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Drug development is a lengthy and costly process that proceeds through several stages

from target identification to lead discovery and optimization, preclinical validation and

clinical trials culminating in approval for clinical use. An important step in this process

is high-throughput screening (HTS) of small compound libraries for lead identification.

Currently, the majority of cell-based HTS is being carried out on cultured cells propagated

in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time,

compelling evidence suggests that cells cultured in these non-physiological conditions

are not representative of cells residing in the complex microenvironment of a tissue.

This discrepancy is thought to be a significant contributor to the high failure rate in drug

discovery, where only a low percentage of drugs investigated ever make it through the

gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture

technologies that more closely resemble in vivo cell environments are now being pursued

with intensity as they are expected to accommodate better precision in drug discovery.

Here we will review common approaches to 3D culture, discuss the significance of 3D

cultures in drug resistance and drug repositioning and address some of the challenges

of applying 3D cell cultures to high-throughput drug discovery.

Keywords: three-dimensional cell culture, hydrogel, spheroid, high-throughput screening, extracellular matrix

INTRODUCTION

With low success rates in clinical trials, drug discovery remains a slow and costly business.
Currently, more than half of all drugs fail in Phase II and Phase III clinical trials due to a lack
of efficacy and about another third of drugs fail due to safety issues including an insufficient
therapeutic index (Arrowsmith and Miller, 2013). As attrition rates in drug discovery remain
high, there is an urgent need for new technologies that accommodate better precision in drug
discovery. Two of the most promising areas expected to improve the success rates in drug
development are the advance of precision medicine with the prospect of new biomarkers and
more precise drug targets and the availability of new preclinical models that better recapitulate
in vivo biology and microenvironmental factors. Pioneered in the 1980’s by Mina Bissell and her
team performing studies on the importance of the extracellular matrix (ECM) in cell behavior, it
is now well-accepted that culturing cells in three-dimensional (3D) systems that mimic key factors
of tissue is much more representative of the in vivo environment than simple two-dimensional
(2D) monolayers (Pampaloni et al., 2007; Ravi et al., 2015). While traditional monolayer cultures
still are predominant in cellular assays used for high-throughput screening (HTS), 3D cell cultures
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techniques for applications in drug discovery are making rapid
progress (Edmondson et al., 2014; Montanez-Sauri et al., 2015;
Sittampalam et al., 2015; Ryan et al., 2016). In this review, we
will provide an overview on the most common 3D cell culture
techniques, address the opportunities they provide for both drug
repurposing and the discovery of new drugs, and discuss the
challenges in moving those techniques into mainstream drug
discovery.

THE EXTRACELLULAR MATRIX (ECM)
AND OTHER MICROENVIRONMENTAL
FACTORS INFLUENCING THE CELL
PHENOTYPE AND DRUG RESPONSE

Extracellular Matrix Composition
Cell-based assays are a crucial element of the drug discovery
process. Compared to cost-intensive animal models, assays
using cultured cells are simple, fast and cost-effective as well
as versatile and easily reproducible. To date, the majority of
cell cultures used in drug discovery are 2D monolayers of
cells grown on planar, rigid plastic surfaces optimized for
cell attachment and growth. Over the past decades, such 2D
cultures have provided a wealth of information on fundamental
biological and disease processes. Nevertheless, it has become
clear that 2D cultures do not necessarily reflect the complex
microenvironment cells encounter in a tissue (Figure 1). One
of the biggest influences shaping our understanding of the
limited physiological relevance of 2D cultures is the growing
awareness of the interconnections between cells and the
extracellular matrix (ECM) surrounding them. Earlier thought
to mostly provide structural support, ECM components (for
a comprehensive review of ECM constituents see Hynes and
Naba, 2012) are now known to actively affect most aspects of
cellular behavior in a tissue-specific manner. ECM molecules
include matrix proteins (e.g., collagens, elastin), glycoproteins
(e.g., fibronectin), glycosaminoglycans [e.g., heparan sulfate,
hyaluronan (HA)], proteoglycans (e.g., perlecan, syndecan),
ECM-sequestered growth factors [e.g., transforming growth
factor-β (TGF-β), vascular endothelial growth factor (VEGF),
platelet-derived growth factor (PDGF), hepatocyte growth factor
(HGF)] and other secreted proteins (e.g., proteolytic enzymes
and protease inhibitors). Dynamic changes in these components
regulate cell proliferation, differentiation, migration, survival,
adhesion, as well as cytoskeletal organization and cell signaling in
normal physiology and development and in many diseases such
as fibrosis, cancer and genetic disorders (Bonnans et al., 2014;
Mouw et al., 2014). Thus, it is not surprising that the composition
of the ECM along with its physical properties can also influence a

Abbreviations: 2D, Two-dimensional; 3D, Three-dimensional; bFGF, Basic

fibroblast growth factor; CNS, Central nervous system; ECM, Extracellular

matrix; EGF, Epidermal growth factor; HA, Hyaluronan/hyaluronic acid; HCS,

High-content screening; HDP, Hanging drop plate; HGF, Hepatocyte growth

factor; HTS, High-throughput screening; IGF-1, Insulin-like growth factor 1;

iPSC, Induced pluripotent stem cell; MMP, Matrix metalloproteinase; NGF,

Nerve growth factor; PDGF, platelet-derived growth factor; PEG, Polyethylene

glycol; TGF-β, Transforming growth factor-β; TIMP, Tissue inhibitor of

metalloproteinase; VEGF, Vascular endothelial growth factor.

cell’s response to drugs by either enhancing drug efficacy, altering
a drug’s mechanism of action (MOA) or by promoting drug
resistance (Sebens and Schafer, 2012; Bonnans et al., 2014).

