebellum, nerve terminals, spinal cord, and glia (Chen et al.,
2013). This wide range of locations reflects the multitude of
physiological effects orchestrated by it, including inhibition
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of neurotransmitter release, reduction of neuronal excitability,
sedation, anticonvulsant and anxiolytic effects, analgesia and
regulation of sleep (Stenberg et al., 2003; Gessi et al., 2011;
Sawynok, 2016; Vincenzi et al., 2016a,b; Varani et al., 2017).
These effects are mediated through A1 receptors coupling to
Gi/Go proteins, inhibition of AC, activation of phospholipase-
C (PLC)β and, particularly in neurons, activation of potassium
channels and deactivation of Q-, P-, and N-type Ca2+ channels.
They also modulate mitogen-activated protein kinases (MAPK)
with important functional effects (Schulte and Fredholm,
2003).

The A2A receptor is highly expressed in the striatum, mainly
present in GABAergic striatopallidal neurons, corticostriatal
glutamatergic terminals, and cholinergic interneurons, but it
is also detectable in the olfactory tubercle, cerebral cortex,
hippocampus, neurons, and glial cells, where it induces
excitotoxicity by affecting release of glutamate, activation of glia
and infiltration of immune cells from the periphery, through
blood brain barrier passage (Fuxe et al., 2003, 2007b; de Lera Ruiz
et al., 2014). The A2A receptor generally couples to Gs proteins
to increase cAMP levels, but in the brain it stimulates Golf, a
specific Gs protein in neurons also associated with AC (Kull
et al., 2000), which is supposed to have a prominent role as a
mediator of the locomotor effects of some psychostimulant drugs
(Hervé et al., 2001). The signaling cascade starting from cAMP
and PKA regulates different proteins such as cAMP responsive
element binding protein (CREB) and DA- and cAMP-regulated
phosphoprotein (DARPP-32) (Preti et al., 2015), which is also
involved in the responses to psychostimulant drugs (Engmann
et al., 2015). CREB phosphorylation then increases transcription
of immediate early genes such as c-fos and other genes like
preproenkephalin (Ferré, 2008). In addition, the A2A receptor,
with its long C-terminus, could also bind to different accessory
proteins like D2 receptors, ADP-ribosylation factor nucleotide
site opener (ARNO), α-actinin, translin-associated protein X
(TRAX) and ubiquitin-specific protease (USP4). A2A receptor
activation may also trigger the Ras/Raf-1/MEK/ERK pathway
through PKA-dependent or independent mechanisms (Schulte
and Fredholm, 2003).

A2B receptors are present in astrocytes, neurons, and
microglia, but their role in the CNS is less well characterized
in comparison to the other AR subtypes. As for the effector
systems, it activates Gs proteins/cAMP/PKA phosphorylation.
Furthermore, the A2B receptor stimulates an increase in Gq
protein/PLC/Ca2+, while modulating ion channels through βγ

subunits. Coupling to MAPK has been also reported (Merighi
et al., 2017).

Finally, for A3 receptors, a low level of expression has
been detected in the brain, in which it was detected in the
cortex, thalamus and hypothalamus, hippocampus, motor nerve
terminals, retinal ganglion cells, pial and intracerebral arteries
and glia (Borea et al., 2015; Jacobson et al., 2017). The A3
receptor couples to Gi proteins and decreases cAMP levels,
whilst through Gq proteins or Gβγ subunits, it stimulates
PLC and increase Ca2+ concentration. In addition, a pathway
presenting RhoA, a monomeric G-protein and PLD, is relevant
for the neuroprotection effects of A3 receptors. Inhibition of the

transcription hypoxia-inducible factor (HIF-1) has been reported
in astrocytes with neuromodulatory effects through MAPK and
Akt modulation (Gessi et al., 2013). Interestingly, the reduction
of neuroinflammation has been related to analgesia (Janes et al.,
2014).

PSYCHOSTIMULANTS AND ADENOSINE
RECEPTORS

In this section, we will describe the current state of knowledge
about how adenosine signaling can interfere with common
addictive psychostimulant consumption, focusing on data
obtained from animal, particularly murine, models and
from human studies. Animal models not only give us
useful information on the pathophysiological mechanisms
of psychostimulant drugs intake that are not accessible to study
in human subjects but also provide an useful tool to assay
pharmacological approaches to explore potential treatments
before develop clinical trials. Certainly, although animal models
may produce similar responses to those observed in humans, all
the paradigms used in them for drug addiction research imply a
lower degree of complexity than that observed in human drug
addiction. Nowadays, more complex animal models have been
developed to include some behavioral responses observed in
human addictions, such as social peer influences in drug intake
(Moser et al., 2011; Ross et al., 2015; Strickland and Smith, 2015).
Nevertheless, in the last part of this section, information obtained
from human studies is also provided and the actual information
regarding this issue is discussed.

Psychostimulants can be classified into two broad categories
depending on the mechanism by which DA levels are increased;
namely, amphetamines (AMPH) behave as DA releasers, while
cocaine acts to inhibit DA reuptake trough the inhibition
of the DA active transporter (DAT) (Siciliano et al., 2015).
In addition to the increase in levels of DA in the striatum,
AMPH and cocaine are able to induce an increase in
norepinephrine (NE), by blocking NE transporter (NET), while
only cocaine also increases serotonin, by inhibiting serotonin
transporter (SERT) (Phillips et al., 2014; Zwartsen et al.,
2017).

Cocaine is extracted from coca leaves, mainly in South
America where the coca plant is commonly grown. Despite being
the most widely used illicit narcotic drug, cocaine has been
used for centuries (if not millennia) for medical and cultural
purposes (Johanson and Fischman, 1989). Although cocaine
may be illegally distributed in several forms, mainly cocaine
hydrochloride but also cocaine sulfate or crystalized as “crack,”
the physiological and psychoactive effects of cocaine in different
forms are similar (Hatsukami and Fischman, 1996).

