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Early growth response-1 (Egr-1), a transcription factor which often underlies the
molecular basis of myocardial ischemia/reperfusion (I/R) injury, and oxidative stress, is
key to myocardial I/R injury. Silent information regulator of transcription 1(SIRT1) not only
interacts with and is inhibited by Egr-1, but also downregulates reactive oxygen species
(ROS) via the Forkhead box O1(FOXO1)/manganese superoxide dismutase (Mn-SOD)
signaling pathway. N-n-butyl haloperidol iodide (F2), a new patented compound,
protects the myocardium against myocardial I/R injury in various animal I/R models
in vivo and various heart-derived cell hypoxia/reoxygenation (H/R) models in vitro.
In addition, F2 can regulate the abnormal ROS/Egr-1 signaling pathway in cardiac
microvascular endothelial cells (CMECs) and H9c2 cells after H/R. We studied whether
there is an inverse Egr-1/ROS signaling pathway in H9c2 cells and whether the
SIRT1/FOXO1/Mn-SOD signaling pathway mediates this. We verified a ROS/Egr-1
signaling loop in H9c2 cells during H/R and that F2 protects against myocardial H/R
injury by affecting SIRT1-related signaling pathways. Knockdown of Egr-1, by siRNA
interference, reduced ROS generation, and alleviated oxidative stress injury induced by
H/R, as shown by upregulated mitochondrial membrane potential, increased glutathione
peroxidase (GSH-px) and total SOD anti-oxidative enzyme activity, and downregulated
MDA. Decreases in FOXO1 protein expression and Mn-SOD activity occurred after
H/R, but could be blocked by Egr-1 siRNA. F2 treatment attenuated H/R-induced
Egr-1 expression, ROS generation and other forms of oxidative stress injury such
as MDA, and prevented H/R-induced decreases in FOXO1 and Mn-SOD activity.

Nuclear co-localization between Egr-1 and SIRT1 was increased by H/R and decreased
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by either Egr-1 siRNA or F2. Therefore, our results suggest that Egr-1 inhibits the
SIRT1/FOXO1/Mn-SOD antioxidant signaling pathway to increase ROS and perpetuate
I/R injury. F2 inhibits induction of Egr-1 by H/R, thereby activating SIRT1/FOXO1/Mn-
SOD antioxidant signaling and decreasing H/R-induced ROS, demonstrating an
important mechanism by which F2 protects against myocardial H/R injury.

Keywords: N-n-butyl haloperidol, reactive oxygen species, Egr-1, SIRT1, hypoxia/reoxygenation

INTRODUCTION

Ischemic heart disease is a major cause of mortality worldwide
(Roger et al., 2011). Myocardial ischemia and reperfusion (I/R)
injury is a common pathological physiological phenomenon in
ischemic heart disease and cardiac surgery, typically arising from
restoration of oxygenated blood flow after ischemia, which may
lead to aggravated metabolic disorders, structural damage, and
even irreversible damage (Thiel and Cibelli, 2002). However,
its pathogenesis is incompletely understood. Myocardial I/R
injury is a multifactorial process in which oxidative stress,
inflammation, and intracellular Ca2+ overload contribute. Early
growth response protein 1 (Egr-1), a transcription factor, has been
found to play a role in multiple pathways, such as differentiation,
proliferation, and apoptosis (Shin et al., 2010; Zwang et al.,
2012). Many studies suggest that Egr-1 is a master switch for
various pathways of reperfusion injury because its overexpression
is closely related to I/R injury (Yan et al., 2000; Frank et al., 2012;
Wu et al., 2013).

Numerous studies have shown that reactive oxygen species
(ROS)-induced oxidative stress is key to myocardial I/R
injury (Murphy and Steenbergen, 2008; Radak et al., 2011;
Minamino, 2012). Both Egr-1 and ROS are closely related
to I/R injury, and our previous research has shown that
the ROS/MAPK/Egr-1 signaling pathway is activated during
hypoxia/reoxygenation (H/R) models of myocardial and cardiac
microvascular endothelial cells (CMEC) (Zhang et al., 2015;
Lu S. et al., 2016). Bek’s group reported that over-expressed Egr-
1 in proximal tubule epithelial cells downregulates expression of
Cu/Zn-SOD and Mn-SOD, resulting in increased tissue ROS (Bek
et al., 2003). Meanwhile, our previous work shows that oxidative
stress damage, as assessed by SOD activity and MDA, could be
alleviated by expression of an Egr-1 antisense oligonucleotide
within in vivo and in vitro I/R models (Zhang et al., 2007). Thus,
Egr-1 may affect ROS in the myocardium by regulating SOD
activity or by other mechanisms. Therefore, we speculated an
inverse activation of the Egr-1/ROS signaling pathway during
myocardial I/R via a ROS/Egr-1 signaling loop between Egr-1 and
ROS in myocardial I/R injury based on former study results.

