

Autoradiography of ³H-pirenzepine and ³H-AFDX-384 in Mouse Brain Regions: Possible Insights into M_1 , M_2 , and M_4 Muscarinic Receptors Distribution

Paulina Valuskova¹, Vladimir Farar¹, Sandor Forczek², Iva Krizova¹ and Jaromir Myslivecek^{1*}

¹ First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia, ² Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia

OPEN ACCESS

Edited by:

Pascal Bonaventure, Janssen Research and Development, United States

Reviewed by:

Anindya Bhattacharya, Janssen Research and Development, United States Massimo Grilli, Università di Genova, Italy Mengling Liu, HD Biosciences Co., Ltd., United States

> *Correspondence: Jaromir Myslivecek jmys@lf1.cuni.cz

Specialty section:

This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

Received: 07 November 2017 Accepted: 05 February 2018 Published: 20 February 2018

Citation:

Valuskova P, Farar V, Forczek S, Krizova I and Myslivecek J (2018) Autoradiography of ³H-pirenzepine and ³H-AFDX-384 in Mouse Brain Regions: Possible Insights into M₁, M₂, and M₄ Muscarinic Receptors Distribution. Front. Pharmacol. 9:124. doi: 10.3389/fphar.2018.00124 Autoradiography helps to determine the distribution and density of muscarinic receptor (MR) binding sites in the brain. However, it relies on the selectivity of radioligands toward their target. ³H-Pirenzepine is commonly believed to label predominantly M₁MR, ³H-AFDX-384 is considered as M₂MR selective ligand. Here we performed series of autoradiographies with ³H-AFDX-384 (2 nM), and ³H-pirenzepine (5 nM) in WT, M₁KO, M₂KO, and M₄KO mice to address the ligand selectivity. Labeling with ³H-pirenzepine using M₁KO, M₂KO, and M₄KO brain sections showed the high selectivity toward M₁MR. Selectivity of ³H-AFDX-384 toward M₂MR varies among brain regions and depends on individual MR subtype proportion. All binding sites in the medulla oblongata and pons, correspond to M₂MR. In caudate putamen, nucleus accumbens and olfactory tubercle, 77.7, 74.2, and 74.6% of ³H-AFDX-384 binding sites, respectively, are represented by M₄MR and M₂MR constitute only a minor portion. In cortex and hippocampus, ³H-AFDX-384 labels almost similar amounts of M₂MR and M₄MR alongside significant amounts of non-M₂/non-M₄MR. In cortex, the proportion of ³H-AFDX-384 binding sites attributable to M2MR can be increased by blocking M4MR with MT3 toxin without affecting non-M₄MR. PD102807, which is considered as a highly selective M₄MR antagonist failed to improve the discrimination of M₂MR. Autoradiography with ³H-QNB showed genotype specific loss of binding sites. In conclusion: while ³H-pirenzepine showed the high selectivity toward M1MR, ³H-AFDX-384 binding sites represent different populations of MR subtypes in a brain-region-specific manner. This finding has to be taken into account when interpreting the binding data.

Keywords: M_1 muscarinic receptor, M_2 muscarinic receptor, M_4 muscarinic receptor, ³H-pirenzepine, ³H-AFDX-384, ³H-QNB, autoradiography

INTRODUCTION

Muscarinic receptors (MR) are typical members of G protein coupled receptors family (Kruse et al., 2013) and can be divided into 5 subtypes (M_1-M_5) (Eglen, 2012), which activate different G proteins (G_q , G_i). Odd-numbered subtypes activate G_q , even-numbered activate G_i protein (Eglen, 2012; Kow and Nathanson, 2012; Reiner and Nathanson, 2012).

1

Respective MR subtypes have been assigned to different functions in CNS (Wess et al., 2007; Thomsen et al., 2017). Odd-numbered receptors are considered to be localized primarily post-synaptically, however, both M₂MR and M₄MR are localized both pre- and post-synaptically. As cholinergic autoreceptors, M₂ and M₄ provide feedback control of acetylcholine release (Zhang et al., 2002; Shin et al., 2015).

One of the means to determine MR density in different CNS areas is autoradiography. *In vitro* autoradiography has high sensitivity allowing to explore brain regions even with few MR. The use of very thin tissue sections *in vitro* autoradiography provides several advantages over the large tissue blocks used in binding studies in homogenates/membrane fractions. Brain sectioning allows analyzing MR density in virtually all brain areas of a single animal greatly reducing the number of experimental animals. Moreover, sectioning of a single brain generates sufficient number of tissue sections to explore the binding of multiple radioligands in a particular brain area of the same animal. This further reduces the number of experimental animals and allows comparing the effect of treatment on multiple targets (receptors, transporters) in a single animal (Farar and Myslivecek, 2016).

An important issue is the selectivity of radioligand used in experiments. A general problem in identification of MR subtypes present in specific regions of the central nervous system is the lack of highly subtype-selective muscarinic antagonists. The MR subtypes affinities for pirenzepine and AFDX-384, the most commonly used ones for discrimination of M₁ and M₂MR, respectively, are shown in Table 1. It can be deduced from this table that both pirenzepine and AFDX-384 have not only high affinity for M1, and M2 MRs, respectively, but also for M4 MR subtype. In radioligand binding studies, it is therefore necessary to use a combination of various antagonists. However, for autoradiography detection this approach is not suitable because of evaluation limitations of such changed "binding." Thus, the present protocols for M1 and M2 MR subtypes identification should be considered as method for detection of M1 (or M2) and also yet unidentified portion of M4 MRs. Unfortunately, only few papers report these binding sites as M₂/M₄ MRs (e.g., Zavitsanou et al., 2003; Wang et al., 2014).

The lack of MR subtype-selective ligands constitutes a significant obstacle in anatomical localization studies of MR, which are fundamental to our understanding of MR neuronal circuits. Three key strategies were developed to address regional distribution and relative abundance of particular MR subtype in the central nervous system.

First, *in situ* hybridization studies have identified neurons that synthetize MR (Buckley et al., 1988; Vilaró et al., 1990; Weiner et al., 1990). These and several other studies have shown that all five MR subtypes are expressed in the brain and mRNA for an individual MR subtype is distributed in a brain-region specific manner. However, while *in situ* hybridization studies provide valuable information about the sites of MR expression they do not address the real distribution of final proteins.

Second, MR subtype selective antibodies have been developed to map and quantify the distribution of individual MR by means of immunocytochemistry and immunoprecipitation (Levey et al.,
 TABLE 1 | Muscarinic antagonist affinity constants (log affinity or pKi values) for mammalian muscarinic receptor subtypes.

	Receptor subtype							
Antagonist	M ₁	M ₂	M ₃	M4	M_5			
Pirenzepine	7.8–8.5	6.3–6.7	6.7–7.1	7.1–8.1	6.2–7.1			
AF-DX 384	7.3–7.5	8.2–9.0	7.2–7.8	8.0-8.7	6.3			
PD 102807	5.3–5.5	5.7-5.9	6.2–6.7	7.3–7.4	5.2–5.5			
MT 7 toxin	9.8	<6	<6	<6	<6			
MT 3 toxin	7.1	<6	<6	8.7	<6			

Data as referenced by Myslivecek et al. (2008).