The family of “amphetamines” or amphetamine-like
psychostimulants includes a wide range of compounds which
can be synthetized based on chemical substitutions of the
original structure of alpha-methylphenethylamine. AMPH and
methamphetamine (S(+)-methylamphetamine, METH) are the
most studied compounds of the family, but other well-known
psychostimulants in this family include methylphenidate,
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MDMA (3,4-methylenedioxymethamphetamine, “ecstasy”),
ephedrine and cathinone (synthetic derivatives of which are
known as “bath salts”) (Sulzer et al., 2005). Specifically, although
cathinones have a synthetic profile similar to AMPH, their
mechanism of action is rather similar to that of cocaine, being
potent DAT inhibitors (López-Arnau et al., 2017). On the other
hand, MDMA, in addition to inhibiting NET and DAT, is both
a substrate for SERTs and an inhibitor of them, with an IC50 in
the micromolar range, thus differentiating its behavior from that
of AMPH, which is unable to affect SERTs (Rudnick and Wall,
1992; Baumann et al., 2005; Zwartsen et al., 2017). Although
AMPH and METH have similar pharmacokinetics, they differ in
their pharmacodynamic properties, with METH inducing DA
release in the NAc more efficiently than AMPH (Goodwin et al.,
2009). AMPH and METH have been studied for a long time, but
their neurobiology remains largely unknown with discrepancies
in the literature between pharmacological and genetic-based
experiments.

As for psychostimulants-induced changes in AR expression
in brain areas only few scientific reports have been reported.
Specifically, during a study of cocaine withdrawal and its
relationship with sleep architecture, Yang et al. (2011) reported
that A1 receptor expression in the hippocampus of rats was
reduced after 14 days of withdrawal, A2A receptor density was
increased on withdrawal-day 8 and 14, while the A2B receptors
remained unchanged. Other findings provide neurochemical
evidence that after 10 days of cocaine self-administration,
an up-regulation of functional A2A receptors in the NAc of
rats was induced that returned to baseline expression levels
after 7 days of drug withdrawal (Marcellino et al., 2007). In
a study of the motivational mechanisms after cocaine self-
administration and extinction, it was reported that, in the
dorsal striatum of Wistar rats, there was an increase in the
affinity of A2A receptors during maintenance and an increase
in A2A receptor density after extinction from cocaine self-
administration (Frankowska et al., 2013). Nevertheless, using a
paradigm of escalating administration of cocaine dose (“binge”)
and subsequent withdrawal, the density of adenosine A1 and
A2A receptors in various brain nuclei of Fischer rats was not
different nor in chronic cocaine-treated rats or in the long-term
withdrawn rats group (Bailey et al., 2005). Finally, rats trained
to self-administer METH for 14 days showed selective altered
expression of AR, with A1 receptor levels increased in the NAc
shell, caudate-putamen and prefrontal cortex, and A2A receptors
decreased in the NAc shell and raised in the amygdala (Kavanagh
et al., 2015). Interestingly, it is well known that GPCR act as an
oligomer, and indeed homodimers of A2A and 5-HT1A receptors
occur constitutively, and are further increased by agonists such as
CGS 21680 and 8-OH-DPAT, or reduced by antagonists including
SCH 58216 and methysergide, which could also contribute to
psychostimulant addiction (Łukasiewicz, 2007).

Even though there are no consistent and complete studies
about amphetamines- and cocaine-induced changes in AR
expression in brain areas, a prominent role in the modulation
of psychostimulant addiction attributed to adenosine is
mediated through the activation of AR by complex mechanisms,
affecting various aspects of this phenomenon including

locomotor activity, discrimination, seeking behavior and
reward.

Studies in Animal Models
Although the interactions between adenosine and DA in the
striatum were previously known, the role of AR in AMPH-
induced locomotor responses was first characterized only at the
end of the last century. Turgeon et al. (1996) demonstrated
that, in Sprague-Dawley rats, AMPH-induced behavior could
be pharmacologically modulated by pretreatment with CHA,
an A1 receptor agonist, or APEC, an A2A receptor agonist,
which reduced locomotor responses induced by acute AMPH
exposure. However, only the A2A receptor agonist inhibited
c-Fos immunoreactivity, induced by AMPH, in striatum and
NAc. In the case of METH, the experimental paradigm used
to determine the role of AR in METH-mediated effects was
METH-induced toxicity. In these studies, administration of the
A1 agonist CPA attenuated the METH-provoked neurochemical
tyrosine hydroxylase changes in Swiss-Webster mice (Delle
Donne and Sonsalla, 1994) while, in other experimental models,
represented by Wistar rats, both CPA and CGS 21680, an
A2A receptor agonist, were able to attenuate METH-mediated
DA release in the striatum (Gołembiowska and Zylewska,
1998a). In terms of METH-induced locomotor responses, it
was also reported that administration of CHA and CGS
21680 before acute METH exposure in Wistar rats was able
to inhibit METH-induced hyperlocomotion (Shimazoe et al.,
2000) but, interestingly, when those same agonists were tested
to study METH-induced sensitization (which occurs after
repeated intermittent drug administration), only CGS 21680
was able to inhibit METH-induced increase of locomotion
while CHA had no effect (Shimazoe et al., 2000). In addition,
the activation of A2A receptors could also be the mechanism
by which some herbal compounds, PAP9704 and ginsenoside
herbal compounds, attenuate METH-induced hyperlocomotion
and conditioned place preference in BALB/C AnNcrj mice
as well as in C57BL/6 mice, respectively (Kwon et al., 2004;
Shin et al., 2005). Furthermore, AMPH-induced stereotyped
head movements in Wistar rats were attenuated in a dose-
dependent manner with CGS 21680, poorly reduced when CPA
was used and even potentiated when DMPX, an A2 receptor
antagonist, was used (Poleszak and Malec, 2000). Finally, it
seemed that the inhibition of AMPH-induced stereotyped head
movements, through activation of A1 receptor, could depend on
agonist properties, as Ribavirin, an A1 receptor agonist, reduced
AMPH-induced total locomotor activity but had no effects on
stereotypic activity in Wistar rats (Janać et al., 2005). Relevant
literature concerning the functional effects of AR ligands in
psychostimulant-induced phenomena, with a focus on rodent
models, are presented in Supplementary Table S1.