N-butyl haloperidol iodide (F2), a novel compound derived
from haloperidol, has been shown to antagonize myocardial I/R
injury by reducing infarct size and leakage of various enzymes,
improving cardiac function, and reducing oxidative stress in
various animal models in vivo and various heart-derived cells
models in vitro (Gao et al., 2004, 2010; Zhou et al., 2004; Zhang
et al., 2006; Lu B. et al., 2016). The protective mechanism of F2
might be associated with blocking L-type calcium channels and
suppressing the overexpression of Egr-1. If there is an ROS/Egr-1

positive feedback loop in myocardial I/R, the protective effect of
F2 should be related to regulation of this ROS/Egr-1 loop.

Silent information regulator of transcription 1 (SIRT1) is
sirtuin family member of class III histone deacetylases, which
depends on nicotinamide adenine dinucleotide (NAD+) (Haigis
and Sinclair, 2010; Hsu et al., 2010). Many studies show that
activation of SIRT1 protects against I/R injury (Brunet et al., 2004;
Tanno et al., 2010; Lempiainen et al., 2012; Shin et al., 2012).
SIRT1 activates Forkhead box O1 (FOXO1) by deacetylation of
acetylated FOXO1 (Ac-FOXO1), which upregulates expression of
antioxidant enzymes, such as manganese superoxide dismutase
(Mn-SOD) and glutathione peroxidase (GSH-px), decreases ROS
and resists oxidative stress (Daitoku et al., 2004; Tong et al.,
2013). Egr-1 can induce expression of SIRT1 by activating the
SIRT1 promoter. However, a recent study in skeletal muscle
cells shows that Egr-1 can physically interact with and inhibit
the activity of SIRT1 (Pardo and Boriek, 2012). Therefore,
we assumed that overexpressed Egr-1 may affect ROS by
regulating SIRT1 in myocardium subjected to I/R, and the
mechanism of overexpressed Egr-1 on the antioxidant activity
of SIRT has been our research focus: (1) whether the activity
of SIRT1 increases because Egr-1 activates SIRT1’s promoter
when myocardium is suffering from I/R; (2) whether the activity
of SIRT1 decreases because overexpressed Egr-1 directly binds
to SIRT1 protein. Taken together, we studied whether there is
an Egr-1/ROS signaling pathway in H9c2 cells after H/R, and
whether SIRT1-related signaling (SIRT1/FOXO1/Mn-SOD) is
involved in this pathway. Besides, we explored whether F2, which
inhibits Egr-1, reduces H/R-induced cardiomyocyte injury by
regulating SIRT1/FOXO1/Mn-SOD signaling pathway.

MATERIALS AND METHODS

Reagent Preparation
SiRNAs were purchased from Shanghai Genepharma Co., Ltd.
(China). Lipofectamine 2000 was purchased from Invitrogen
(United States), Opti-MEM media was purchased from Life
Technologies (United States). 2′,7′-Dichlorofluorescein acetyl
acetate (DCFH-DA) was purchased from Sigma–Aldrich
(United States). F2 was synthesized in our laboratory and
dissolved in DMSO (≤0.1%). The following primary antibodies
were purchased from Cell Signaling Technology (United States):
rabbit anti-Egr-1, mouse anti-SIRT1, and rabbit anti-FOXO1
antibody. Rabbit anti-Ac-FOXO1 antibody was purchased
from Santa Cruz Biotechnology (United States). Mouse β-actin
antibody, anti-rabbit secondary antibodies and anti-mouse
secondary antibodies were purchased from Wuhan Boster
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Biotechnology Limited Company (China). Alexa Fluor 488
goat anti-mouse IgG and Alexa Fluor 594 goat anti-rabbit IgG
were purchased from Life Technologies (United States). All
reagent kits for real-time RT-PCR were purchased from TaKaRa
Biotechnology (China). JC-1 was purchased from Beyotime
Biotechnology (China).