Much of our knowledge on how the ECM can affect
drug response and contributes to drug resistance comes from
studies on the interaction of cancer cells and the tumor
stroma in hematological malignancies and solid tumors. The
microenvironment of a tumor, comprised of non-tumor cells
(such as fibroblasts, endothelial cells, adipocytes, and immune
cells) and ECM, is highly variable and depends on tumor type
and location. Changes in ECM composition may influence drug
response through altered local drug availability, by affecting
expression of drug targets, or by changing intrinsic cellular
defense mechanisms such as increased repair upon DNA
damage or evasion of apoptosis (Sebens and Schafer, 2012;
Junttila and de Sauvage, 2013; McMillin et al., 2013; Holle
et al., 2016). Interactions between cells and ECM can also
lead to a heterogenous drug response with matrix-attached
outer cells being drug resistant and matrix-deprived cells
in the core of the tumor being sensitive (Muranen et al.,
2012). It is well documented that the adhesion between
cells and ECM proteins, mediated mainly by the integrin
system of transmembrane receptors, is an important factor
modulating the response to chemotherapeutics and targeted
therapies in oncology or to other therapeutic approaches such
as immunotherapy, radiation or radiochemotherapy (Holohan
et al., 2013; Holle et al., 2016; Dickreuter and Cordes, 2017;
Jiang et al., 2017). Other ECM components such as heparan
sulfate (Lanzi et al., 2017), hyaluronic acid (a physiological
ligand for the cell surface receptor CD44 often found in cancer
stem cell niches) (Bourguignon, 2016), soluble factors such as
matrix metalloproteinases (MMPs) (Candido et al., 2016), tissue
inhibitors of metalloproteinases (TIMPs) (DeClerck, 2000) and
various cytokines and growth factors (Holohan et al., 2013),
all have been shown to alter drug response and mediate drug
resistance in cancer. For this reason, modern drug strategies
take advantage of targeting the interactions between tumor
cells and tumor-promoting microenvironmental factors. Such an
approach requires cancer models that more faithfully mimic a
tumor’s microenvironment and makes cancer drug discovery the
fastest growing application for 3D cell cultures. However, changes
in drug response in response to ECM remodeling are not limited
to tumors. For example, insulin resistance in obesity is known
to be affected by EMC remodeling in adipose tissue (Williams
et al., 2015; Lin et al., 2016) and cytokines, growth factors and
ECMproteins play significant roles in the development of fibrotic
diseases in many tissues including liver, lung and kidney (Wynn
and Ramalingam, 2012; Bonnans et al., 2014; Handorf et al.,
2015), requiring genuine culture models that can mimic in vivo
conditions for such diseases.

Matrix Stiffness
The ECM is characterized by its biochemical composition and
its physical and mechanical properties with tissue stiffness being
important for the maintenance of homeostasis (Handorf et al.,
2015). Changes in ECM composition are often accompanied
by changes in physical cues such as rigidity, leading to
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FIGURE 1 | Cells and their microenvironment. Tissue-specific cells (red) encounter a complex microenvironment consisting of extracellular matrix (ECM) proteins and

glycoproteins (green), support cells that mediate cell-cell interactions (blue), immune cells (yellow), and soluble factors (white spheres). The tissue microenvironment is

further defined by physical factors such as ECM stiffness (indicated by increasing density of ECM proteins), and oxygen (indicated by red shading of tissue-specific

cells) and nutrient and growth factor gradients (indicated by density of white spheres).

bidirectional changes in cells and the ECM (Hynes, 2014;
Alcaraz et al., 2017; Zollinger and Smith, 2017). Cells can
respond to mechanical forces through changes in cell division,
morphogenesis, migration, signaling, gene expression, ion
channel gating, or vesicle formation and by further remodeling
of the ECM (Hamill and Martinac, 2001; Eyckmans et al.,
2011; Tyler, 2012). The relationship between tissue stiffness
and cell phenotype and cell function has been well described
in tumors and in the brain. Tumors are usually stiffer than
surrounding healthy tissue and tissue stiffness can contribute
to drug resistance (Holle et al., 2016; Bordeleau et al., 2017;
Lin et al., 2017). In the brain, tissue stiffness is a major
factor in development and brain plasticity (Tyler, 2012; Barnes
et al., 2017). With brain being one of the softest tissues in the
body, its ECM is characterized by a relative low abundance of
matrix proteins and a high prevalence of glycosaminoglycans,
proteoglycans and glycoproteins, some of which are brain-
specific. This leads to cell-ECM interactions that are not only
mediated by integrins, but also by a variety of tissue-specific
non-integrin receptors predominantly found in neurons and
glial cells (Barros et al., 2011). The stiffness of brain regions
varies in normal brain and mechanical properties change with

age (Happel and Frischknecht, 2016) and in a wide range of

neurological disorders, including multiple sclerosis, Alzheimer’s
disease, epilepsy and schizophrenia (Tyler, 2012; Murphy et al.,
2016). The unique composition of brain ECM together with its

well-established roles in neurotransmitter function and receptor
turnover, ion channel activity, synaptic plasticity and dendritic
spine formation (Frischknecht and Gundelfinger, 2012) gives rise

to the need of cell culture models that reflect the complexity
of the brain ECM surrounding neurons and glial cells such as
astrocytes, oligodendrocytes and microglia. With drug failure in
neurological disorders exceeding that in many other diseases, 3D
culture models are promising technologies to meet the challenge
of developing more realistic in vitro disease models for CNS drug
discovery.