1991; Yasuda et al., 1993). A body of reports have provided information about the distribution and quantities of individual MR. However, the reliability and selectivity of commonly used antibodies against MR have been questioned by their testing in specimens devoid particular MR subtypes. This knockoutproof specific labeling has shown that the vast majority of tested antisera have identical labeling patterns in wild-type and knockout mice tissues (Jositsch et al., 2009).

Finally, anatomical localization and relative quantification of MR can be done by means *of in vitro* radioligand binding studies. This includes direct radioligand binding studies in tissue homogenates or plasma membrane preparation and indirect *in vitro* autoradiographic assays. *In vitro* autoradiography offers several advantages over direct binding studies. These includes tissue saving, high precision and reproducibility of results, high sensitivity and high degree of anatomical resolution. Moreover several ligands can be applied on consecutive sections derived from the same animal, further reducing numbers of experimental animals (Farar and Myslivecek, 2016).

Historically, tritiated pirenzepine was used as ligand that binds to MR with distinct binding in specific brain areas (Yamamura et al., 1983). Further, distinct distribution was found in the central nervous system. ³H-pirenzepine labels regions of the cerebral cortex, hippocampus, striatum and dorsal horn of the spinal cord, while sites in the cerebellum, nucleus tractus solitarius, facial nucleus and ventral horn of the spinal cord are labeled with ³H-QNB (non-specific muscarinic ligand) and not by ³Hpirenzepine (Wamsley et al., 1984). These observations indicated binding to different subtypes of MR. This was further expanded to definition of binding sites as M1 MR (Villiger and Faull, 1985). In the middle of eighties pirenzepine binding sites were considered as M1 MR (Buckley and Burnstock, 1986; Cortes and Palacios, 1986). On the other hand, ³H-AFDX-384 was considered from the beginning as a M₂ MR specific ligand (Aubert et al., 1992) and some authors were aware of limited selectivity (e.g., Mulugeta et al., 2003). In many cases³H-AFDX-384 and ³H-pirenzepine are still considered as selective ligands (Tien et al., 2004; Wolff et al., 2008).

Here we performed series of *in vitro* autoradiographies with 3 H-AFDX-384 (2 nM, concentration below K_D and the most commonly used one), and 3 H-pirenzepine (5 nM, concentration below K_D and the most used one). We took advantage of knockout mice models in the standard autoradiography

procedures to compare binding in WT, M_1 KO, M_2 KO and M_4 KO mice. With this approach we addressed the selectivity of *in vitro* ³H-AFDX-384 autoradiography and provide a guide on the interpretation of results.

Moreover, we tried to block M_4MR using three concentration of MT3 toxin isolated from Dendroaspis angusticeps venom (1, 10, and 100 nmol/l). Another method to disable the binding to M_4MR was co-incubation with specific M_4MR antagonist PD102807 (10, 100, and 1 µmol/l). With an aim to block M_1MR we used MT7 toxin isolated from Dendroaspis angusticeps venom (1, 10, or 100 nmol/l) or pirenzepine (10 and 100 nmol/l).

In another of our experiment, using radiolabeled non-selective anatagonist, which binds all five MR subtypes (³H-QNB), we determined the contribution of M_1 , M_2 , and M_4 MRs to the total expression of MRs in the mouse brain.

We can conclude that ³H-pirenzepine showed high selectivity toward M_1MR . In contrast, ³H-AFDX-384 binding sites represent different populations of MR subtypes in a brainregion-specific manner. This finding has to be taken into account when interpreting the binding data not only in the autoradiographies but also when these antagonists (pirenzepine, AFDX-384, PD102807 or MT3 toxin) are used as a mean to detect M_1MR , M_2MR , or M_4MR effects in functional studies. Experiments with ³H-QNB binding decrease in M_1 , $M_{2^{cr}}$, and M_4 KO animals showed the highest proportion (usually above 50%) of M_1MR in virtually all studied brain areas. M_2MR take up to 20% in cortical areas and 34% in thalamus. M_4MR were abundant (40% approximately) in thalamus, striatum and ventral striatum (NAc and OT), about 20% of M_4MR can be found in cortical structures.

METHODS

Drugs

Atropine sulfate and pirenzepine dihydrochloride were purchased from Sigma-Aldrich (Sigma-Aldrich Co, St. Louis, MO, USA). PD102807 was purchased from Tocris Bioscience (Tocris Bioscience, Bristol, United Kingdom). MT3 toxin and MT7 toxin were purchased from Peptide Institute (Peptide Institute, Inc., Osaka, Japan). Pirenzepine [N-methyl-³H] (83.4 Ci/mmol), and AFDX-384 [2,3-dipropylamino-3H] (100.0 Ci/mmol) were from American Radiolabeled Chemicals (ARC, Inc.), Qinuclidinyl benzilate L-[benzilic-4,4'-³H] (50.5 Ci/mmol) was purchased from Perkin Elmer (Perkin Elmer Inc., USA).

Animals

Mice were treated in accordance with the legislature of the Czech Republic and EU legislature [European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Council of Europe No 123, Strasbourg 1985)], and the experimental protocol was approved by the Committee for the Protection of Experimental Animals of the 1st Medical Faculty, Charles University, Prague under N° MSMT-6316/2014-39.

Mice were maintained (3 per cage) under controlled environmental conditions (12 h/12 h light/dark cycle, $22\pm1^{\circ}$ C,

light on at 06:00 a.m.). Food and water were available *ad libitum*. Knockout mice and their WT counterparts of both genders (weighting 20–25 g, 11–13 weeks old), were used in the study. We studied fully backcrossed (at least 10 generations) muscarinic KO and WT littermates.

M₁ KO Mice

Mice lacking M_1 MR subtype were generated in the Wess laboratory (Bymaster et al., 2003) and then bred in our animal facility (Prague, Czech Republic). Their genetic background was C57Bl6/NTac. WT and KO genotypes were confirmed using polymerase chain reaction (PCR) analysis as previously described (Cea-del Rio et al., 2010).

M₂ KO Mice

Mice lacking M_2 MR subtype was generated in the Wess laboratory (Gomeza et al., 1999a) and then bred in our animal facility (Prague, Czech Republic). The genetic background was maintained on C57Bl6/NTac mouse line. WT and KO genotypes were confirmed using PCR analysis as previously described (Ceadel Rio et al., 2010).

M₄ KO Mice

Mice lacking M_4 MR subtype were generated in Wess laboratory (Gomeza et al., 1999b) and then bred in our animal facility (Prague, Czech Republic). Their genetic background was C57Bl6/NTac. WT and KO genotypes were confirmed using PCR analysis as previously described (Cea-del Rio et al., 2010).