A complete study of AR and their relationship with cocaine-
induced locomotion was carried out by Poleszak and Malec
(2002b) at the beginning of this century. They reported that
CPA and CGS 21680, decreased both cocaine- and AMPH-
induced locomotor activity. The agonist doses required to
inhibit the effect of AMPH were higher than those which
were active in cocaine-induced hyperactivity, while the A2
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antagonist DMPX enhanced the effects of AMPH in Swiss
mice (Poleszak and Malec, 2002b). Accordingly, the selective
stimulation of A2A receptors in Wistar rats using CGS 2160
reduced the cocaine-induced locomotor response, the locomotor
response during the development of sensitization, and the
expression of sensitization in a cocaine challenge dose, while
blocking A2A receptors with the antagonist MSX-3 induced the
opposite effects in the three studied paradigms (Filip et al.,
2006).

Genetic deletion of A2A receptors (A2A KO) in animal models
of drug addiction provides a tool to understand the role of these
receptors under certain circumstances by comparison to wild-
type animals. Nevertheless, the results obtained using A2A KO
animals on cocaine-, AMPH-, and METH-induced behavioral
responses seem contradictory. In this sense, it was reported
that in 129-Steel and hybrid C57BL/6 × 129-Steel mice, A2A
KO attenuated cocaine-induced locomotor stimulation (Chen
et al., 2000). Similar experiments, performed to demonstrate
the effects of A2A genetic deletion with independence of
the genetic background, were reproduced later in pure 129-
Steel mice resulting in missed AMPH-induced locomotor
sensitization (Chen et al., 2003). Accordingly, similar results
were obtained when hybrid C57BL/6 × 129-Steel animals
were used to generate tissue-specific A2A KO animals, where
deletion of forebrain A2A receptors was carried out, which
showed a loss of AMPH-mediated locomotor response (Bastia
et al., 2005). In contrast, in CD1 background mice, it was
reported that there were no differences in the cocaine-
induced locomotor activity, sensitization and conditioned place
preference between A2A KO animals and their littermates (Soria
et al., 2006). Authors only found a lower rate of cocaine
self-administration and motivation as well as lower efficacy
of cocaine reinforcing effects in A2A KO mice (Soria et al.,
2006). Interestingly, Soria et al. (2006) concluded with the
hypothesis that separate neuronal substrates could mediate
cocaine-induced locomotor effects and self-administration in
an operant behavior paradigm. In order to corroborate this
hypothesis, Shen et al. (2008) designed two different KO
animals to distinguish between striatal versus non-striatal
cocaine-mediated effects. In these experiments, cocaine-induced
locomotor activity was enhanced in striatum-specific A2A KO
mice (A2A receptors were deleted in striatal neurons) but
attenuated in forebrain-specific A2A KO mice (A2A receptors
were deleted in the neurons of striatum, cerebral cortex,
and hippocampus). In addition, pharmacological inactivation
(using KW6002, an A2A receptor antagonist with preferential
affinity for post-synaptic A2A binding sites) of extra-striatal
A2A receptors in striatum-specific A2A KO mice attenuated
cocaine-induced hyperlocomotion, while the same antagonist
enhanced cocaine-induced hyperlocomotion in the wild-type
mice, reflecting the antagonism between striatal A2A receptors
and extra-striatal A2A receptors (Shen et al., 2008). Finally, in
CD1 A2A KO mice, a lesser increase in DA levels after acute
cocaine exposure was reported while locomotor activity was
further increased in A2A KO mice in comparison to wild-type
littermates (Wells et al., 2012). The genetic models derived from
the manipulation of AR, and their effect on the interaction

of AR with psychostimulants, are presented in Supplementary
Table S2.

Interestingly, there is some research available about the role
of A3 receptors in modulation of AMPH- and METH-mediated
actions. METH-induced DA release was measured in the rat
striatum using APNEA, a putative A3 receptor agonist, which
has a biphasic effect when perfused locally to the striatum
via microdialysis. At the lower concentration studied, APNEA
induced a decrease in DA outflow, but at the higher concentration
studied, a clear increase in DA outflow was reported, which led
researchers to conclude that the activation of A3 receptors exerts a
rather toxic effect on DA neurons (Gołembiowska and Zylewska,
1998b). Nevertheless, when the A3 receptor was genetically
deleted, it was reported that the resultant mice were much
more sensitive to the toxic actions of METH, including Iba-1,
caspase 3, TNF-α, and vesicular monoamine transport 2 (VMAT)
increased expression (Shen et al., 2011), and also presented
reduced AMPH-induced locomotor response (Björklund et al.,
2008).

Adenosine receptors modulate psychostimulant-induced
discriminative-stimulus effects, as A1 and A2A receptors
antagonists (CPT and MSX-3 or DMPX, respectively) partially
mimicked the discriminative-stimulus effects of METH, by
increasing the levels of drug-lever selection, and potentiating
the discriminative-stimulus actions of METH, as shown by
significant leftward shifts of the METH dose-response curve,
behaving like psychostimulant drugs (Munzar et al., 2002;
Justinova et al., 2003). Surprisingly, CPA and CGS 21680 also
shifted the dose-response curve to the left for cocaine, but
not for METH, suggesting that A1 and A2A receptors have
different influences on the discriminative-stimulus effects of
METH and cocaine in Sprague-Dawley rats (Justinova et al.,
2003).