Concentration Gradients
Within a tissue, concentration gradients exist for oxygen, pH
and soluble components such as nutrients and effector molecules
as well as cellular metabolites. These natural gradients are
influenced by the proximity to blood vessels, by the diffusion of
molecules through the ECM, and thus, the composition of the
ECM, and by the extent of cellular metabolism that regulates
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oxygen and nutrient consumption and the production of cellular
waste products. Molecular concentration gradients affect various
cell behavior, including cell motility, cell migration, and cell
signaling and are important in chemotaxis and morphogenesis
in normal development and in wound healing. Depending on
the proximity to a blood vessel, small, avascular tumors or
metastasis often display a gradient in oxygen levels leading to
a proliferative zone and a hypoxic core with quiescent cells
that are more resistant to chemotherapy, immunotherapy and
radiation therapy (Herrmann et al., 2008; Carrera et al., 2010;
Chouaib et al., 2017). Traditional monolayer cultures are not
amenable to studies of oxygen or nutrient gradients as all cells
are homogenously exposed to the tissue culture medium. In
in vivo models, hypoxia occurs naturally or can be induced.
However, these are complex models and are associated with
high cost and variability. Thus, 3D cultures such as spheroids,
cells encapsulated into 3D matrices and microdevice platforms
provide opportunities to understand oxygen, growth factor
and nutrient-mediated mechanisms leading to changes in cell
phenotype and alterations in drug response.

Stromal Cells
In vivo, cells are not only surrounded by ECM and ECM-
associated signaling molecules, but connective tissue also
contains stromal cells, including mesenchymal supporting cells
such as fibroblasts or adipocytes in epithelial tissue, glial cells in
neuronal tissue, cells of the surrounding vasculature and cells of
the immune system. Interactions with stromal cells can regulate
surrounding epithelial and neuronal tissue, contribute to disease
progression and influence the therapeutic response of cells. In
tumors, carcinoma-associated fibroblasts can stimulate tumor
cell growth, induce angiogenesis and promote inflammation and
stromal cells within cancer stem cell niches drive drug resistance
(Egeblad et al., 2010; Jones et al., 2016; Prieto-Vila et al., 2017).
During the angiogenic switch of tumors, vasculogenesis involves
the recruitment of endothelial cells, perivascular cells and bone
marrow-derived cells, a process that cannot only be exploited
for cancer therapy but for which the stromal environment is
an important factor in regulating drug response (Crawford and
Ferrara, 2009; Egeblad et al., 2010; Gacche, 2015; Lopes-Bastos
et al., 2016; De Palma et al., 2017). Inflammatory cells are
components of normal tissue and play an important role during
normal development. At the same time, stromal immune cells
contribute to a variety of diseases ranging from diabetes to
artherosclerosis, fibrosis, cancer and neurodegeneration (Wynn
et al., 2013). While targeting stromal immune cells is a promising
strategy for the development of novel therapeutics for a wide
range of diseases (Kersh et al., 2018) and recently has gained
wide attention in cancer drug discovery and for the therapy of
neurological diseases (Villoslada et al., 2008; Pitt et al., 2016;
Alsaab et al., 2017; Chitnis and Weiner, 2017; Kabba et al., 2017;
Pogge von Strandmann et al., 2017), immune cells also modulate
therapeutic response to drugs not directly targeting the immune
system (Kersh et al., 2018). In drug discovery, in vitro modeling
of such complex interactions will require multicellular 3D tissue
models with organoids currently being at the forefront for disease
modeling, drug screening and drug development.

3D Cell Culture Models
An ideal 3D culture model would simulate a tissue-
specific physiological or pathophysiological disease-specific
microenvironment where cells can proliferate, aggregate and
differentiate. Such a model would include cell-to-cell and
cell-to-ECM interactions, tissue-specific stiffness, oxygen,
nutrient and metabolic waste gradients, and a combination
of tissue-specific scaffolding cells (Griffith and Swartz, 2006).
Most 3D culture techniques, often categorized into non-scaffold,
anchorage-independent and scaffold-based 3D culture systems
as well as hybrid 3D culture models in which formed spheroids
are incorporated into a 3D polymeric scaffold (Ho et al., 2010),
currently do not meet all of the above criteria but rather
have their own strengths and limitations. Thus, one will need
to choose the most appropriate 3D cell culture model for a
specific application. For example, scaffold-based models more
readily mimic cell-to-ECM interactions while non-scaffold
based spheres of certain size are more amenable to cellular and
physiological gradients. Traditional 3D cell culture models such
as spinner flasks (Sutherland et al., 1970) or gyratory rotation
devices (Goodwin et al., 1993; Breslin and O’Driscoll, 2013)
provide large-scale methods to generate 3D spheres but lack
the possibility for miniaturization and are not compatible with
HTS methods. Many of the newer 3D culture systems (Figure 2)
allow for microscale 3D cultures and provide a first step toward
developing technologies for 3D cultures that are compatible with
automated high-throughput screening allowing for the discovery
of new drug candidates or repositioning of known drugs in
physiologically more relevant cell cultures.

Anchorage-Independent Technologies
Scaffold-free 3D culture methods rely on the self-aggregation
of cells in specialized culture plates, such as hanging drop
microplates, low adhesion plates with ultra-low attachment
coating that promotes spheroid formation and micropatterned
plates that allow for microfluidic cell culture. Spheroids, and
in particular multicellular spheroids (Mueller-Klieser, 1987;
Sutherland, 1988), recapitulate physiological characteristics of
tissues and tumors with regard to cell-cell contact, and if
synthesizing their own ECM, allow for natural cell-matrix
interactions. Spheroid size depends on the initial number of cells
seeded and spheroids can be grown to a size where they display
oxygen and nutrient gradients similar to tissue (Cukierman et al.,
2001; Doublier et al., 2012; Ekert et al., 2014). Neurospheres
are spheres of mixed cultures of progenitors, neuronal and glial
cells. While they consist mostly of poorly differentiated cells,
neurospheres allow for interactions between different cell types
of the CNS. These interactions play important roles in neuronal
differentiation, in the conversion of toxic compounds into active
metabolites, and in the secretion of apoptotic factors upon drug
treatment; thus neurospheres allow for CNS drug discovery
in a physiologically more relevant culture system (Campos,
2004; Moors et al., 2009). Tumor spheroid models derived from
established cell lines or obtained through ex vivo propagation
of tumors from individual patients (tumor organoids) have
been established for a variety of tumor types. Tumor spheroids
from patients retain their genome over time and can be used
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FIGURE 2 | Types of 3D cultures. In contrast to 2D monolayers or 2.5D cultures in which cells are plated on top of a thick layer of extracellular matrix (ECM), 3D