H9c2 Cell Culture and H/R Protocol
The H9c2 cell line was purchased from the American Type
Culture Collection and cultured in DMEM (Gibco, United States)
supplemented with 10% fetal bovine serum (Biowest, France)
at 37◦C with 5% CO2. To induce hypoxia, H9c2 cells were
cultured in hypoxic solution (137 mM NaCl, 12 mM KCl,
0.49 mM MgCl2·6H2O, 0.9 mM CaCl2, 4 mM HEPES, and
20 mM sodium lactate) and placed in an air-tight chamber
gassed with pure N2 for 2, 4, 6, or 8 h at 37◦C, after which
the hypoxia solution was then replaced with fresh oxygenated
culture medium, and the culture vessels were transferred to a
normoxic incubator (5% CO2) at 37◦C for 1 h of reoxygenation.
F2 (1 × 10−6 M) was prepared in normal medium (pre-
incubated 30 min), hypoxia solution, and/or reoxygenation
medium (F2+H/R group).

Egr-1 Small Interfering RNA (siRNA)
Cells were cultured in 24-well plates and transfected with
Egr-1-siRNA using Lipofectamine 2000. First, 3.75 µL of
Egr-1-siRNA (20 µM) was mixed with Opti-MEM media, and
Lipofectamine 2000 was mixed with Opti-MEM in another
Eppendorf tube, and then the mixtures were combined for 20 min
at 25◦C. Then, the mixture was added to culture plates for
6 h, after which medium was changed to antibiotic-free DMEM
supplemented with 10% FBS for 48 h. After that, H/R was
applied. There were nine experimental groups: control, H/R,
negative control+H/R (NC+H/R), Egr-1-siRNA (siRNAs 1–6)
+H/R (siRNA+H/R).

Egr1-siRNA-1: Sense, 5′-CAGACAUGACAGCAACCUUd
TdT-3′, Anti-sense, 5′-AAGGUUGCUGUCAUGUCUGdTdT-3′

Egr1-siRNA-2: Sense, 5′-CUCACUCCACUAUCCACUAd
TdT-3′, Anti-sense, 5′-UAGUGGAUAGUGGAGUGAGdTdT-3′

Egr1-siRNA-3: Sense, 5′-CCAAGGGUGGUUUCCAGGUd
TdT-3′, Anti-sense, 5′-ACCUGGAAACCACCCUUGGdTdT-3′

Egr1-siRNA-4: Sense, 5′-CCAGGACUUAAAGGCUCUUd
TdT-3′, anti-sense, 5′-AAGAGCCUUUAAGUCCUGGdTdT-3′

Egr1-siRNA-5: Sense, 5′-CCAGGAGUGAUGAACGCAAd
TdT-3′, Anti-sense, 5′-UUGCGUUCAUCACUCCUGGdTdT-3′

Egr1-siRNA-6: Sense, 5′-CAACGACAGCAGUCCCAUUd
TdT-3′, Anti-sense, 5′-AAUGGGACUGCUGUCGUUGdTdT-3′

Negative control: Sense, CGUUUGUUCGCUUCCUGAGTT,
Anti-sense, CUCAGGAAGCGAACAAACGTG.

Quantitative Real-Time PCR (RT-PCR)
Egr-1 gene expression was assayed by RT-PCR. Total RNA from
H9c2 cells was extracted with Trizol reagent. A PrimeScript
RT reagent kit was used to synthesize first-strand cDNA.
Then cDNAs were quantified by real-time PCR on an ABI
7500 Real-Time PCR System (Applied Biosystems). Target
mRNA expression was normalized to GAPDH mRNA. Primers

were synthesized by HuaDa Gene Technology and are shown
below:

Egr-1:
F5′-GAACAACCCTACGAGCACCTG-3′;
R5′-GCCACAAAGTGTTGCCACTG-3′;
GADPH:
F5′-GGCACAGTCAAGGCTGAGAATG-3′;
R5′-ATGGTGGTGAAGACGCCAGTA-3′.