Another relevant aspect in drug addiction which is strongly
influenced by AR is the seeking behavior. In terms of the effect
of A1 agonists, CPA microinfusions in the NAc of Sprague-
Dawley rats inhibited cocaine seeking behavior (Hobson et al.,
2013). On the other hand, treatment with A2A agonists such
as NECA or CGS 21680 reduced the number of cocaine
infusions self-administrated by rats, mainly due to an increase
in the latency for the first cocaine infusion (Knapp et al.,
2001). Accordingly, the activation of A2A receptors, using CGS
21680, antagonized the reinstatement of cocaine seeking in
Sprague-Dawley rats (Bachtell and Self, 2009). In addition, it
was reported that A2A receptor blockade, using CGS15943,
increased cocaine-seeking in a dose-dependent manner and
also reinstated cocaine-seeking, functioning as an intravenous
reinforcer, in baboons (Weerts and Griffiths, 2003). The effects
of activation and blockade of A2A receptors, using CGS
21680 and MSX-3, respectively, were also tested in Sprague-
Dawley rats trained to press a lever for cocaine. Pretreatment
with intra-NAc core microinjections of CGS 21680 reduced
cocaine-induced reinstatement, while MSX-3 exacerbated it
(O’Neill et al., 2012). Similar results were obtained in Sprague-
Dawley rats, where intra-NAc microinjections of CPA and
CGS 21680 inhibited the expression of cocaine sensitization,
and microinjections of ABT-702 and DCF (AK and ADA
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inhibitors, respectively) blocked cocaine sensitization (Hobson
et al., 2012). Interestingly, A2A receptor activation (with CGS
21680) in Wistar rats was able to affect food seeking with a
similar potency to that observed for cocaine seeking, whilst A2A
receptor antagonists increased cocaine-, but not food-, seeking
behavior, suggesting that possibly a differential expression of
A2A receptors occurs in striatopallidal GABAergic neurons
involved in cocaine and food seeking (Wydra et al., 2015). In
contrast, it was reported that although the activation of A1
(using CPA) and A2A (using CGS 21680) receptors impaired
initial extinction responding, the blockade of presynaptic A2A
receptors using SCH 442416 produced persistent impairment of
cocaine-induced seeking in Sprague-Dawley rats (O’Neill et al.,
2014).

As reported in Supplementary Table S1, the vast majority of
studies have focused exclusively on males. Nevertheless, there
is a large amount of literature concerning the differences in
drug-mediated effects between males and females (for a recent
review see Lynch, 2017). Although the focus of the present review
is on the relationship between AR and psychostimulants, sex
differences will be briefly commented upon to provide a fuller
picture of the problem of addiction. In this regard, it has been
reported that female rats self-administer higher levels of cocaine
or METH, and escalate intake faster than males during extended
daily psychostimulant access (Roth and Carroll, 2004; Reichel
et al., 2012). Females also require shorter periods of time to
show increased motivation to obtain cocaine (Lynch and Taylor,
2004). In addition, following short access self-administration,
females show markedly higher levels of METH seeking (Ruda-
Kucerova et al., 2015), and females present increased cocaine-
seeking behavior during cocaine withdrawal (up to 6 months)
compared to males (Kerstetter et al., 2008). Sex-dependent
responses to AR’s ligands have also been reported in Sprague-
Dawley rats using ATL444, a novel A2A/A1 receptor antagonist,
in studies of motivation for cocaine. In these experiments, it was
reported that ATL444 treatment acutely increased motivation for
cocaine in females but, in males, induced a long-term decrease
in motivation for cocaine (Doyle et al., 2012). Finally, one
interesting more recent study, evaluating the effects of A2A
receptor deletion on schizophrenia, found that AMPH induced
a lower hyperlocomotion response in male CD1 A2A KO mice at
120–170 min, in comparison to wild type AMPH-treated mice;
this effect was observed to a major extent in female CD1 A2A KO
mice at 70–180 min, in comparison to wild type AMPH-treated
mice (Moscoso-Castro et al., 2016).

Rewarding effects induced by AMPH and METH have
mainly been evaluated using conditioned place preference
procedures. In this way, Poleszak and Malec (2003) proved that
CPA and, under certain conditions, CGS 21680, reduced the
development of AMPH-induced conditioned place preference
in Wistar rats; however, only CGS 21680 was able to decrease
the expression of METH-induced conditioned place preference.
In addition, ginseng saponins reduced the METH-induced
circling behavior and conditioned place preference in C57BL/6
mice, via activation of the A2A receptor, as this reduction
was reversed in a dose-dependent manner using the A2A
receptor antagonist CSC. Interestingly, reduction of AP-1 DNA

binding activity and proenkephalin gene expression induced
by METH exposure were reduced by CSC (Shin et al.,
2005). Furthermore, C57BL/6J mice with D2 receptors knocked
down in the NAc core have been reported to exhibit a
reduction in METH-induced locomotion, as in other paradigms
(locomotor sensitization and conditioned place preference) after
repeated METH-treatment, suggesting that D2 receptors are
necessary mediators for the development of METH-induced
rewarding effects (Miyamoto et al., 2014). Thus, the antagonism
between A2A and D2 receptors further supports the conclusion
that the activation of A2A receptors could be a promising
way to counteract AMPH- and METH-induced rewarding
effects.

A series of experiments to increase our understanding of
the role of A1 and A2A receptors in METH-induced behavior
were designed by Kavanagh et al. (2015), reporting that the
initial METH-mediated rewarding effects may be tempered
by A1 or A2A receptor activation in a model of rat self-
administration. Therefore, they found that in Sprague-Dawley
rats, the stimulation of A1 receptors using CPA reduced METH
self-administration, and that the stimulation of both A1 and
A2A receptors (using CPA and CGS 21680, respectively) reduced
METH-induced place preference (Kavanagh et al., 2015). These
results suggest that, taking into account the antagonism of A1/D1
and A2A/D2 heteromers, both A1 and A2A agonists will be useful
to reduce METH-induced behaviors during the initial exposures
to METH but, when METH exposures are more prolonged, the
modulation of AR renders only the A1 agonist powerful enough
to counteract the rewarding properties of METH. Accordingly,
A2A KO animals (CD1 background) were less sensitive to
METH rewarding properties, as METH exposure did not induce
conditioned place preference in those animals and, although
METH-self administration was not altered, the motivation to self-
administer METH was reduced when compared with wild-type
(Chesworth et al., 2016).