cultures form complex structures. Cells may form spheroids (anchorage independent systems) or can be encapsulated in cell culture scaffolds (anchorage

dependent). Microfluidic devices and micropatterned plates with ECM components, and cultures in which formed spheroids are embedded in ECM scaffolds, can

form hybrid culture systems that combine the advantages of both systems to form a complex microenvironment for 3D cell culture.

to perform drug screens and facilitate drug development in a
patient-centered manner (Stadler et al., 2015; Nath and Devi,
2016; Pauli et al., 2017; Weeber et al., 2017). The disadvantage
of spheroid cultures, whether tumor spheroids or neurospheres,
however, is the need for much optimization of culture conditions
to obtain uniform spheroids to enhance reproducibility and of
size not too large to prevent insufficient nutrient supply and
necrosis.

Hanging Drop Microplates
Hanging drop cultures are a well-known 3D culture technology
taking advantage of self-aggregation of cells into spheroids when
a surface is not available for cell attachment. Hanging drops
can be created in specialized plates with open, bottom-less wells
that are designed for the formation of a small droplet of media.
The droplet is big enough for cells suspended in the medium to
aggregate but small enough to prevent it from being dislodged
during manipulation. Cultured for several days, cells in hanging
drop plates (HDP) can form spheres that may represent tumor
layers in the vicinity of a capillary—a peripheral layer with
proliferating cells due to the closeness to the supply of oxygen
and nutrients, underlaid by an intermediate layer with quiescent
cells and an inner necrotic core. With this, spheres can mimic

inward diffusion to form oxygen and nutrient gradients, model
in- and outward diffusion of regulatory molecules, and provide
a reservoir for the accumulation of waste, accompanied by low
pH. The spheroid size can be controlled by the initial number of
cells suspended in the drops but may require transfer from an
HDP plate to a second non-attachment propagation plate with
higher media volume to ensure suitable culture conditions with
adequate nutrient supply and pH over longer times and to allow
for the formation of bigger spheres. Multi-cellular spheres may
be created by co-suspending several cell types or by consecutive
addition of different cell types to promote the formation of
separate cell layers. Embedding of formed spheres into ECM-

like scaffolds allows for the modeling of cell adhesion of the

outer layers of the spheres with ECM components surrounding
tumor tissues. Spheroids formed in HDP plates as well as in low

adhesion plates described below have evolved into a common
3D cell culture technology in cancer research, examples of
which are described in a comprehensive review by Stadler et al.
(2015). Hanging drop cultures have also found applications in
toxicity testing in hepatocytes (Shri et al., 2017) or in engineering
cardiac spheroids (Chitnis and Weiner, 2017). In a recent
study, human primary or induced pluripotent stem cell (iPSC)-
derived cardiomyocytes were co-cultured with endothelial cells
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and fibroblasts in a ratio similar to that found in vivo. The
cardiac spheroids mimicked important in vivo features of the
human heart biochemically and pharmacologically offering a 3D
cell culture model to study toxic effects in human heart tissue
(Polonchuk et al., 2017).

Spheroid Microplates with Ultra-Low
Attachment Coating (Low Adhesion Plates)
Similar to HDP cultures, spheroid microplates with round,
tapered or v-shaped bottoms, take advantage of the lack of
cell attachment surfaces to promote aggregation of cells and
spheroid formation. In contrast to HDP cultures, however, a
transfer of spheroids to a different plate for prolonged culture
or experimental procedures is often not necessary. 96- or 384-
well plates have an initial higher volume capacity than droplets
and eliminate steps that would involve the need for manipulating
spheroids. Low adhesion plates are often made of polystyrene
and treated with hydrophilic or hydrophobic coatings like the
non-adherent polymer poly-HEMA (Ivascu and Kubbies, 2006)
or natural polymers such as agarose (Friedrich et al., 2009;
Li et al., 2011). The coating reduces the attachment of cells
to the point that they preferably aggregate with each other to
form spheroids. Because of their larger volume, low adhesion
plates are well suited for multicellular culture and are frequently
used for studies in tumor cells. For example, when grown
on chitosan-hyaluronan substrates, multicellular spheres formed
from two non-small cell lung cancer (NSCLC) cells exhibited
more stem-cell like characteristics, an increase in cell motility and
expression of markers for epithelial-to-mesenchymal transition
(EMT), and the stem-cell like cells displayedmultidrug resistance
when compared to 2D cell cultures (Huang and Hsu, 2014).
Spheroids, but not 2D cultures, of patient-derived breast cancer
cells simulated tumor characteristics in vivo such as hypoxia,
dormancy, anti-apoptotic features and drug resistance (Imamura
et al., 2015). Another recent study took advantage of forming
brain tumor spheres in a mixed-neuronal culture environment
by co-culturing brain tumor cells with human fetal brain tissue
to develop an in vitro model for drug delivery assessments in
pediatric medulloblastoma (Iskandar et al., 2015).