Western Blotting
H9c2 cells were washed with cold PBS three times, and
scraped into mixed lysate buffer containing RIPA buffer and
phenylmethanesulfonyl fluoride (PMSF; 1,000:1). Lysates were
centrifuged for 15 min at 12,000 × g at 4◦C. Protein was
quantified using a BCA protein assay kit (Pierce, Rockford,
IL, United States), and 25 µg of each sample was resolved
on 10% SDS-PAGE (stacking gel 50 V, separating gel 100 V),
and transferred to nitrocellulose membranes (100 V, 75 min).
Then, membranes were blocked with 5% fat-free milk, and then
incubated overnight at 4◦C with primary antibody (Egr-1—1:
1,000, SIRT1—1: 1,000, Ac-FOXO1—1:200, FOXO1—1:
1,000 and β-actin—1: 3,000), followed by incubation with
HRP-conjugated goat anti-rabbit IgG (1: 20,000) or HRP-labeled
goat anti-mouse IgG (1: 30,000) for 1 h at room temperature.
Protein bands were analyzed with Gel-pro Image Analysis
Software (Media cybernetics, United States).

Intracellular ROS Using Flow Cytometry
Reactive oxygen species in H9c2 cells were measured using
a peroxide-sensitive fluorescent probe DCFH-DA and flow
cytometry. Briefly, cells were incubated with 10 µM DCFH-
DA for 30 min at 37◦C in the dark. Then, cells were
washed three times with PBS, and monitored with flow
cytometry 488 nmex and 525 nmem. Data are a fluorescent
ratio of each group to controls. The mean fluorescent intensity
(MFI) was analyzed on a BD Accuri C6 flow cytometer
(United States).

Measurement of Mitochondrial
Membrane Potential
When the mitochondrial membrane potential (MMP) is high,
such as in normal cells, JC–1 concentrates in the mitochondrial
matrix, forming J-aggregates, which produces a red fluorescence.
In contrast, when MMP is low, after H/R stimulation, JC-1 is
retained in the cytoplasm as a monomer, unable to concentrate
within the mitochondrial matrix, resulting in green fluorescence.
Cells were incubated with JC-1 for 20 min at 37◦C in the dark,
and images were taken with a fluorescent microscope (Olympus,
Japan).

Measurement of MDA and Mn-SOD and
GSH-px Activity
Intracellular of MDA, total SOD, CuZn-SOD and GSH-px
activity in H9c2 cells measured using a colorimetric assay kit
(Jiancheng Bioengineering Institute, Nanjing, China) according
to the manufacturer’s instructions. Mn-SOD activity = total
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FIGURE 1 | Reactive oxygen species (ROS) and MDAs and Egr-1 protein expression in H9c2 cells at various times following H/R. (A) ROS s determined by flow
cytometry, n = 3. (B) Level of MDA, n = 6. (C) Representative Egr-1 western blot and quantitation of Egr-1 protein expression by western blotting analysis, n = 3.
All values are means ± SEM.; ∗p < 0.05 vs. control group; #p < 0.05 vs. H2/R1 group; §p < 0.05 vs. H4R1 group; ∗p < 0.05 vs. H6/R1 group.

SOD activity-CuZn-SOD activity. All results were expressed as
units/mg protein.

Co-localization of Egr-1 and SIRT1
H9c2 cells were inoculated onto sterile cover glasses placed
in each well of a 24-well dish. After treatment, cells were
washed twice with cold PBS, and fixed in 4% paraformaldehyde
for 20 min at room temperature. After permeabilization with
0.3% Triton X-100, cells were washed twice with cold PBS
and blocked with goat serum for 1 h at room temperature.
Primary rabbit anti-Egr-1(1:50) and mouse anti-SIRT1 (1:100)
antibodies were incubated with cells overnight at 4◦C, followed
by incubation for 1 h in the dark with secondary antibodies
(Alexa Fluor 594-conjugated goat anti-rabbit IgG or Alexa Fluor
488-conjugated goat anti-mouse IgG). Then cell nuclei were
stained with Hoechst 33258 (Beyotime Biotechnology, China)
for 15 min at room temperature. Finally, the cover glasses were

mounted on a glass slide, and images were observed with a
confocal laser scanning microscope (Olympus, Tokyo, Japan).

Statistical Analysis
Data are shown as mean ± SEM. Comparisons between groups
were analyzed by one-way ANOVA followed by a Student–
Newman–Keuls test (p < 0.05 was considered statistically
significant).