Receptor Autoradiography

Tissue Preparation

For receptor determination, autoradiography was performed in several brain areas [motor cortex (MOCx), somatosensory cortex (SSCx), visual cortex (VisCx), striatum (Caudatum-Putamen, CPu), nucleus accumbens (NAc), thalamus (TH), hippocampus (Hipp) and its specific areas CA1, CA3 and dentate gyrus (DG), olfactory tubercle (OT), pons (Pons), and medulla oblongata (MY)] on sagittal brain sections of M_1 KO, M_2 KO, M_4 KO mice and their WT littermates. Brains were rapidly removed (4–6 brains per group), frozen on dry ice, and then stored at -80° C until cryostat sectioning. Sixteen-micrometer thick sagittal sections were cut on a cryostat at -20° C and thawmounted on Superfrost[®] Plus glass slides (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) and stored in storage boxes at -80° C until use. For autoradiography experiments brain sections were allowed to thaw and dry for 30 min at 22°C.

Autoradiography of Muscarinic Receptors on M₁KO, M₂KO, M₄KO, and WT Mice (³H-Pirenzepine, ³H-AFDX-384, and ³H-QNB Radioligand Binding)

Brain sections were allowed to thaw and dry for 30 min at 22°C and density of receptors was determined as previously described (Farar et al., 2012; Farar and Myslivecek, 2016). Dry M_1 KO M_2 KO, M_4 KO, and WT sagittal brain sections were pre-incubated for 30 min in 50 mM potassium phosphate buffer (pH 7.4) at room temperature (RT). Following pre-incubation, sections were transferred into fresh 50 mM potassium phosphate buffer containing 2 nM ³H-AFDX-384, or 5 nM ³H-pirenzepine,

or $2 nM^{3}$ H-QNB, and incubated for 60 min at RT. Non-specific binding was assessed on adjacent sections in the presence of 10μ M atropine sulfate. After incubation, sections were washed two times for 5 min each in ice-cold buffer and dipped for 2 s in ice-cold water to remove buffer salts. Wet sections were immediately dried by gentle stream of cold air. Dry sections were opposed to tritium sensitive Fuji BAS imaging plates (GE Healthcare Europe GmbH, Freiburg, Germany) in Kodak Biomax autoradiographic cassettes (Carestream Health, Inc., Rochester, NY).

Autoradiography of M_2 Muscarinic Receptors Labeled with ³H-AFDX-384 and Simultaneous Blocking of M_4 Receptors with PD102807

The procedure was similar as described above. However, the sections were transferred into buffer containing $2 \text{ nM}^{3}\text{H}-\text{AFDX}-384$ together with 10; 100 or 1,000 nM PD102807 or without PD102807 but with addition of DMSO which serves as dissolving agent for PD102807 and incubated for 60 min at RT. The final concentration of DMSO in incubation buffer must be less than 1%, in our case it was 0.1%. The non-specific binding was assessed as described above. This specific experiment was conducted on M₂ KO and M₄ KO brain sections only. After incubation, sections were treated as stated above.

Autoradiography of M_2 Muscarinic Receptors Labeled with ³H-AFDX-384 and Simultaneous Blocking of M_4 Receptors with MT3 Toxin Isolated from Dendroaspis Angusticeps Venom

The procedure was similar as described above. However, the sections were transferred into buffer containing $2 \text{ nM}^{3}\text{H}-\text{AFDX}-384$ together with 1; 10 or 100 nM MT3 toxin or without MT3 toxin and incubated for 60 min at RT. Non-specific binding was assessed as described above. After incubation, sections were treated as described above.

Autoradiography of M_2 Muscarinic Receptors Labeled with ³H-AFDX-384 and Simultaneous Blocking of M_1 Receptors with MT7 Toxin Isolated from Dendroaspis Angusticeps Venom or with Pirenzepine

The procedure was similar as described above. However, the sections were transferred into buffer containing 2 nM ³H-AFDX-384 together with 10 or 100 nM pirenzepine or without pirenzepine (serves as control) and incubated for 60 min at RT. Blocking of M₁ MR with MT7 toxin was conducted as following: the brain sections were at first pre-incubated with different concentrations of MT7 toxin (1; 10 or 100 nM) for 45 min. After pre-incubation with MT7, ³H-AFDX-384 with final concentration 2 nM was added into the buffer containing MT7 toxin and incubated for another 45 min. Non-specific binding as mentioned earlier. After incubation, sections were processed as described above.

Quantification of Receptor Density

To assure linearity of the signal, autoradiographic standards (American Radiolabeled Chemicals, Inc., St. Louis, MO, USA)

were exposed along with the samples to the screens. Imaging plates were processed in Fuji Bioimaging Analyzer BAS-5000 (FUJIFILM corporation, Tokio, Japan) and digitized images analyzed with MCID analysis software (InterFocus GmbH, Mering, Germany). Measurements were taken and averaged from three sections for each animal and brain region.

Statistical Analysis

Statistical significance between groups was determined using 1way ANOVA with Sidak *post-hoc* analysis. Student's *t*-test was used for comparison between two groups (typically WT vs. KO only).

RESULTS

The Selectivity of $^{3}\mbox{H-pirenzepine}$ toward $M_{1}\mbox{MR}$

Autoradiography with ³H-pirenzepine showed high selectivity of this ligand toward M_1MR (see **Figure 1**). In many brain areas, except in CPu and OT the binding in M_1 KO animals decreased by 90–99% (see **Table 2**). Especially, in hippocampal areas (dorsal hippocampus, CA1, CA3 area, and DG) ³H-pirenzepine binding sites were almost completely abolished. Please note very low binding in TH. The selectivity of pirenzepine was confirmed in M_2 KO animals (see **Table 3**) where no significant difference was shown in M_2 KO animals when compared to WT animals. Similar results were obtained when using M_4 KO animals (see **Table 4**). However, in some brain areas, we found small, but significant decrease in ³H-pirenzepine binding in M_4 KO animals (MOCx, SSCx, VisCx, CPu; 7, 13, 9, and 11%, respectively).

The Selectivity of ³H-AFDX-384 toward M_2MR

In contrast to the above mentioned experiment, ³H-AFDX-384 did not show selectivity toward M_2MR . If ³H-AFDX-384 was highly selective toward M_2MR , the binding of ³H-AFDX-384 would be barely visible in M_2 KO mice, as they do not express M_2MR . As it can be deduced from **Figure 1** and **Table 2**, the binding reduction in many brain areas varied between 20 and 50%, with exception of pons, medulla oblongata and TH, where uniform population of M_2MR was found. Olfactory tubercle is the only area, in which the binding of ³H-AFDX-384 was completely preserved.

The Selectivity of ³H-AFDX-384 toward M_4MR

Similar to the experiment in M_2 KO mice, the binding in M_4 KO mice showed only limited selectivity of ³H-AFDX-384 toward this MR subtype. However, ³H-AFDX-384 had similar selectivity to M_4 MR and M_2 MR (see **Figure 1** and **Table 2**). A decrease in ³H-AFDX-384 binding depends on the brain area analyzed. This experiment also verified that pons and medulla oblongata express only M_2 MR which can be deduced from the unchanged binding in M_4 KO mice. However, thalamus was not confirmed as an area with only M_2 MR. Representative autoradiograms for M_1 , M_2 and M_4 WT and KO mice are shown in **Figure 2**.