Magnetic Levitation
Magnetic cell levitation is an emerging technique for the
formation of spheroids. To generate spheroids, cells are
preloaded with magnetic nanoparticles and then, using an
externally appliedmagnetic field, are floated toward the air/liquid
interface within a low adhesion plate to promote cell-cell
aggregation and spheroid formation. Magnetic levitation has
been used to generate spheroids from cells of various tissue, to
form multicellular mesenchymal stem cells spheroids and for
tissue engineering (Souza et al., 2010; Haisler et al., 2013; Tseng
et al., 2013; Lewis et al., 2016, 2017). Magnetically levitated
human glioblastoma cells closely recapitulated in vivo protein
expression observed in human glioblastoma tumor xenografts
(Souza et al., 2010) and recently, a high-throughput assay for
toxicity screening in 3D cell cultures using magnetic levitation
was described, making this a promising new technique in drug
discovery (Timm et al., 2013).

Scaffold-Based Technologies
Scaffold-based culture technologies provide physical support,
ranging from simplemechanical structures to ECM-likematrices,
on which cells can aggregate, proliferate and migrate. In 2.5D
cultures, cells are grown on top of a thick layer of ECM proteins
that allows for tissue-specific differentiation of a variety of cells.
Nevertheless, such cultures do not necessarily represent an in vivo
environment as cells are still exposed to tissue culture medium
and lack ECM contact on the surface (Shamir and Ewald,
2014). In scaffold-based 3D cultures, cells are embedded into the
matrix and the chemical and physical properties of the scaffold
material will influence cell characteristics. Scaffolds can be of
biological origin or they can be synthetic engineered tomimic key
properties of ECM such as stiffness, charge or adhesive moieties.
In some synthetic scaffolds, growth factors, hormones or other
biologically active molecules can be encapsulated to enhance
cell proliferation or to promote a specific cell phenotype. Thus,
when selecting a 3D cell culture scaffold for a certain application,
one will need to consider properties of the material that define
physical factors such as porosity, stiffness and stability in culture
as well as biological properties such as cell compatibility or
adhesiveness (Caliari and Burdick, 2016). Hard polymers can
provide the physical support found in a specialized tissue, such
as skin, tendons or bone and micropatterned surface microplates
can be designed for specific applications such as support of cell
networking.

Hydrogel Scaffolds of Biological Origin
Hydrogels are networks formed from dilute polymer chains with
given structure and properties, obtained either by intermolecular
(polymer network) or by interfibrillar crosslinks (supramolecular
fibrillary hydrogel network) (Tibbitt and Anseth, 2009; Li and
Deming, 2010; Yan and Pochan, 2010; Worthington et al., 2015).
Although hydrogels display solid-like material properties in the
quiescent state, with over 95% of water by volume, they can
indeed provide a cell-liquid interface (Sathaye et al., 2015).
Hydrogels may come from natural sources or can be synthetic,
with the possibility of mixing different hydrogel materials to
obtain hybrid hydrogels possessing new physical and biological
properties. Hydrogels from natural sources such as collagen,
fibrin or Matrigel are biocompatible, have natural adhesive
properties and sustain many physiological cell functions—
resulting in high cell viability, controlled proliferation or
controlled differentiation, and often a cell phenotype typically
observed in vivo. Collagen, with type I collagen being the most
abundant form, is the most widely used ECM protein for 3D
cell culture (Glowacki and Mizuno, 2008; Pathak and Kumar,
2011; Orgel et al., 2014). Altering collagen concentrations or
gelation temperature leads to changes in collagen hydrogel
stiffness allowing for controlled changes in cell proliferation
(Kutschka et al., 2006; Doyle et al., 2015) and, depending on
collagen stiffness, pancreatic cancer cells respond differently to
gemcitabine (Puls et al., 2017). Collagen, as well as Matrigel,
facilitate cell attachment through integrin receptors which leads
to activation of cell signaling pathways that control cell survival,
growth and differentiation (Yang et al., 2004; Kutschka et al.,
2006) and can modulate the response to therapeutic approaches,

Frontiers in Pharmacology | www.frontiersin.org 6 January 2018 | Volume 9 | Article 6

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Langhans Drug Discovery in 3D Cultures

including chemotherapy, immunotherapy and radiation (Holle
et al., 2016; Dickreuter and Cordes, 2017). For example,
comparison of drug response profiles of breast, prostate and
lung cancer cell lines revealed clear differences in dose response
curves to docetaxel and fulvestrant when cells were grown in
collagen and compared to 2D cultures or other 3D culture
systems such as low attachment plates and other natural
scaffolds, including alginate and Matrigel (Stock et al., 2016).
Multiple myeloma cells cultured in aMatrigel-based human bone
marrow-like microenvironment provide a system for preclinical
testing of chemotherapeutics that take into account adhesion-
mediated mechanisms of drug resistance (Kirshner et al., 2008)
and Matrigel-embedded 3D-tumoroids derived from tissue of
patients with colorectal cancer and lung cancer can provide
a 3D culture system for drug testing that contains not only
tumor cells but also immune cells from surrounding tissues
(Finnberg et al., 2017). Matrigel and similar products are a
gelatinous mixture of proteins and growth factors secreted by
Engelbreth-Holm-Swarm mouse sarcoma cells (Kleinman and
Martin, 2005). Since Matrigel is minimally processed, it provides
a good mimic of in vivo ECM (Poincloux et al., 2011; Wong
et al., 2011). Matrigel consists mostly of laminin and collagen
as well as a small fraction of entactin (a basement membrane
glycoprotein) and contains several growth factors, including EGF
(epidermal growth factor), bFGF (basic fibroblast growth factor),
NGF (nerve growth factor), PDGF, IGF-1(insulin-like growth
factor 1) and TGF-β (Hughes et al., 2010). Since Matrigel is
processed from natural sources, batch-to-batch variability of the
purified scaffold may interfere with pharmacological studies of
drug response. A growth-factor reduced formulation of Matrigel
is available, allowing for a 3D culture setup with more defined
properties (Wallace and Rosenblatt, 2003). Nevertheless, due to
the natural origin and manufacture from live tissue, collagen
and Matrigel are complex scaffolds that contain besides their
major constituents many other components and are therefore
chemically not well defined (Hughes et al., 2010; Gill and West,
2014). While collagen and Matrigel both support enhanced
interaction of cells with ECM proteins, due to their different
composition, cells embedded into collagen or Matrigel can
display different phenotypes (Borlak et al., 2015). Collagen and
Matrigel are available in liquid form and require handling at cold
temperatures to avoid premature gelation. The need for handling
these hydrogels at low temperatures makes them unsuitable for
common liquid handling equipment used for high-throughput
screens in drug discovery (Ryan et al., 2016; Worthington
et al., 2017). Fibrin is obtained through polymerization of
fibrinogen, a plasma protein, and is a natural polymer formed
during wound coagulation. While it has been used for in
vitro cultures, including angiogenesis studies, biomechanical
studies and mesenchymal stem cell culture, its high susceptibility
to protease-mediated degradation limits its use in long-term
cultures (Ahmed et al., 2008; Anitua et al., 2013; Kural and
Billiar, 2013; Brown and Barker, 2014; Caliari and Burdick, 2016).
Gelatin is a partial thermally and chemically degraded product
of collagen and can be stabilized by covalent modification.
The possibility of covalent linking of functional groups also
allows for the production of specialized gelatin gels, that for