RESULTS

ROS, MDA, and Egr-1 Protein Expression
in H9c2 Cells after H/R
H/R increased ROS and Figure 1 depicts the hourly data for
reperfusion groups (Figure 1A). Compared with controls, MDA
increased at each time point, but not significantly in the H2/R1
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FIGURE 2 | Effects of Egr-1 siRNA and F2 on expression of Egr-1 in H9c2 cells. (A) Transfection efficiency of siRNA observed under an inverted fluorescent
microscope, (a) bright field, (b) red fluorescence reflects cells transfected with negative control siRNA, (c) merged image (bar = 50 µm). (B) QRT-PCR of Egr-1 mRNA
expression. (C) Western blot of Egr-1 protein expression. All values are means ± SEM., n = 3; ∗p < 0.05 vs. control group; #p < 0.05 vs. NC+H/R group; §p < 0.05
vs. H/R group.

group. In addition, MDA peaked occurred at H4/R1 (Figure 1B).
We measured Egr-1 protein expression in H9c2 cells with
Western blot. As shown in Figure 1C, compared with controls,
Egr-1 protein expression increased in all H/R groups, and peaked
in the H4/R1 group, as well. Thus, 4 h of hypoxia and 1 h of
reoxygenation were used in subsequent experiments.

Effects of Egr-1 siRNA and F2 on Egr-1
Expression in H9c2 Cells
SiRNA labeled with fluorescent dye Cy3 was transfected into
H9c2 cells and transfection efficiency was observed under an
inverted fluorescent microscope [Figure 2A, (a) bright field,
(b) red fluorescence reflects siRNA negative control, (c) a and
b merged]. The proportion of fluorescent cells was >90%,
indicating transfection efficiency >90%. As shown in Figure 2B,
all Egr-1 siRNAs (siRNA1-siRNA6) decreased H/R-mediated
induction of Egr-1 mRNA in H9c2 cells. Egr-1 siRNA6 maximally
reduced Egr-1 expression. Thus, subsequent experiments used
Egr-1 siRNA6. Expression of Egr-1 protein data were similar. H/R
upregulated Egr-1 protein expression, and Egr-1 siRNA blocked

this change. In addition, F2 attenuated H/R-induced increases in
Egr-1 protein expression (Figure 2C).

Effect of Egr-1 siRNA and F2 on ROS s in
H9c2 Cells during H/R
Reactive oxygen species production was significantly increased in
H/R and NC+H/R groups compared with controls (Figure 3).
Nonetheless, compared with the NC+H/R group, Egr-1 siRNA
downregulated ROS significantly and F2 treatment decreased
production of ROS induced by H/R.

Egr-1 siRNA and F2 Attenuate
H/R-Induced Decreases in Mitochondrial
Membrane Potential in H9c2 Cells
Mitochondria act as a nexus for reperfusion injury pathways,
and loss of mitochondrial transmembrane potential indicates
mitochondrial dysfunction (Mailloux et al., 2013; Patil et al.,
2015). Mitochondrial membrane potential used to assess the
degree of mitochondria damage was assessed after incubating
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FIGURE 3 | Reactive oxygen species in H9c2 cells as measured by flow
cytometry. All values are means ± SEM., n = 5; ∗p < 0.05 vs. controls;
#p < 0.05 vs. the NC+H/R group; §p < 0.05 vs. the H/R group.

cells with JC-1, and high-intensity, punctate red fluorescence
reflected more membrane potential. Diffuse, high-intensity green
fluorescence reflected lower membrane potential. Compared
with controls, H/R reduced mitochondrial membrane potential.
However, Egr-1 siRNA inhibited H/R-induced reduction in
mitochondrial membrane potential. Likewise, F2 treatment
increased mitochondrial membrane potential. Thus, Egr-1 siRNA
and F2 alleviated the degree of mitochondria damage (Figure 4).

Effects of Egr-1 siRNA and F2 on
Level/Activity of MDA, GSH-px, Total
SOD and Mn-SOD in H9c2 Cells
Stimulated by H/R
Intracellular level/activity of MDA, GSH-px, total SOD and
Mn-SOD were measured to assess the degree of oxidative stress
injury and anti-oxidative ability in H9c2 cells during H/R. Table 1
shows that H/R significantly increased MDA, and Egr-1 siRNA
and F2 markedly decreased this change. Compared with controls,
activity GSH-px, total SOD and Mn-SOD were decreased by H/R,
but increased by Egr-1 siRNA and F2.