FIGURE 1 | Changes in ³H-pirenzepine specific binding in M₁KO mice (top)

hippocampus (Hipp) and its specific areas CA1, CA3, and dentate gyrus (DG),

olfactory tubercle (OT)], abscissa: relative density [nCi/mg]. WT, wild type; KO,

and ³H-AFDX binding in M₂KO (middle) and M₄KO mice (bottom) when

compared to WT animals. Non-specific binding was determined in the

presence of 10 µM atropine sulfate. Ordinate: brain areas [motor cortex

(MOCx), somatosensory cortex (SSCx), visual cortex (VisCx), striatum (Caudatum-Putamen, CPu), nucleus accumbens (NAc), thalamus (TH),

Binding of ³H-AFDX-384 in the Presence of M₄MR Antagonist PD102807

The effort to block M_4MR using antagonist PD102807 was unsuccessful as demonstrated in M_2 KO mice and M_4 KO mice. When the slices were incubated with 1 μ mol/l of PD102807, we have recorded 100% inhibition of residual binding in M_2 KO mice (see **Table 5**). However, PD102807 also dose-dependently reduced ³H-AFDX-384 binding in M_4 KO mice, suggesting limited selectivity toward M_4MR .

Binding of ³H-AFDX-384 in the Presence of M₄MR Specific Toxin MT3

Similar to PD102807, MT3 toxin was unable to block M₄MR. This can be seen in competitions binding experiment with increasing concentration of MT3 toxin (**Table 6**). MT3 toxin was unable to completely block residual ³H-AFDX-384 binding in M₂ KO mice. Moreover, MT3 also dose-dependently reduced ³H-AFDX-384 binding in M₄ KO mice.

Binding of ³H-AFDX-384 in the Presence of Pirenzepine and M_1MR Specific Toxin MT7 in WT and M_4 KO Mice

Incubation with pirenzepine (**Table 7**) showed dose-dependent reduction of ³H-AFDX-384 binding both in WT and M₄ KO mice. Irreversible, and very specific toxin MT7 also dose-dependently reduced ³H-AFDX-384 binding in both WT and M₄ KO mice (see **Table 8**).

Binding of ³H-QNB in WT and M₁ KO, M₂ KO, and M₄ KO Mice M₁ KO Mice

Binding decrease in M_1 KO mice (**Figure 3**, top) showed high densities of M_1 MR in almost all brain areas. In cortical structures, there was approximately 60% of M_1 MR (64, 58, and 61% in MoCx, SSCx, and VisCx, respectively). The highest density of M_1 MR was found in hippocampus (91%) and in hippocampal regions (CA1: 89%, CA3 88%, dentate gyrus 98%, respectively). In striatum, there was 37%. Similar density of M_1 MR was found ventral striatum, i.e., in NAc (46%) and OT (48%).

M₂ KO Mice

Binding decrease in M_2 KO mice (**Figure 3**, middle) showed relatively low density of M_2 MRs in MoCx, SSCx, and VisCx (20, 22, 21%, respectively). In pons and medulla oblongata, there was 100% decrease suggesting pure M_2 MR population in these regions.

M₄ KO Mice

The decrease in binding in M_4 KO mice (**Figure 3**, bottom) revealed 21, 26, and 27% of M_4 MRs in MoCx, SSCx, and VisCx, respectively. The population of M_4 MRs is represented by 43% of total number of MRs in the thalamus. However, the muscarinic population in thalamus is low. The highest proportion of M_4 MRs was found in CPu, NAc, OT, where it represents 46, 38, and 49%, respectively.

Frontiers in Pharmacology | www.frontiersin.org

knockout mice. *p < 0.05, **p < 0.01, ***p < 0.001.

	M ₁ KO (³ H-pirenzepine	e)	M ₂ KO (³ H-AFI	DX-384)	M ₄ KO (³ H-AFDX-384)		
Brain area	Difference from WT [%]	Significance (p)	Difference from WT[%]	Significance (p)	Difference from WT[%]	Significance (p)	
MOCx	-95.85	<0.0001	-54.38	<0.0001	-37.82	<0.0001	
SSCx	-94.14	< 0.0001	-51.08	< 0.0001	-40.04	< 0.0001	
VisCx	-94.35	< 0.0001	-47.19	< 0.0001	-43.23	< 0.0001	
Hipp	-98.49	< 0.0001	-28.32	< 0.0001	-24.03	=0.00100	
TH	-76.68	=0.0096	-100.00	< 0.0001	-39.31	=0.0001	
CPu	-86.49	< 0.0001	-15.19	=0.0290	-77.46	< 0.0001	
NAc	-90.71	< 0.0001	-23.99	=0.0036	-73.78	< 0.0001	
OT	-89.23	< 0.0001	-8.48	NS	-74.62	< 0.0001	
CA1	-99.48	< 0.0001	-23.19	=0.0007	-22.41	0.0022	
CA3	-99.10	< 0.0001	-50.10	< 0.0001	-19.64	=0.0064	
DG	-99.41	<0.0001	-19.86	=0.0028	-17.62	=0.0077	

TABLE 2 | Percentage difference in ³H-pirenzepine binding in M1KO, and in ³H-AFDX-384 to M2KO, and M4KO animals to WT animals.

Statistical significance determined using unpaired Student t-test. For abbreviations see text.

TABLE 3 | Binding and percentage difference in $^{3}\text{H-pirenzepine}$ binding in M_{2}KO animals and WT animals.

Brain area	ain area Relative density [nCi/mg]		Difference from WT (%)	Significance (p)	
	$M_2WT (x \pm SEM)$	$M_2KO (x \pm SEM)$			
MOCx	37.27 ± 1.11	37.50 ± 0.67	1.46	NS	
SSCx	37.31 ± 1.15	36.20 ± 0.73	1.01	NS	
VisCx	38.81 ± 1.54	39.41 ± 0.89	0.82	NS	
Hipp	57.32 ± 1.66	58.46 ± 0.90	1.32	NS	
CPu	47.87 ± 1.75	48.52 ± 0.91	2.01	NS	
NAc	56.57 ± 2.30	54.51 ± 1.70	1.54	NS	
OT	47.13 ± 2.87	50.25 ± 1.02	2.60	NS	
CA1	65.45 ± 1.71	66.03 ± 0.84	1.26	NS	
CA3	43.46 ± 0.95	43.66 ± 0.38	1.32	NS	
DG	58.85 ± 2.00	58.95 ± 0.89	1.42	NS	

Statistical significance determined using unpaired Student t-test. For abbreviations see text.

DISCUSSION

Here we used knockout proof concept to ascertain the selectivity of well-established and commonly used autoradiography protocols for labeling of putative M₂ and M₁MR. Putative M₂ and M₁MR were labeled with ³H-AFDX-384 and ³H-pirenzepine, respectively. We compared the pattern and relative density of ³H-AFDX-384 and ³H-pirenzepine specific binding sites in WT with M₁, M₂, and M₄ KO mice.