example can be photoreactive (Banks et al., 2015) or oxygen-
controllable to form hypoxic gradients in 3D cultures (Lewis
et al., 2017). Another natural hydrogel is alginate that is
isolated from the cell walls of brown algae. The mechanical
properties and rapid degradation of the alginate hydrogel
somewhat limits its application for 3D cultures but alginate
hydrogels have found their use as 3D-printed scaffolds for
specialized tissue such as vascular tissue, bone and cartilage
(Axpe and Oyen, 2016; Joddar et al., 2016; Silva et al.,
2017).

Synthetic Hydrogels
When well-designed, synthetic hydrogels are ideal materials to
use as 3D cell culture scaffolds as they can mimic biological
properties of ECM, be functionalized with defined adhesive
moieties, include proteolytic sites and encapsulate growth
factors. At the same time, they are chemically and physically
well-defined and often have tunable mechanical properties to
achieve a desired stiffness or porosity (Worthington et al.,
2015; Zhang and Khademhosseini, 2017). Synthetic hydrogels
can be categorized into non-natural and natural polymers.
Polyethylene glycol (PEG), polylactic acid (PA), polyglycolic acid
(PGA) and other unnatural polymer hydrogels (Raeber et al.,
2005; Zhang and Khademhosseini, 2017) have the advantage
of being comparatively inexpensive, are relatively inert, have
reproducible material properties that are usually easy to tune
through synthesis or crosslinking, and are reproducible, thereby
supporting the acquisition of consistent results. On the other
side, however, unnatural polymers lack adhesive moieties found
in natural ECM and require crosslinking of biological peptides
to the scaffold to improve functionality (Weber et al., 2007;
Kraehenbuehl et al., 2008). PEG gels and their derivatives have
been used in a variety of 3D cell culture applications including
stem cell differentiation, cell invasion and angiogenesis (Lutolf
et al., 2003; Moon et al., 2010; Zhu, 2010; Caiazzo et al., 2016).
Synthetic natural polymers share with non-natural polymers
the advantage of consistent and tunable material properties
for reproducible results. Due to the biological nature of their
naturally occurring moieties, natural synthesized hydrogels are
highly compatible with encapsulation of cells for 3D cell culture.
However, material cost can be high due to complex chemical
synthesis requirements. One of the best characterized natural
hydrogels is hyaluronic acid (HA)—a glycosaminoglycan that can
be modified with functional groups, allowing for the formation of
hydrogels with diverse properties for a wide range of applications
(Burdick and Prestwich, 2011; Baeva et al., 2014; Goubko
et al., 2014). Small peptide-based hydrogel materials are an
evolving field in materials science and provide a new 3D cell
culture technology that is amenable to drug discovery studies.
Recently, a peptide-based 3D mesenchymal stem cell co-culture
model of the multiple myeloma bone marrow niche has been
described where patient-derived tumor cells displayed resistance
to chemotherapeutics that was reflective of clinical resistance and
thus, may provide a technology platform for drug testing and
precision medicine in multiple myeloma patients (Jakubikova
et al., 2016). While diverse in primary structure, the peptides
have a similar overall ability to form nanofibrillar structures with
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intramolecular folding and intermolecular assembly triggered by
physical or chemical cues. Peptide hydrogels are highly versatile
and material properties can be modulated by substituting amino
acids, extending or shortening the peptide sequence, or by the
addition of functional epitopes (Branco et al., 2011; Yang and
Zhao, 2011; Li et al., 2013; Wang et al., 2013; Worthington
et al., 2015). Current peptide hydrogels that are most successfully
used for 3D culture (reviewed in Worthington et al., 2015) are:
the yeast-derived peptides EAK16 and RADA16 (Zhang et al.,
1992, 2005); the peptides Fmoc-FF (Fluorenylmethoxycarbonyl-
diphenylalanine) and Fmoc-RGD (Fluorenylmethoxycarbonyl
arginine–glycine–aspartic acid) (Jayawarna et al., 2006; Mahler
et al., 2006; Smith et al., 2008; Orbach et al., 2009; Zhou et al.,
2009); the peptide hydrogel h9e that is based on the fusion of
functional domains from a silk protein and a human calcium
channel (Huang and Sun, 2010; Huang et al., 2011, 2013); FEFK
and FEFKEFK, which form hydrogels in the presence of a
metalloprotease (Toledano et al., 2006; Guilbaud et al., 2010); and
the MAX1 peptide that gelates under physiological conditions,
and like h9e, has shear-thinning properties (Schneider et al.,
2002; Haines-Butterick et al., 2007). A single acid substitution
derivative of the MAX1 peptide, MAX8 (Haines-Butterick et al.,
2007), with reduced gelation times has recently been reported
to be compatible with liquid handling equipment making it
suitable for high-throughput drug discovery (Worthington et al.,
2017).