Effects of Egr-1 siRNA and F2 on SIRT1,
Ac-FOXO1, and FOXO1 Expression in
H9c2 Cells Subjected to H/R
As shown in Figure 5, there was no significant difference
in SIRT1 protein expression among all groups. FOXO1

FIGURE 4 | H/R-mediated reduction of mitochondrial membrane potential is
reduced by Egr-1 inhibition or treatment with F2 in H9c2 cells. H9c2 cells,
treated with Egr-1 siRNA or F2, underwent H/R and were stained with JC-1.
High-intensity red fluorescence reflected higher membrane potential and
high-intensity green fluorescence indicated lower membrane potential
(bar = 20 µm). Quantitative data were the ratio of red to green. All values are
means ± SEM, n = 3; ∗p < 0.05 vs. control group; #p < 0.05 vs. NC+H/R
group; §p < 0.05 vs. H/R group.

expression decreased but Ac-FOXO1 expression and the radio
of Ac-FOXO1/FOXO1 increased significantly in the H/R group.
Pre-treatment with either Egr-1 siRNA or F2 significantly
increased FOXO1 expression, decreased Ac-FOXO1 expression
and the ratio of Ac-FOXO1/FOXO1. Thus, although H/R had
no effect on expression of SIRT1, H/R did inhibit the activity
of SIRT1, as evidenced by decreased deacetylation of Ac-FOXO1
(increase ratios of Ac-FOXO1/FOXO1), and the decrease could
be blocked by either Egr-1 siRNA or F2.

Effect of Egr-1 siRNA and F2 on
Expression and Co-location of Egr-1 and
SIRT1 in H9c2 Cells after H/R
To understand interactions between Egr-1 and SIRT1,
immunofluorescent analysis was used to identify Egr-1 and
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TABLE 1 | MDA, GSH-px and Mn-SOD in H9c2 cells (mean ± SEM, n = 8).

Group MDA (nmol/mg prot) GSH-px (U/mg prot) Total SOD (U/mg prot) Mn-SOD (U/mg prot)

Control 1.07 ± 0.08 27.25 ± 1.14 32.55 ± 1.94 6.22 ± 0.46

H/R 2.18 ± 0.16∗ 15.70 ± 0.84∗ 20.12 ± 1.38∗ 0.76 ± 0.15∗

NC+H/R 2.21 ± 0.16∗ 15.96 ± 0.57∗ 18.75 ± 0.95∗ 0.80 ± 0.20∗

siRNA+H/R 1.44 ± 0.10#§ 21.36 ± 0.72∗#§ 28.51 ± 1.63#§ 4.40 ± 0.29#§

F2+H/R 1.59 ± 0.13§ 19.38 ± 1.08∗§ 28.46 ± 1.29§ 5.47 ± 0.33§

∗P < 0.05 vs. control group; #P < 0.05 vs. NC+H/R group; §P < 0.05 vs. H/R group.

SIRT1 locations. Egr-1 was distributed throughout the cell in
controls and H/R caused localization of Egr-1 to the nucleus
chiefly. H/R-induced nuclear localization was prevented by
either siRNA-mediated Egr-1 knockdown or F2 treatment,
consistent with results obtained by Western blot. SIRT1 was
mainly in the nucleus and there were no marked differences in
the intensity of green fluorescence among all groups, suggesting
SIRT1 expression did not change significantly (Figure 6).
Co-localization of Egr-1 with SIRT1 was examined using
immunofluorescence and compared with controls, H/R induced
Egr-1 co-localization with SIRT1 but this was inhibited by Egr-1
siRNA and F2 (Figure 6).

DISCUSSION

Myocardial I/R injury is an extremely complex and common
pathophysiological phenomenon. Egr-1 is associated with
pathological changes in I/R injury and is thought to be a “a master
switch” for I/R injury because of its regulation of inflammation,
coagulation, and vascular hyper-permeability which are thought
to be central to pathogenesis of I/R injury (Yan et al., 2000;
Zins et al., 2014; Sandoval et al., 2016). Oxidative stress also
be pivotal to the pathogenesis of I/R injury. However, it is
unclear whether Egr-1 can regulate oxidative stress caused
by I/R stimulation. Recently, our studies on in vitro H/R
treatment of H9c2 cells and CMECs found that H/R causes
ROS generation and over-expression of Egr-1, and that ROS is
upstream of Egr-1 (Zhang et al., 2015; Lu S. et al., 2016). We
report that ROS generation induced by H/R is also significantly
inhibited by downregulation of Egr-1, indicating that Egr-1 is
upstream of ROS. Combined with previous data, these results
suggest that there is a self-sustaining damaging signaling loop
involving positive feedback loop between ROS and Egr-1 during
myocardial I/R.