Our results demonstrate that ³H-pirenzepine labels predominantly, albeit not exclusively, M_1MR . Thus, according to our results, ³H-pirenzepine can be used as M_1MR selective ligand in brain cortex (MOCx, SSCx, VisCx) and hippocampus, in which more than 94% of ³H-pirenzepine binding sites are attributable to M_1MR . In the striatum and olfactory tubercle 10-13% of ³H-pirenzepine specific binding sites correspond **TABLE 4** | Binding and percentage difference in $^3\text{H}\text{-pirenzepine}$ binding in M_4KO animals and WT animals.

Brain area	Relative den	sity [nCi/mg]	Difference from WT (%)	Significance	
	M_4WT (x \pm SEM)	M_4 KO (x ± SEM)			
MOCx	36.86 ± 0.78	34.39 ± 0.67	-6.71	=0.0369	
SSCx	35.98 ± 1.13	31.26 ± 0.73	-13.11	=0.0057	
VisCx	37.32 ± 1.16	34.02 ± 0.89	-8.83	=0.0473	
Hipp	54.94 ± 1.45	54.99 ± 0.90	0.10	NS	
CPu	47.85 ± 1.65	42.46 ± 0.91	-11.27	=0.0170	
NAc	55.20 ± 1.65	52.81 ± 1.70	-4.33	NS	
OT	46.58 ± 2.85	42.10 ± 1.02	-9.61	NS	
CA1	62.96 ± 1.31	62.78 ± 0.84	-0.28	NS	
CA3	44.48 ± 1.35	44.00 ± 0.38	-1.07	NS	
DG	55.28 ± 1.73	55.97 ± 0.89	1.25	NS	

Statistical significance determined using unpaired Student t-test. For abbreviations see text.

to another MR subtype. Apart from these limitations, $^3\mathrm{H}_{\rm p}$ pirenzepine can be considered (in concentration 5 nmol/l and in the protocol described in Methods section) as M_1MR specific ligand.

To test whether ³H-pirenzepine binds also to M_4MR , we performed also ³H-pirenzepine autoradiography in M_4 KO mice, (see **Table 1** for affinities). We assumed, that in case that ³H-pirenzepine binds M_4MR , there should be decrease in ³H-pirenzepine binding in M_4 KO mice. Indeed, ³H-pirenzepine binding in M_4KO mice is decreased in cortical areas and in caudate putamen. This result can be explained, however by two ways. Firstly, ³H-pirenzepine binds to M_4MR . Secondly, M_1MR are decreased in $M_4 KO$ mice. M_4MR are enriched in the striatum and expressed at modest level in cortex (Gomeza et al., 1999b). Therefore, the decrease of ³H-pirenzepine binding due to the lack of M_4MR should be mostly seen in striatum and not in

(**middle**), and 3 H-AFDX 384 binding in M₄ WT and KO mice (**bottom**).

the cortex. We showed that there is decrease in ³H-pirenzepine binding by 11% in striatum of M₄ KO mice and that the residual binding of ³H-pirenzepine in M₁ KO mice is 10–13%. This suggest that indeed, in striatum ³H-pirenzepine binds also to M₄MR. In contrast, there was more than 95% reduction of ³Hpirenzepine binding in cortex of M₁ KO mice. The density of M₄MR in the cortex is approximately three-fold lower than in the striatum, but decrease in ³H-pirenzepine binding in cortex of M₄ KO mice was similar to that in striatum. Taken together, decrease in ³H-pirenzepine binding in the cortex of M₄ KO mice suggests rather alteration in the density of M_1 MR than binding to M_4 MR. Once again and taking above mentioned results into account, we can consider ³H-pirenzepine as M_1 MR highly specific ligand.

In contrast, ³H-AFDX-384 has poor selectivity toward M_2MR and labels mixed population of MR in a brain area dependent manner. Autoradiography in M_2 and M_4KO mice showed that ³H-AFDX-384 binds to multiple MR populations and that this population differs between brain areas. Moreover, ³H-AFDX-384 binds to M_4MR subtype in similar way as to M_2MR subtype

Brain area		M_2 KO [nCi/mg] x ± SEM	M ₂ KO control vs. M ₂ KO PD	P-value	M_4 KO [nCi/mg] x ± SEM	M ₄ KO control vs. M ₄ KO PD	P-value
MOCx	Control	13.76 ± 1.388			16.78 ± 1.060		
	10 nM PD	5.668 ± 0.053	-58.81	< 0.001	12.67 ± 1.482	-24.49	= 0.021
	100 nM PD	5.365 ± 0.051	-61.01	< 0.001	12.35 ± 0.458	-26.40	= 0.029
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	8.157 ± 1.140	-51.39	< 0.001
SSCx	Control	17.25 ± 1.977			18.42 ± 1.460		
	10 nM PD	6.654 ± 0.882	-61.43	< 0.001	13.79 ± 0.923	-25.14	= 0.017
	100 nM PD	5.325 ± 0.057	-69.13	< 0.001	11.11 ± 1.216	-39.69	= 0.002
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	8.563 ± 1.040	-53.51	< 0.001
VisCx	Control	16.39 ± 2.554			16.66 ± 1.067		
	10 nM PD	6.858 ± 0.530	-58.16	< 0.001	13.22 ± 1.444	-20.65	= 0.091
	100 nM PD	5.769 ± 0.078	-64.80	< 0.001	9.092 ± 1.588	-45.43	= 0.003
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	6.69 ± 1.117	-59.84	< 0.001
Hipp	Control	14.82 ± 1.028			12.76 ± 0.464		
	10 nM PD	7.857 ± 0.726	-46.98	< 0.001	8.926 ± 0.976	-30.05	= 0.005
	100 nM PD	5.972 ± 0.406	-59.70	< 0.001	6.632 ± 0.670	-48.03	< 0.001
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	6.233 ± 0.966	-51.15	< 0.001
CPu	Control	48.23 ± 3.175			10.69 ± 1.012		
	10 nM PD	31.33 ± 0.238	-35.04	< 0.001	6.896 ± 1.074	-35.49	= 0.006
	100 nM PD	20.44 ± 1.202	-57.62	< 0.001	6.123 ± 0.551	-42.72	= 0.003
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	5.598 ± 0.238	-47.63	= 0.002
NAc	Control	43.92 ± 4.107			11.52 ± 1.251		
	10 nM PD	31.42 ± 2.005	-28.46	< 0.001	8.234 ± 1.101	-28.52	= 0.029
	100 nM PD	18.1 ± 0.674	-58.79	< 0.001	6.641 ± 0.634	-42.35	= 0.006
	1000 nM PD	0.168 ± 0.058	-99.62	= 0.002	6.478 ± 0.588	-43.77	= 0.008
ОТ	Control	44.55 ± 4.201			7.048 ± 0.399		
	10 nM PD	21.73 ± 1.338	-51.22	< 0.001	5.452 ± 0.212	-22.64	< 0.001
	100 nM PD	8.894 ± 0.253	-80.04	< 0.001	0.425 ± 0.145	-93.97	< 0.001
	1000 nM PD	0 ± 0.000	-100.00	< 0.001	0 ± 0.000	-100.00	< 0.001

TABLE 5 | Binding and percentage difference in ³H-AFDX 384 binding with PD102807 in M₂KO, and M₄KO animals vs. control (no PD102807).