Polymeric Hard Scaffolds, Micropatterned
Surface Microplates, and Microfluidic
Devices
Microfabrication technology allows for the fabrication of an
endless array of imprinted micropatterns on the surface of
plates. Coated for low adhesion, the micro-patterned plates can
be designed to promote cell-to-cell adhesion for scaffold-free
microsphere formation within the confinement of a microspace.
Micropatterned plates can also be manufactured to provide
a scaffold-based 3D culture environment to promote cell
attachment for the formation of contiguous networks along
surfaces and organoids. Polymeric pre-fabricated scaffolds, such
as porous discs, electrospun scaffolds or orthogonally layered
polymers, are physical supports that can be an inert matrix or
designed tomimic in vivo ECMonwhich cells can attach, migrate
or fill scaffold compartments to form 3D cultures carrying a
geometric configuration (Knight et al., 2011). Currently, the
most common applications for such scaffolds are for tissue
regeneration recreating the natural physical and structural
environment of bone, ligaments and cartilage, for skin, vascular,
skeletal muscle or CNS tissue and for preclinical in vitro 3D
culture testing of tumoroids or engineered tissues (organoids).
In particular, tumoroids derived from patient samples are
promising techniques for drug screening and drug development
in precision medicine (Stadler et al., 2015; Nath and Devi, 2016;
Pauli et al., 2017; Weeber et al., 2017). Recently, a microspun
3D fibrous scaffold for tumoroid formation was developed as
a platform for andicancer drug development (Girard et al.,
2013). When compared to 2D monolayers, HepG2 liver cells

grown on 3D porous polystyrene scaffolds had greater cell
viability and formed bile canaliculi, and at the same time
were less susceptible to cytotoxic compounds (Bokhari et al.,
2007). Microfluidic devices are designed for cell cultures under
perfusion and allow for steady supplies of oxygen and nutrients
while at the same time removing waste. Microfluidic devices
can be built to mimic shear forces found in vivo in cells
that are exposed to blood flow like endothelial cells. A barrier
between compartments can be physically incorporated into
the device or it can consist of a non-physical barrier such
as a supporting matrix mimicking ECM. Microfluidic devices
allow for the continued application of drugs or other soluble
molecules such as growth factors, or the exchange of fluid
between different compartments that may harbor different types
of cells. Microfluidic devices can be used for long-term tumoroid
cultures (AwYong et al., 2017) andMontanez-Sauri, et al recently
described an automated microfluidic ECM screening platform
with the capability for small molecule screening (Montanez-
Sauri et al., 2013). Microengineering of microfluidic devices also
allows for the development of organ-on-a-chip platforms with
3D tissue models having been described for a variety of organs
including skin, muscle, liver and neural tissue, bridging in vitro
cell culture and in vivo animal models. With the advancement
of these 3D culture technologies, organs-on-a-chip are poised
to provide advanced tools for drug development and high-
throughput screening in the future (Alépée et al., 2014; Pamies
et al., 2014; Abaci et al., 2017).

Organoids
Originally, the term organoid referred to primary cultures of
tissue fragments separated from the stroma within 3D gels
to from organ-like structures (Simian and Bissell, 2017). Over
the past decade, the term organoid has broadened and now
encompasses a variety of tissue culture techniques that result in
self-organizing, self-renewing 3D cultures derived from primary
tissue, embryonic stem cells, or induced pluripotent stem cells
that have a similar functionality as the tissue from which
the cells originate (Lancaster and Knoblich, 2014; Shamir and
Ewald, 2014; Clevers, 2016; Fatehullah et al., 2016; Kretzschmar
and Clevers, 2016; Simian and Bissell, 2017). While current
organoid cultures often still face limitations, such as the lack
of a native microenvironment (e.g., ECM composition, growth
factor gradients) or the lack of interactions with immune cells
and, consequently, the inability to model immune responses,
organoids derived from human cells have the potential to provide
near-physiological models to study human development and
human diseases. With this, more advanced organoid cultures
will allow for developing screening platforms for drug discovery
that are more cost-effective than animal models and can
provide precise models of human diseases that cannot be
recapitulated in animals. Organoid cultures have been described
for a variety of organs, including various normal tissue and
disease models of the digestive tract, prostate, lung, kidney
and the brain (Clevers, 2016; Fatehullah et al., 2016; Dutta
et al., 2017). Currently, transcriptome profiling is one of
the most common downstream applications of organoids but
applications in drug discovery and precision therapy are evolving
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(Fatehullah et al., 2016; Liu et al., 2016). For example, kidney
organoids have been used for toxicity screening in response to
cisplatin (Takasato et al., 2015), an organoid model of cystic
fibrosis for drug screening has been described (Dekkers et al.,
2013) and a high-throughput platform for intestinal stem cell
niche co-cultures has been developed (Gracz et al., 2015).
Beyond such organoids, tumoroids derived from patient cancer
tissues that contain tumor cells and stroma cells of the tumor
microenvironment are poised to provide advanced and more
realistic 3D culture platforms for personalized drug evaluation
and development (Xu et al., 2014; Stadler et al., 2015; Pauli
et al., 2017). Further, tumoroids that retain tissue identity,
paired with organoids of adjacent healthy tissue, can lay the
foundation to construct tumor organoid biobanks as repository
for drug screening and development (van de Wetering et al.,
2015).