Finally, the important role of AR as possible pharmacological
tools to treat psychostimulant addiction has also been tested in
animal models using other members of the amphetamine family,
albeit to a lesser extent. Specifically, it was demonstrated that SCH
58261, but not DPCPX, increased MDMA-induced hyperthermia
(Vanattou-Saïfoudine et al., 2010) but, conversely, DPCPX, but
not SCH 58261, enhanced MDMA-induced DA release from
striatal slices (Vanattou-Saïfoudine et al., 2011). Accordingly, the
blockade of A1 or A2A receptors using DPCPX or KW 6002,
respectively, in mouse striatum increased the MDMA-mediated
release of DA and 5-HT (Górska and Gołembiowska, 2015).
In contrast to these pharmacological experiments, when A2A
receptors were knocked down in a CD1 background model,
MDMA-mediated reinforcement was dramatically decreased
(although locomotor response was not altered) compared to wild-
type littermates (Ruiz-Medina et al., 2011), suggesting that the
lack of A2A receptors will increase resistance to psychostimulant
rewarding properties.

Human Studies
The genomic era has provided the opportunity to study
human polymorphisms and so to provide a tool to design
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personalized treatments according to observed mutations. Recent
meta-analysis of case-control studies of psychostimulant users
(cocaine, AMPH, and METH) have revealed that there is
a general down-regulation of the dopaminergic system, as
in psychostimulant users there is a decrease in DA release,
in DA transporter availability, and also in the levels of D2
and D3 receptors, concluding that DA function is down-
regulated both pre- and post-synaptically. This suggests that
restoring DA function must be an important goal in the
treatment of psychostimulant abusers (Ashok et al., 2017).
Due to the antagonistic relationship between dopaminergic
function and AR, some authors have studied the relationship
between A1 and A2A gene polymorphisms and susceptibility to
psychostimulant consumption/addiction. Most relevant human
studies are presented in Supplementary Table S3.

The first study designed to discern the influence of A1 and A2A
gene (ADORA1 and ADORA2A, respectively) polymorphisms
on inter-individual variability in AMPH response was carried out
by Hohoff et al. (2005). Using a sample of 99 healthy volunteers
(50 men and 49 women), who received AMPH or a placebo, the
authors reported that two ADORA2A polymorphisms (1976C/T
and 2592C/Tins) were associated with increases in reported
anxiety by participants after AMPH consumption (Hohoff
et al., 2005). Nevertheless, these results should be regarded
with caution, as the same research group could not reproduce
them using the same methodology for a larger sample of
individuals (Hart et al., 2013). In addition, a study by Kobayashi
et al. (2010) searching for the relationship between ADORA2A
variations and susceptibility to METH dependence/psychosis
reported that, in a population of 171 Japanese METH
dependent/psychotic patients (compared to 229 control subjects),
six ADORA2A polymorphisms were found. The authors
reported that only one single nucleotide polymorphism (SNP)
of the A2A receptor gene was significantly associated with
a subgroup of female patients (METH dependent/psychotic)
that consumed only METH and no other psychostimulants
or drugs (Kobayashi et al., 2010). Interestingly, that SNP
was 1976C/T (rs5751876), the same that Hohoff et al.
(2005) associated with anxiety after AMPH consumption,
and this SNP is a synonymous variant, meaning that it
cannot include amino acid substitutions. Finally, in the same
Japanese population as the previous study, seven ADORA1
SNPs were identified but none was specific to any subgroup of
METH dependent/psychotic patients, which would suggest that
ADORA1 polymorphisms would make little or no contribution
to METH vulnerability (Kobayashi et al., 2011); however,
further research is needed to confirm this supposition. In
addition, caffeine-induced anxiety has also been associated
with ADORA2A 1976C/T polymorphism in a sample of 102
individuals (Childs et al., 2008), although other ADORA2A
polymorphisms (such as 1976TT) also seem to be related to
caffeine-induced anxiety, and could also influence predominantly
women vulnerable to anxiety (Domschke et al., 2012; Gajewska
et al., 2013).

Despite the huge amount of evidence that connects AR
with psychostimulant-mediated actions, the translation of this
knowledge to the clinic has been quite slow in comparison with

other areas. A few reasons related to particular characteristics
of AR could be that AR receptors are widely distributed,
not only in the CNS but throughout the human body, with
adenosine signaling responsible for the regulation of a broad
spectrum of physiologic and pathologic actions (for a more
detailed discussion see Müller and Jacobson, 2011; Chen
et al., 2013). For this reason, it is experimentally difficult
to demonstrate the clinical effectiveness and safety of an
AR ligand. Therefore, only two clinical studies (registered
in website1) have studied psychostimulant dependence and
its link with AR (Supplementary Table S3). One of these
compared the responses of volunteers to acute caffeine (150
and 300 mg), AMPH (20 mg) and placebo between 13 cocaine
users and 10 healthy control subjects (NCT00733993). The
main target of the trial was to study caffeine-mediated effects
in cocaine users. Nevertheless, although caffeine and AMPH
produced a series of differential results across the cocaine and
control groups, these outcomes were not systematic, perhaps
due to limitations of the study itself (Lane et al., 2014).
On the other hand, the effect of an acute dose (100 mg)
of the A2A antagonist SYN115 was studied to elucidate the
effects of this antagonist on brain function and behavior
in a group of cocaine-dependent volunteers (NCT00783276).
Some subjective effects (consistent with stimulation) were
induced by SYN115 administration in cocaine users (Lane
et al., 2012). Furthermore, the administration of SYN115
to cocaine-dependent volunteers increased brain activation
in the orbitofrontal cortex, insula, and superior and middle
temporal pole, as measured by fMRI while the participants
were performing working memory tasks; this suggests that the
blockade of A2A receptors could mitigate cocaine-associated
neurobehavioral deficits (Moeller et al., 2012). In addition, no
clinically significant adverse cardiovascular events were reported
by the volunteers in either study (Lane et al., 2012; Moeller et al.,
2012).