Interestingly, when examined at different H/R durations,
expression of Egr-1 peaks at 4 h hypoxia and 1 h reoxygenation,
whereas ROS increased continually with hypoxia. Thus,
asynchronous changes may be attributed to regulation of Egr-1
which is an immediate early gene (IEG) family member that is
rapidly activated by external stimuli, and then degraded. Egr-1
protein decreases after at 6 and 8 h of hypoxia, during which
time the degradation of Egr-1 becomes greater than synthesis.
So, overall Egr-1 is gradually decreased, but remains greater than
normal, and is still sufficient for enhancing ROS, although other
mechanisms may influence on ROS production. In addition,

FIGURE 5 | Effects of Egr-1 siRNA and F2 on SIRT1, Ac-FOXO1, and FOXO1
expression in H9c2 cells subjected to H/R. Representative bands and
quantitative analysis results of SIRT1, Ac-FOXO1, and FOXO1. Quantitative
densitometric data are expressed as percents of controls. All values are
means ± SEM., n = 3; ∗p < 0.05 vs. control group; #p < 0.05 vs. NC+H/R
group; §p < 0.05 vs. H/R group.

MDA increased, and then decreased. Thus, continuing cell injury
explains increases in ROS and MDA decreases at 6 and 8 h of
hypoxia. The longer the duration of hypoxia, the greater the
cell damage. MDA easily leaks into the extracellular space when
the cell lipid membrane is structurally damaged by oxidation.
MDA measured was intracellular, but must have leaked into the
culture medium and was not measured. However, results from
other laboratories suggest that MDA content in the supernatant
is higher after H/R (Pan et al., 2003; Zheng et al., 2003). Although
some studies suggested that increased ROS occurs mainly in
the reperfusion phase, according to our study, hypoxia time
also determine the degree of oxidative stress in cells when
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FIGURE 6 | Effect of Egr-1 siRNA and F2 on the expression and co-localization of Egr-1 and SIRT1 in H9c2 cells observed with confocal laser scanning microscopy.
H9c2 cells, treated with Egr-1 siRNA or F2, underwent H/R followed by immunofluorescent analysis (bar = 20 µm). Blue fluorescence reflects nuclear localization; red
fluorescence reflects Egr-1 protein localization; and green fluorescence reflects SIRT1 protein localization. In controls, red fluorescence was distributed throughout
the nucleus and cytoplasm. In the H/R group, red fluorescent intensity increased and was focused in the nuclei. In the NC+H/R group, red fluorescent intensity was
equivalent as the H/R group. In the siRNA+H/R and F2 groups, red fluorescent intensity weakened compared with the NC+H/R and H/R groups. There were no
marked differences in the intensity of green fluorescence among all groups.

re-oxygenation duration is unchanged. Data show that I/R
relevant diseases must quickly reduce duration of hypoxia to
relieve oxidative stress.

Many studies suggest that SIRT1 regulates cell proliferation,
apoptosis, differentiation, senescence and metabolism (Simic
et al., 2013; Chen et al., 2016; Jablonska et al., 2016), and is
key to protection against ischemia by deacetylation (Hariharan
et al., 2010; Shin et al., 2010; Hernandez-Jimenez et al., 2013).
In addition, activation of SIRT1 reduces oxidative stress by
regulating the acetylation of FOXO1 in the heart (Brunet et al.,
2004; Chen et al., 2009; Chung et al., 2010) and activating
antioxidant enzymes, such as Mn-SOD, catalase and GSH-px
(Alcendor et al., 2007; Shalini et al., 2012). SIRT1 protects against
I/R injury, but I/R-induced changes in SIRT1 expression and
activity are controversial. Yu et al. (2014) reported that SIRT1
protein expression decreases in myocardial tissue at ischemia

30 min and reperfusion 6 h, and Hsu et al. (2010) reported SIRT1
protein expression and mRNA decreased at 20 min ischemia
and reperfusion for 24 h. Our results show that SIRT1 protein
expression remained unchanged after 4 h of hypoxia/ischemia
and 1 h reoxygenation in H9c2 cells but activity decreased. This
is similar to data from Liu’s group who found no significant
changes in SIRT1 protein expression, but a significant reduction
in activity in H9c2 cells after hypoxia for 4 h and reoxygenation
for 4 h (Liu et al., 2014). Differences in outcomes may explained
by differing degrees of stimulation in the models or different
durations of I/R (H/R) which can change protein expression.
SIRT1 may be depleted in the short time after initiation of
ischemia/hypoxia (20–30 min in the above study) (Hsu et al.,
2010; Yu et al., 2014), but as the duration of hypoxia progresses,
Egr-1 accumulates and peaks after hypoxia for 4 h, after
which re-expression of SIRT1 occurs by activating its promoter.