Statistical significance determined using one-way ANOVA with post-hoc Sidak analysis. PD, PD102807. For other abbreviations see text.

what is in contrast to opinion that ³H-AFDX-384 is M₂MR preferential ligand. Our working hypothesis was that in case of ³H-AFDX-384 high selectivity toward M₂MR, gene deletion of M₂MR resulting in absence of M₂MR protein in M₂KO mice should result in complete loss of ³H-AFDX-384-specific binding. Even though ³H-AFDX-384 specific binding was reduced in M₂KO mice throughout the brain, the reduction was far less than expected. Surprisingly ³H-AFDX-384 specific binding was also reduced in M4KO mice. In brain regions rich in M4MR, such as striatum the ³H-AFDX-384 specific binding was reduced more than 70%. This suggest that³H-AFDX-384 binds to M₄MR subtype as well. Even though affinity of AFDX-384 is high (see Table 1), the extent of ³H-AFDX-384 binding to M₄MR in vitro autoradiography is surprising. In order to increase the selectivity of ³H-AFDX-384 toward M₂MR, we tried to block ³H-AFDX-384 binding to M₄MR by addition of antagonist PD102807 (with pKi higher by two orders of magnitude for M₄MR than for other MR subtypes: 7.3-7.4 vs. 5.2-6.7, see Table 1). Assuming the high selectivity of PD102807 for M₄MR and binding of ³H-AFDX-384 also to M₄MR, PD102807 should markedly reduce the residual ³H-AFDX-384 binding in M₂KO mice. Indeed, addition of PD102807 into incubation medium dose-dependently reduced the residual ³H-AFDX-384 specific binding in M₂KO mice, suggesting effective blocking of putative M₄MR. At the highest concentration (1,000 nmol/l), there was no residual binding of ³H-AFDX-384 in M₂KO mice. To test the potential binding capacity of PD102807 to other MR subtypes we performed similar experiment in M₄KO mice. In case that PD102807 is selective M4MR ligand, adding PD102807 to the incubation medium should not interfere with ³H-AFDX-384 with binding capacity in M₄KO mice, since there are no M₄MR. However, PD102807 also dose-dependently reduced

Brain area		M_2 KO [nCi/mg] x ± SEM	M ₂ KO control vs. M ₂ KO MT3	P-value	M_4 KO [nCi/mg] x ± SEM	M ₄ KO control vs. M ₄ KO MT3	P-value
MOCx	Control	11.01 ± 0.234			15.61 ± 0.821		
	1 nM MT3	9.32 ± 0.422	-15.35	< 0.001	14.81 ± 0.427	-5.12	NS
	10 nM MT3	4.468 ± 0.125	-59.42	< 0.001	13.86 ± 1.874	-11.21	NS
	100 nM MT3	2.115 ± 0.081	-80.79	< 0.001	10.57 ± 0.470	-32.29	= 0.018
SSCx	Control	13.42 ± 0.468			15.15 ± 2.011		
	1 nM MT3	10.97 ± 0.870	-18.26	= 0.009	15.95 ± 0.509	5.28	NS
	10 nM MT3	5.173 ± 0.479	-61.45	< 0.001	13.17 ± 1.678	-13.07	NS
	100 nM MT3	2.393 ± 0.145	-82.17	< 0.001	11.08 ± 0.514	-26.86	NS
VisCx	Control	13.59 ± 0.822			14.79 ± 2.159		
	1 nM MT3	10.52 ± 0.617	-22.59	= 0.005	14.97 ± 1.241	1.22	NS
	10 nM MT3	4.949 ± 0.648	-63.58	< 0.001	13.08 ± 2.405	-11.56	NS
	100 nM MT3	2.177 ± 0.361	-83.98	< 0.001	11.69 ± 1.124	-20.96	NS
Hipp	Control	11.37 ± 0.445			13.37 ± 1.158		
	1 nM MT3	9.061 ± 0.217	-20.31	< 0.001	12.29 ± 0.925	-8.08	NS
	10 nM MT3	5.851 ± 0.436	-48.54	< 0.001	9.094 ± 0.503	-31.98	= 0.006
	100 nM MT3	2.824 ± 0.227	-75.16	< 0.001	7.16 ± 0.489	-46.45	< 0.001
CPu	Control	31.59 ± 1.035			9.659 ± 0.128		
	1 nM MT3	26.94 ± 1.756	-14.72	= 0.01	8.931 ± 0.192	-7.54	NS
	10 nM MT3	8.836 ± 0.641	-72.03	< 0.001	7.81 ± 1.325	-19.14	NS
	100 nM MT3	3.03 ± 0.275	-90.41	< 0.001	5.041 ± 0.129	-47.81	= 0.001
NAc	Control	30.7 ± 0.446			12.19 ± 0.071		
	1 nM MT3	24.85 ± 1.185	-16.49	= 0.001	10.42 ± 0.722	-14.52	NS
	10 nM MT3	9.884 ± 1.270	-61.22	< 0.001	8.9 ± 1.771	-26.99	NS
	100 nM MT3	3.879 ± 0.791	-78.13	< 0.001	5.827 ± 0.489	-52.20	= 0.002
ОТ	Control	29.65 ± 1.640			9.134 ± 0.302		
	1 nM MT3	21.68 ± 2.434	-18.30	= 0.003	8.757 ± 0.234	-4.13	NS
	10 nM MT3	6.838 ± 0.700	-67.82	< 0.001	7.729 ± 1.025	-15.38	NS
	100 nM MT3	2.501 ± 0.067	-82.73	< 0.001	5.306 ± 0.152	-41.91	= 0.001

TABLE 6 | Binding and percentage difference in ³H-AFDX 384 binding with MT3 toxin in M₂KO, and M₄KO animals vs. control (no MT3 toxin).

Statistical significance determined using one-way ANOVA with post-hoc Sidak analysis. MT3, MT3 toxin. For other abbreviations see text.