Finally, epidemiological and preclinical data demonstrate that
gender differences exist for the three phases of drug abuse
(represented in Figure 1). The pattern of gender differences
establishes that women have lower prevalence of drug use
disorders involving both licit and illicit drugs (including alcohol,
sedatives, cannabis, tranquilizers, opioids, hallucinogens, and
cocaine use disorders). Nevertheless, women that begin to self-
administer drugs, even at lower doses than men do, escalate
faster to addiction and present higher rates of relapse compared
to men. These gender differences can be interpreted in terms
of sociocultural factors as well as biological/physiological factors
(reviewed in Lynch, 2006; Lev-Ran et al., 2013; Bobzean et al.,
2014; Becker and Koob, 2016). Men and women also differ
markedly in terms of psychostimulant use/abuse. For example
for METH consumption, women tend to begin METH use at
earlier ages and seem more dependent on METH consumption
than men, although women do suffer a decreased degree of
toxicity and respond better to treatment (Dluzen and Liu,
2008). In addition, women present more severe problems related
to cocaine intake, beginning to use cocaine at earlier ages,

1ClinicalTrials.gov
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and some pharmacological treatments for drug addiction have
poor outcomes among women compared to men (Kennedy
et al., 2013; DeVito et al., 2014). Several pathophysiological
studies have demonstrated that the reinforcing effect of cocaine
is strongly influenced by the female hormonal cycle; in fact,
some authors suggest that gender differences in addiction are
due to differences in the reinforcement pathways of neural
systems induced by ovarian hormones (Anker and Carroll, 2011;
Bobzean et al., 2014). These findings highlight the importance of
taking gender into account when analyzing psychostimulant use,
and designing prevention programs and personalized treatment
programs.

MECHANISMS OF ADENOSINE
RECEPTOR-MEDIATED PATHWAYS IN
DRUG ADDICTION

As noted in previous sections, it has been reported that AR
interact in an antagonistic way with DA receptors, A1 receptors
being colocalized in heteromeric complexes with D1 receptors,
and A2A receptors with D2 receptors, counteracting DA-induced
behavioral effects (Ferré et al., 1997; Ginés et al., 2000; Hillion
et al., 2002; Fuxe et al., 2007a). Specifically, the stimulation of
striatal D2 receptors is responsible for the locomotor, sensitizing
and rewarding effects of drugs of abuse such as cocaine and
amphetamines, and A2A receptor stimulation counteracts them
(Heffner et al., 1989; Popoli et al., 1994; Rimondini et al.,
1997; Poleszak and Malec, 2000, 2002a; Shimazoe et al., 2000;
Knapp et al., 2001; Bachtell and Self, 2009; Jastrzêbska et al.,
2014; Johnson and Lovinger, 2016). In general, the process of
addiction depends on an increase in DA neurotransmission
in the striatum and an activation of its receptors. Specifically,
cocaine induces its effects by indirectly increasing DA levels
and directly activating D2 receptors (Fuxe et al., 2007a; Ferraro
et al., 2012), thus enhancing dopaminergic signaling. The DA
receptors most involved are of the D2 subtype, as demonstrated
by their persistent striatal decrease following drug detoxification,
and their induction of relapse as a consequence of chronic drug
administration.

Interestingly, A2A and D2 receptors are co-expressed in the
striatum, forming heteroceptors, especially in the GABAergic
striatopallidal neurons, where A2A receptor activation increases
GABA release and counteracts the effects induced by D2
receptors. These receptors may be linked to each other in
two opposite ways. On the one hand, these receptor subtypes
may form heteromers, causing antagonistic interactions between
A2A receptors and D2 receptors at the AC level, related to
Gs/olf and Gi type V AC signaling. On the other hand,
at the membrane level, A2A receptor activation exerts a
counterbalancing effect to D2 receptor stimulation, by reducing
its affinity for DA and decreasing functional effects induced by
D2 receptor stimulation (Ferré et al., 1991, 1994). In support
of this relationship, transgenic animal models overexpressing
A2A receptors in the brain showed reduced D2 receptors in
the striatum. Accordingly, A2A receptor activation decreases
behavioral responses to psychostimulants, indicating that the A2A

receptor may represent a novel drug target for the treatment
of drug addiction. In particular, A2A receptor stimulation
decreases cocaine reward and seeking behavior, by reducing
D2 agonist affinity (Pintsuk et al., 2016). In the context of
the antagonistic interaction between A2A/D2 receptors, it has
also been reported that the D2 receptor, through coupling to
Gi, inhibits A2A receptor-mediated cAMP/PKA signaling, and
thus CREB phosphorylation and c-fos expression (Pinna et al.,
1997; Kull et al., 2000; Hillion et al., 2002). However, synergistic
A2A and D2 receptor interaction has been revealed, again at
the AC level in the striatum, linked to the overexpression
of activator of G protein (AGS3) and Gs/olf and Gi type
II/IV AC pathway. This relationship becomes important when
AGS3 is upregulated, such as during ethanol consumption,
and withdrawal from cocaine, ethanol or morphine, because
its activity stabilizes and inhibits the GDP-bound form of Gi,
at the same time increasing the βγ-dependent effect of Gs/olf
protein, producing a strong increase in cAMP-PKA signaling.
Even though in the striatum the first A2A/D2 antagonistic
relationship is predominant, due to the higher distribution of AC
V, when AGS3 is upregulated, such as during chronic exposure
to addictive drugs, the synergistic interaction between A2A and
D2 receptors becomes relevant, suggesting that A2A receptor
antagonists may represent a class of drug to combat addiction and
relapse (Ferré et al., 2008b). In addition, neuroprotection exerted
by A2A receptor agonists seemed to be mediated by an increase in
nuclear factor-κB (Kermanian et al., 2012, 2013; Soleimani et al.,
2012).