Frontiers in Pharmacology | www.frontiersin.org 8 January 2018 | Volume 9 | Article 19

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00019 January 24, 2018 Time: 16:55 # 9

Sun et al. F2 Inhibits Egr-1/ROS Feedback Loop

Meanwhile, increased Egr-1 and SIRT1 leads increases the chance
of interaction between the two to decrease deacetylation of
SIRT1 and increase acetylated FOXO1, resulting in reduced
antioxidant activity. In skeletal muscle cells, Pardo and Boriek
(2012) described an automatic adjustment cycle between Egr-1
and SIRT1. Overexpression of Egr-1 protein can bind to the
SIRT1 promoter and activate SIRT1 protein expression, and
increased SIRT1 can then combine with Egr-1, and in turn,
decrease SIRT1-dependent antioxidant enzyme expression. To
verify a potential interaction between SIRT1 and Egr-1 in
H9c2 cells after H/R, immunofluorescence co-localization was
used to observe protein distribution and fluorescent intensity.
Egr-1 was distributed throughout cell and SIRT1 was mainly
localized to the nucleus of untreated cells. After H/R, Egr-1
expression increased and localized to the nucleus to co-localize
with SIRT1. Egr-1 siRNA decreased the fluorescent intensity of
Egr-1 staining, suggesting decreased interaction between Egr-1
and SIRT1, which would contribute to increases in expression
of FOXO1 and activity of Mn-SOD. We previously found that
JNK plays an important role in the ROS/Egr-1 signaling pathway
in H9c2 cells and CMECs (Zhang et al., 2015; Lu S. et al.,
2016). Parra et al. (2013) demonstrated that Egr-1 modulates
activation of JNK-1 by siRNA technology, and Win et al. (2016)
found that p-JNK increased mitochondrial ROS production in
isolated mitochondria. Thus, it is worth studying whether JNK
mediates the Egr1/ROS pathway in H/R model, in addition to
SIRT1.

In in vivo and in vitro studies, F2 has been shown to have
multiple protective effects on myocardial I/R injury, perhaps
by suppressing overexpression of Egr-1 (Zhang et al., 2006,
2007). Moreover, F2 increases activity of SOD and decreases
MDA in H9c2 cells and microvascular endothelial cells, after
H/R, indicating that F2 can reduce oxidative stress injury
(Lu S. et al., 2016). We report that F2 inhibits H/R-induced
Egr-1 protein overexpression, thereby decreasing the ability
of Egr-1 to inhibit SIRT1, and concomitantly enabling cells
to maintain SIRT1 activity, as assessed by high Ac-FOXO1
maintained after H/R, thereby maintaining Mn-SOD activity,
to reduce intracellular ROS and alleviate oxidative stress
injury.

Thus, we suggest a positive feedback signaling loop between
Egr-1 and ROS in H9c2 cells after H/R and an interaction
pathway between oxidative stress injury and inflammatory
response after H/R stimulation. Thus, therapy targeting ROS
or Egr-1 may improve I/R (or H/R)-induced oxidative stress
injury and the inflammatory response. Thus, F2 could protects
cardiomyocytes from I/R or H/R injury via inhibition of the
Egr-1/ROS positive feedback loop, which might extend its use in
oxidative stress-related diseases such as cardiac hypertrophy.

CONCLUSION

F2 alleviates H/R injury in H9c2 cells by blocking Egr-1-mediated
inhibition of the SIRT1/FOXO1/Mn-SOD signaling pathway
responsible for ROS inactivation. Based on earlier study results
showing that F2 protects against H/R injury by inhibiting
ROS/Egr-1 signaling pathways in H9c2 cells and CMECs, we
conclude that the protective effect of F2 on the I/R myocardium
is related to arresting a positive feedback signaling loop between
Egr-1 and ROS.
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