³H-AFDX-384 specific binding in M₄KO mice with no M₄MR, indicating that under our experimental conditions PD102807 has poor selectivity toward M₄MR. Assuming that ³H-AFDX-384 predominantly labels M2MR and M4MR and no other MR subtype our results suggest, that PD102807 binds to both M4MR and M2MR. We can therefore conclude that co-incubation with PD102807 is not a suitable protocol for M_4MR binding elimination and M₂MR specific binding autoradiography. Thus, we explored another specific binding antagonist-MT3 toxin from Dendroaspis angusticeps venom-with effort to eliminate binding to M₄MR. This toxin is believed to block binding to M₄MR with great order of magnitude difference to other MR subtypes (pKi = 8.7 (M₄MR) vs. <6 in M₂, M₃, M₅MR and 7.1 in M1MR, see Table 1). Similarly to PD102807, MT3 toxin was unable to effectively block ³H-AFDX-384 binding to M₄MR. There remained ³H-AFDX-384 binding capacity in M₂

KO mice in the highest (100 nmol/l) MT3 toxin concentration which should be able to block all M4MR. Moreover, similarly to PD102807, MT3 not only dose-dependently decreased residual binding of ³H-AFDX-384 in M₂ KO mice, but also in M₄ KO mice. This suggest that MT3 toxin does not distinguish between M₄ and M₂MR, at least under our experimental conditions. Finally, we tested the hypothesis that ³H-AFDX-384 binds also to M₁MR. We tested our hypotheses in M₄ KO animals using two approaches: binding in the presence of pirenzepine (see Table 1 for affinities) and irreversible, and very specific toxin MT7 (with pKi = 9.8 to M_1MR and pKi < 6 to other muscarinic subtypes). We choose M₄ KO mice in order to exclude possible binding of pirenzepine toward M₄MR in striatum as discussed above. Even at 10 nM concentration, pirenzepine significantly reduced ³H-AFDX-384 specific binding in M₄ KO mice, suggesting that 3 H-AFDX-384 binds to a certain extent also M₁MR.

Brain area		M ₄ WT (nCi/mg)	M ₄ KO (nCi/mg)	WT vs. KO (%)	P-value	M ₄ WT control vs. M ₄ WT PIR	P-value	M ₄ KO control vs. M ₄ KO PIR	<i>P</i> -value
MOCx	Control	20.310 ± 0.389	13.96 ± 0.285	-31.27	= 0.0002				
	10 nM PIR	17.89 ± 1.835	10.2 ± 0.490	-42.98	= 0.0155	-11.92	NS	-26.93	< 0.001
	100 nM PIR	11.56 ± 2.226	6.387 ± 0.081	-44.75	NS	-43.08	= 0.01	-54.25	< 0.001
SSCx	Control	23.210 ± 1.275	14.61 ± 0.487	-37.05	= 0.0041				
	10 nM PIR	21.22 ± 3.075	11.21 ± 0.690	-47.17	= 0.0336	-8.57	NS	-23.27	< 0.001
	100 nM PIR	12.93 ± 2.132	6.525 ± 0.134	-49.54	= 0.0401	-44.29	= 0.022	-55.34	< 0.001
VisCx	Control	22.480 ± 0.936	13.61 ± 0.503	-39.46	= 0.0011				
	10 nM PIR	20.35 ± 2.271	9.741 ± 0.598	-52.13	= 0.0107	-9.48	NS	-28.43	< 0.001
	100 nM PIR	11.27 ± 1.824	6.166 ± 0.202	-45.29	= 0.0496	-49.87	= 0.003	-54.70	< 0.001
Hipp	Control	16.830 ± 0.75	12.87 ± 0.366	-23.53	= 0.009				
	10 nM PIR	13.57 ± 1.581	7.637 ± 0.492	-43.72	= 0.0231	-19.37	NS	-40.66	< 0.001
	100 nM PIR	7.402 ± 1.23	3.507 ± 0.069	-52.62	= 0.0341	-56.02	< 0.001	-72.75	< 0.001
CA1	Control	20.640 ± 0.495	15.66 ± 0.603	-24.13	= 0.0031				
	10 nM PIR	16.35 ± 1.756	9.162 ± 0.698	-43.96	= 0.019	-20.78	NS	-41.49	< 0.001
	100 nM PIR	8.91 ± 1.556	4.185 ± 0.016	-53.03	= 0.0384	-56.83	< 0.001	-73.28	< 0.001
CA3	Control	15.830 ± 0.59	13.71 ± 0.433	-13.39	= 0.0437				
	10 nM PIR	13.45 ± 1.65	8.743 ± 0.728	-35.00	NS	-15.03	NS	-36.23	< 0.001
	100 nM PIR	8.3 ± 1.437	4.491 ± 0.035	-45.89	NS	-47.57	= 0.0006	-67.24	< 0.001
DG	Control	14.120 ± 0.934	10.96 ± 0.217	-22.38	= 0.0303				
	10 nM PIR	10.76 ± 1.625	6.024 ± 0.504	-44.01	= 0.0497	-23.80	NS	-45.04	< 0.001
	100 nM PIR	5.185 ± 0.856	2.174 ± 0.089	-58.07	= 0.0249	-63.28	< 0.001	-80.16	< 0.001
CPu	Control	33.670 ± 1.684	8.953 ± 0.301	-73.41	= 0.0001				
	10 nM PIR	30.9 ± 4.385	6.062 ± 0.271	-80.38	= 0.0048	-8.23	NS	-32.29	< 0.001
	100 nM PIR	16.68 ± 3.283	2.733 ± 0.251	-83.62	= 0.0133	-50.46	= 0.011	-69.47	< 0.001
NAc	Control	33.230 ± 1.947	10.25 ± 0.418	-69.15	= 0.0003				
	10 nM PIR	29.9 ± 5.43	6.884 ± 0.032	-76.98	= 0.0133	-10.02	NS	-32.84	< 0.001
	100 nM PIR	16.24 ± 3.941	3.311 ± 0.152	-79.61	= 0.0306	-51.13	= 0.031	-67.70	< 0.001
TH	Control	11.460 ± 0.571	7.224 ± 0.179	-36.96	= 0.0021				
	10 nM PIR	10.22 ± 2.177	6.239 ± 0.468	-38.95	NS	-10.82	NS	-13.64	= 0.04
	100 nM PIR	7.757 ± 1.203	3.615 ± 0.043	-53.40	= 0.0263	-32.31	NS	-49.96	< 0.001
MY	Control	13.670 ± 0.617	11.08 ± 1.107	-18.95	NS				
	10 nM PIR	13.58 ± 1.278	11.03 ± 1.926	-18.78	NS	-0.66	NS	-0.45	NS
	100 nM PIR	10.48 ± 2.456	5.237 ± 0.819	-50.03	NS	-23.34	NS	-52.73	< 0.001
Pons	Control	15.110 ± 0.079	13.51 ± 1.279	-10.59	NS				
	10 nM PIR	14.34 ± 1.558	10.55 ± 1.058	-26.43	NS	-5.10	NS	-21.91	NS
	100 nM PIR	11.15 ± 1.414	6.253 ± 0.806	-43.92	= 0.0396	-26.21	NS	-53.72	= 0.02
от	Control	28.830 ± 2.339	8.797 ± 0.335	-69.49	= 0.0011				
	10 nM PIR	25.86 ± 4.201	5.554 ± 0.225	-78.52	= 0.0085	-10.30	NS	-36.86	< 0.001
	100 nM PIR	14.81 ± 3.031	3.647 ± 0.087	-75.37	= 0.0212	-48.63	= 0.029	-58.54	< 0.001

TABLE 7 | Binding and percentage difference in ³H-AFDX 384 binding with pirenzepine in M₄WT and M₄KO animals vs. control (no pirenzepine).

Statistical significance determined using one-way ANOVA with post-hoc Sidak analysis or Student unpaired t-test (WT. vs. KO). PIR. pirenzepine. For other abbreviations see text.