Furthermore, neuromodulation of neuronal networks
by systemic A2A receptor activation inhibits the reward
and motivational properties of cocaine targeting A2A/D2
heteroreceptors in the striatopallidal GABA pathway.
Microdialysis studies have related this effect to their increase
and reduction of GABAergic and dopaminergic transmissions,
respectively, in the NAc, as a consequence of an antagonistic
A2A/D2 interaction, both at the membrane cell surface and at
the intra-cellular level (Fuxe et al., 2007a; Trifilieff et al., 2011;
Franco et al., 2013; Wydra et al., 2015; Borroto-Escuela et al.,
2017). A2A/D2 heteromers involved in reward mechanisms
reside in GABAergic neurons of the ventral striatopallidal area
that are responsible for rewarding, motivational and seeking
effects induced by cocaine, as well as by food (Wydra et al.,
2013). However, both systemic treatment with an A2A receptor
antagonist and its direct injection into the NAc reduced relapse
in heroin-addicted rats and prevented DA increases in the NAc
shell induced by tetrahydrocannabinol (THC), but not those
mediated by cocaine (Yao et al., 2006; Justinova et al., 2011).
Furthermore, A2A receptor antagonists alone may behave like
psychostimulants by triggering cocaine-seeking behavior, thus
decreasing their utility in the treatment of drug-dependence.
Indeed, some findings on the addictive properties of A2A receptor
antagonists have reported that they substituted for cocaine in
baboons (Weerts and Griffiths, 2003), also inducing conditioned
place preference (Harper et al., 2006) and restored cocaine-
seeking behaviors in rats (O’Neill et al., 2014). In addition,
the blockade of A2A receptors increased DA in the striatal
network in cocaine-dependent subjects, which resulted in major
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prefrontal cortex stimulation (Moeller et al., 2012). However,
in rats trained to self-administer heroin, the administration of
A2A antagonists eliminated reinstatement (Yao et al., 2006),
opening the possibility of using A2A antagonists as therapeutic
ligands in the management of abstinence in the addiction of
some drugs. The effect of cocaine exposure in fetal brains and
the modulation of DA and adenosine effects have also been
addressed; specifically, from E8 to E14 embryonic days, cocaine
treatment induced changes in DA and adenosine signaling which
increased basal cAMP levels in the striatum and cerebral cortex.
This effect could be reverted by blocking A2A receptors (using
SCH58261), suggesting that A2A receptors could be considered
good candidates as targets to treat prenatal cocaine exposure-
related syndromes. Indeed, D2 and A2A receptors counterbalance
each other’s effects in the embryonic brain in a similar manner to
what happens in the mature brain (Kubrusly and Bhide, 2010).

A2A receptors, independent of their interaction with D2
receptors in A2A/D2 heteromers, are also present in other
complexes with mGlu5 and CB1 in striatal GABAergic neurons,
as well as with A1, mGlu5, and CB1 in striatal glutamatergic
terminals (Figure 2), that may be involved in the modulation
of reward, exerting an important role in the regulation of
dopaminergic and glutamatergic effects in addiction (Kalivas
and Volkow, 2011; Cahill et al., 2014; Zhang et al., 2014;
Johnson and Lovinger, 2016). In this sense, the blockade of A2A
receptors increased cocaine-mediated locomotor effects through
the activation of CB1 receptors in rat striatum (Tozzi et al.,
2012). It has also been demonstrated that an interaction between
A2A receptors and metabotropic glutamate 5 receptors (mGlu5)
in the striatum avoided METH-, but not cocaine-, induced
hyperactivity and rewarding behavior, making a combined
antagonism of A2A and mGlu5 receptors in the therapy of
METH addiction possible (Wright et al., 2016). Accordingly,
the influence of adenosine on glutamatergic transmission in the
striatal region has been reported (Fuxe et al., 2008). Finally,
it was reported that the functions and pharmacology of extra-
striatal A2A receptors must also be taken into account (Shen et al.,
2008), although their function could not be totally extrapolated
from the available data for striatal A2A receptors. In this sense,
the apparent controversial data obtained from pharmacological
studies and genetic approaches using KO animals (presented in
Supplementary Tables S1, S2) must be carefully exposed as the
genetic background effects in A2A KO animals may invalidate
them as a model to study A2A receptors (Filip et al., 2012). To
conclude, the exploitation of the full potential of AR as drug
targets will not only necessitate a full comprehension of AR-
mediated mechanisms, but will also require the availability of
ligands which let us distinguish among the different receptor
populations discussed in this paper (Popoli and Pepponi, 2012).

MISUSE OF LEGAL
PSYCHOSTIMULANTS

The consumption of legal psychostimulants has increased
over recent years. For example, the misuse of prescribed
psychostimulants, which are approved for the treatment of

attention deficit hyperactivity disorder, for weight control or for
the treatment of narcolepsy (Phillips et al., 2014), both by the
patients themselves, and by non-affected individuals, based on
misconceptions or simple lack of knowledge of the associated
risks, is becoming more and more common nowadays (Lakhan
and Kirchgessner, 2012; McHugh et al., 2015). This has been the
case for methylphenidate consumption among college students
as a study aid to enhance their academic performance (Maier
et al., 2013; Webb et al., 2013; Vrecko, 2015). Although their use
as a study aid is not the only reason why these substances are
consumed (Drazdowski, 2016), this is one historically significant
example, with reports of the use of amphetamines as study aids
dating back to 1937 (Strohl, 2011).

In addition, caffeine, which is the most consumed
psychoactive drug in the world, could also be of particular
importance when addressing psychostimulant or drug addiction-
related problems. Indeed, caffeine is commonly found as an
adulterant in the preparation of illicit drugs (Prieto et al.,
2016) and in energy drinks consumed in combination with
alcohol or other psychostimulants (Reissig et al., 2009; Vanattou-
Saïfoudine et al., 2012; Ferré, 2016). Interestingly, both
acute and chronic adverse effects rise following concurrent
consumption of caffeine and psychostimulant drugs. Specifically,
caffeine worsens the psychostimulant’s toxicity by increasing
hyperthermia, cardiotoxicity, and seizures, as well as influencing
the stimulatory, discriminative, and reinforcing effects of
psychostimulant drugs. These effects have been investigated for
the cases of MDMA and cocaine ingested with caffeine (Comer
and Carroll, 1996; Kuzmin et al., 1999; Vanattou-Saïfoudine
et al., 2012; Górska et al., 2017). The molecular mechanism
underlying the action of caffeine is the antagonism of AR, with
A1 and A2A subtypes the most involved. Indeed, it has been
reported that caffeine induces increased DA release through A1
receptor blockade (Okada et al., 1997). More recently, findings by
Ferré (2016) attribute caffeine potentiation of the psychomotor
activating and reinforcing effects of psychostimulants to the
existence of A2A/D2 heteromers, where the antagonism of A2A
receptors by caffeine reverts the inhibitory brake exerted by
adenosine on D2 receptor signaling. Therefore, as ingestion of
caffeine with cocaine and MDMA can significantly alter the
drug-induced effects, understanding the molecular mechanisms
underpinning this interaction will help to define correct
approaches for the management of these side effects and
toxicity.