Applications of 3D Cultures in Drug
Discovery and Drug Repositioning
In the past, cell-based drug discovery emphasized chemical
screens in well-characterized cell monolayers, and mostly in
cancer drug discovery, in large panels of authenticated cell
lines (Smith et al., 2010; Barretina et al., 2012). However,
in recent years, 3D cell culture systems that model in vivo
microenvironmental aspects, and are therefore expected to yield
results with higher predictive value for clinical outcome, are
becoming more prominent in drug discovery. In addition,
authentic 3D cell culture models using human cells can
circumvent drawbacks of mouse models that, aside from the
high cost and ethical considerations, are not always able to
accurately recapitulate human diseases or capture side effects
of drugs such as liver toxicity (Sivaraman et al., 2005; Aparicio
et al., 2015). In order to enhance the drug discovery process,
aid in the development of new pharmacological approaches or
to be useful in vitro toxicity screens, 3D cell culture models will
need take into account that the response to a broad spectrum
of drugs varies not only with a particular cell line or tumor
type, but also with its surrounding stroma. The response to
therapeutic compounds may range from drug resistance to
enhanced sensitivity based on tissue-specific composition of the
ECM, the interaction with stromal cells and the presence of
immunomodulatory molecules (Turley et al., 2015; Johansson
et al., 2016; Stock et al., 2016). While research into new 3D
culture technologies that take into account the functional unit of
tissues such as organoids has gained great momentum (Lancaster
and Knoblich, 2014; Shamir and Ewald, 2014; Clevers, 2016;
Kretzschmar and Clevers, 2016; Simian and Bissell, 2017), much
work remains to be done to develop systems that accurately
represent in vivo conditions and disease pathology. At the
same time, 3D cell cultures open up the door to model the
cell culture environment to promote a desired cell behavior.
Models focused on enhanced cell motility, induction of cell
dormancy, promotion of cell differentiation in epithelial cells and
neurons, the support of stem cell-like properties or a desired
microenvironment like that of a metastatic niche (Valastyan
and Weinberg, 2011; Sleeman, 2012), enable the possibility

of more specifically targeting certain cell behavior in drug
discovery. In addition, cancer drug discovery combining 3D cell
culture technology with primary patient-derived tumor cells (Ma
et al., 2015), and molecular profiling data or the formation of
3D organoid banks of tumor cells that are representative of
molecular tumor subtypes (van de Wetering et al., 2015), may
open the door for preclinical screening of a personalized panel of
drug candidates to improve outcome and reduce side effects of
cancer therapy.

Limitations of 3D Cell Culture Technologies
in Drug Discovery
High-throughput screening (HTS) to determine the biological
or biochemical activity of chemically diverse small compound
libraries or high-content screening (HCS) used to identify
compounds that alter a cell’s phenotype is an integral part of
drug discovery. Application of 3D cell culture in HTS and
HCS, however, remains a challenge (Rimann and Graf-Hausner,
2012; Edmondson et al., 2014; Montanez-Sauri et al., 2015; Ryan
et al., 2016). Aside from the question of biological and disease
relevance, labor intensiveness and material cost, scalability
to 384- and 1,536-well plates, reproducibility, incorporation
into an automated screening setup and compatibility with
currently available assay and detection methods are areas of
concern (Janzen, 2014). In HCS, one of the biggest challenges
to overcome will be the visualization of 3D structures with
automated imaging systems. Optical light scattering, light
absorption and poor light penetration with prolonged imaging
acquisition times, and imaging of multicellular cultures and
cells grown within complex geometrical structures, currently
limit the applications of 3D cultures in HCS. One of the
biggest challenges of incorporating 3D cultures into HTS
will be to design systems that are compatible with liquid
handling equipment. The hanging drop culture is the spheroid
technology that has most advanced toward use in HTS. HDPs
are available in 96- and 384-well formats but they require
significant expertise in the use of the technology within a HTS
setup. Collagen and Matrigel are commonly used hydrogels, but
their natural origin limits the possibility of mimicking different
tissue environments, the variations of different preparations
impacts reproducibility, and their gelation properties prevent
the handling at ambient temperature. Despite these challenges,
HTS-compatible screening platforms are emerging. Synthetic
matrices, while costly, have the advantages of providing defined,
designed, and tunable material properties and allow for the
controlled inclusion of biochemical cues. Self-assembling peptide
hydrogels do not require covalent crosslinking reactions and can
assemble into a defined hydrogel at physiological conditions. We
have recently described an injectable hydrogel that flows under
shear and is compatible with standard liquid automated handling
equipment to form reproducible 3D cultures in 384-well plates
(Worthington et al., 2017). The next step will be to build a 3D
culture system that is versatile enough to enter mainstream drug
discovery but can easily be fine-tuned to meet the tissue-specific
characteristics of an in vivo-like microenvironment.
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CONCLUSIONS

The field of 3D cultures has grown exponentially in the past few
years and offers considerable promise with broad applications
in drug development and toxicity testing for a wide variety
of diseases ranging from cancer to fibrosis to cardiac and
neurological disorders. The major challenge will remain the
creation of 3D cultures which are biologically relevant and
recapitulate microenvironmental factors that resemble in vivo
tissue and disease pathology. Given that the ECM alone has
more than 300 biochemical constituents not including cellular
components, this remains a daunting task. Nevertheless, with
an increasing list of available 3D cell culture methods, we can
take advantage of technologies that are most appropriate for a
particular purpose such as mimicking a tumor environment or
brain-specific matrix with appropriate tissue stiffness, recreation
of a tissue barrier, or other specialized technical application.
By combining biomedical engineering knowledge in the design

of 3D scaffolds with knowledge of disease mechanism and
biomarkers and genomic data, informed decisions can be
made for the specific design of biomimetic scaffolds that
most closely recapitulate factors promoting a particular disease
phenotype, moving 3D drug discovery into the age of precision
medicine.
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