CONCLUDING REMARKS AND FUTURE
PROSPECTS

Although the A2A receptor has been far more extensively studied
(refer to Supplementary Table S1 for summary), some papers
considered in this review do highlight the role of A1 receptor
activation to modulate psychostimulant-mediated effects. The
properties of A1 agonists, mainly CPA, as anxiolytics have been
previously reported in mice lacking A1 receptors (Giménez-Llort
et al., 2002), in animal models of cocaine or alcohol consumption
(Prediger et al., 2006; Hobson et al., 2013; O’Neill et al., 2014),
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and in classical behavioral studies (Jain et al., 1995). In
this sense, electrophysiological studies in basolateral amygdala
reported that application of CPA inhibits excitatory postsynaptic
currents and glutamate release (Rau et al., 2014). This evidence,
and the experiments reported in this review, will make A1
receptor signaling an important target for the development
of novel pharmacological treatments for the common anxiety-
like disorders reported during the process of drug-seeking and
withdrawal, and as such will produce lasting changes in relapse
susceptibility.

Evidence for the role of A2A receptors in psychostimulant-
mediated effects seems to be somewhat contradictory between
different pharmacological studies, experimental models
tested (particularly self-administration vs. experimenter-
administration) and genetic approaches using A2A KO
animals (refer to Supplementary Table S2 for more
detail). However, the overall analysis of the presented data
indicates that excitatory modulation of GPCR heteroreceptor
complexes, in this case A2A/D2 heteroreceptors using A2A
agonists, is a promising tool to counteract psychostimulant-
induced effects. Indeed, a prominent role in the modulation
of psychostimulant addiction attributed to adenosine is
mediated through A2A activation by complex mechanisms,
affecting various aspects of this phenomenon including
locomotor activity, discrimination, seeking behavior and
reward.

In this review, we have discussed current scientific evidence
mainly based on animal models of psychostimulant addiction,
and suggested promising candidates in the search for
pharmacological interventions. This is particularly important
because, nowadays, the main treatments against psychostimulant
addiction are focused on behavioral interventions (Phillips
et al., 2014), while AR pharmacology could be a powerful
weapon to modify the neurochemical alterations that occur
during psychostimulant addiction. AR are widely distributed
in the CNS where they mediate a myriad of functions and
interact with other neurotransmitter systems, which provides
an opportunity to modulate specific complex brain functions.
In addition, selective ligands are available for the different AR
subtypes, which increase the chances to achieve nuclei-specific
modulation, representing a pharmacological opportunity to
control addictive psychostimulant consumption and health-
related problems. Certainly, identifying strategies to fully
understand AR signaling in drug addiction may provide insight
into the factors contributing to consumption/craving/relapse
of abused psychostimulants, thus revealing novel therapeutic
approaches. We suggest that efforts could be made in
three main aspects of adenosine pharmacology affecting
psychostimulant addiction. Firstly, we have stated in this review
that there is broad experimental evidence that pharmacological
stimulation of A1 and A2A receptors may counteract the
effects induced by psychostimulants of abuse, but it is
also important to highlight that approaches including a
combination of AR drugs, like A1/A2A ligands, may help
form a more robust strategy when AR are the basis of
pharmacological interventions. Secondly, as stated in Section
“Mechanisms of Adenosine Receptor-Mediated Pathways

in Drug Addiction,” due to the ability of AR to form
homomers, heteromers and oligomers, it is mandatory to
obtain specific ligands capable of discriminating among
those different receptor populations. Thirdly, due to the
lack of information concerning the effects consequent
to alcohol and psychostimulant co-abuse, which is very
common in drug addiction (Althobaiti and Sari, 2016; Barrett
et al., 2016; Sánchez-López et al., 2017), it would be of
particular interest to investigate the role of AR in those
interactions.

AUTHOR CONTRIBUTIONS

CC developed the original idea. SG and CC designed the
review. IB-Y and SG prepared the images. SG and CC prepared
the tables. CC and SM edited and reviewed the final version
of the article. All listed authors contributed to writing the
article.

FUNDING

This work was supported by Universidad de Castilla-La Mancha
(GI20174050).

ACKNOWLEDGMENTS

IB-Y and CC would like to thank Prof. Mario Durán (UCLM)
and Prof. Emilio Ambrosio (UNED) for their generosity and kind
advice.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2017.00985/full#supplementary-material
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are not ligands of AR, the effects of those ligands are reported in this table as
authors suggests that their biological effects are mediated by AR.

TABLE S2 | Genetic manipulation of AR in murine models and
psychostimulant-induced effects. Genetic models derived from the manipulation of
AR used to explore the interaction between adenosine and psychostimulants are
shown. Arrows represent decrease (↓) and increase (↑). The symbol “≈” is used to
indicate no difference between the genetic model and the wild-type animal
(∗Unless other comparison is stated).

TABLE S3 | Most relevant human clinical studies targeting AR. Ordered by
publication date, most relevant clinical studies carried out in humans targeting the
relationship between AR and psychostimulant addiction are shown. For each
reference it is described the type of study, the number of subjects enrolled and its
main objective and results. The number of the clinical trial is provided for the
studies registered at ClinicalTrials.gov.
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