Brain area		M ₄ WT (nCi/mg)	M ₄ KO (nCi/mg)	WT vs. KO (%)	P-value	M ₄ WT control vs. M ₄ WT MT7	P-value	M ₄ KO control vs. M ₄ KO MT7	P-value
MOCx	Control	24.600 ± 1.55	14.36 ± 1.078	-41.63	= 0.0056				
	1 nM MT7	20.01 ± 0.683	13.13 ± 0.721	-34.38	= 0.0023	-18.66	= 0.008	-8.57	NS
	10 nM MT7	18.59 ± 1.079	10.47 ± 0.347	-43.68	= 0.002	-24.43	= 0.003	-27.09	= 0.004
	100 nM MT7	12.72 ± 0.478	8.829 ± 0.429	-30.59	= 0.0037	-48.29	< 0.001	-38.52	< 0.001
SSCx	Control	28.820 ± 3.316	15.46 ± 0.310	-46.36	= 0.0116				
	1 nM MT7	22.66 ± 1.221	13.65 ± 0.992	-39.76	= 0.0046	-21.37	= 0.032	-11.71	NS
	10 nM MT7	20.55 ± 0.484	11.52 ± 0.492	-43.94	= 0.0002	-28.70	= 0.014	-25.49	= 0.002
	100 nM MT7	13.76 ± 0.393	9.774 ± 0.660	-28.97	= 0.0066	-52.26	< 0.001	-36.78	< 0.001
VisCx	Control	26.070 ± 2.892	14.66 ± 0.404	-43.77	= 0.0175				
	1 nM MT7	19.86 ± 1.131	12.59 ± 0.943	-36.61	= 0.0078	-23.82	= 0.039	-14.12	= 0.022
	10 nM MT7	19.77 ± 1.097	10.43 ± 0.286	-47.24	= 0.0012	-24.17	= 0.021	-28.85	< 0.001
	100 nM MT7	13.23 ± 0.339	8.466 ± 0.326	-36.01	= 0.0005	-49.25	< 0.001	-42.25	< 0.001
Hipp	Control	21.780 ± 1.544	13.92 ± 0.594	-36.09	= 0.009				
	1 nM MT7	14.54 ± 1.974	10.24 ± 1.214	-29.57	NS	-33.24	= 0.002	-26.44	= 0.002
	10 nM MT7	11.77 ± 0.091	6.862 ± 0.019	-41.70	< 0.0001	-45.96	< 0.001	-50.70	< 0.001
	100 nM MT7	7.866 ± 0.216	5.084 ± 0.171	-35.37	= 0.0005	-63.88	< 0.001	-63.48	< 0.001
CA1	Control	25.060 ± 1.829	17.13 ± 0.417	-31.64	= 0.0134				
	1 nM MT7	17.28 ± 2.268	13.04 ± 1.280	-24.54	NS	-31.05	= 0.003	-23.88	= 0.001
	10 nM MT7	14.11 ± 0.277	8.038 ± 0.066	-43.03	< 0.0001	-43.70	< 0.001	-53.08	< 0.001
	100 nM MT7	9.703 ± 0.329	6.093 ± 0.264	-37.20	= 0.001	-61.28	< 0.001	-64.43	< 0.001
CA3	Control	21.060 + 1.332	14 75 + 0 766	_29.96	- 0.0148				
	1 pM MT7	15.02 ± 1.502	11.73 ± 0.185	_23.64		-28.68	- 0.001	_22.24	- 0.003
	10 pM MT7	12.56 ± 0.164	8.534 ± 0.265	_32.05	- 0.0002	_40.36	- 0.001	_12.24	- 0.000
	100 nM MT7	9.442 ± 0.15	6.995 ± 0.259	-25.92	= 0.0002 = 0.0012	-55.17	< 0.001	-52.58	< 0.001
	Control	10.010 + 1.564	11 71 4 0 001	20.06	0.0107				
DG		19.310 ± 1.304	11.71 ± 0.001	-39.30	= 0.0127	07.00	0.000	01.04	0.004
		12.10 ± 2.077	7.962 ± 1.237	-34.30	112	-37.03	= 0.002	-31.64	= 0.004
	10 nM MI /	8.006 ± 0.369	4.122 ± 0.126	-48.51	= 0.0006	-58.54	< 0.001	-64.80	< 0.001
		5.174 ± 0.146	2.891 ± 0.228	-44.12	= 0.0011	-73.21	< 0.001	-75.31	< 0.001
CPu	Control	43.410 ± 2.14	9.207 ± 0.708	-78.79	= 0.0001				
	1 nM MT7	36.24 ± 2.251	7.941 ± 0.775	-78.09	= 0.0003	-16.52	= 0.013	-13.75	NS
	10 nM MT7	33.01 ± 0.556	5.169 ± 0.109	-84.34	< 0.0001	-23.96	= 0.002	-43.86	< 0.001
	100 nM MT7	20.24 ± 1.477	4.422 ± 0.498	-78.15	= 0.0005	-53.37	< 0.001	-51.97	< 0.001
NAc	Control	42.830 ± 2.79	11.28 ± 0.934	-73.66	= 0.0004				
	1 nM MT7	37.61 ± 2.622	9.917 ± 1.342	-73.63	= 0.0007	-12.19	NS	-12.08	NS
	10 nM MT7	28.85 ± 1.266	5.076 ± 0.165	-82.41	< 0.0001	-32.64	NS	-55.00	< 0.001
	100 nM MT7	18.52 ± 1.236	4.323 ± 0.410	-76.66	= 0.0004	-56.76	NS	-61.68	< 0.001
TH	Control	14.750 ± 1.189	7.696 ± 0.574	-47.82	= 0.0059				
	1 nM MT7	12.03 ± 0.894	7.895 ± 0.271	-34.37	= 0.0115	-18.44	NS	2.59	NS
	10 nM MT7	12.55 ± 0.189	7.525 ± 0.181	-40.04	< 0.0001	-14.92	NS	-2.22	NS
	100 nM MT7	8.785 ± 0.235	6.125 ± 0.236	-30.28	= 0.0013	-40.44	< 0.001	-20.41	= 0.024
MY	Control	16.190 ± 1.489	15.27 ± 1.625	-5.68	NS				
	1 nM MT7	15.98 ± 0.165	15.87 ± 1.658	-0.69	NS	-1.30	NS	3.93	NS
	10 nM MT7	15.91 ± 0.526	13.79 ± 1.579	-13.32	NS	-1.73	NS	-9.69	NS
	100 nM MT7	12.67 ± 0.393	10.61 ± 1.615	-16.26	NS	-21.74	= 0.03	-30.52	NS

TABLE 8 | Binding and percentage difference in ³H-AFDX 384 binding with MT7 toxin in M₄WT, and M₄KO animals vs. control (no MT7 toxin).

(Continued)

Brain area M_4WT (nCi/mg) M_4KO (nCi/mg)WT vs. KO (%)P-value M_4WT control vs. M_4 WT MT7P-value $M_4 KO$ control vs. M_4 KO MT7PPonsControl15.030 \pm 2.63312.79 \pm 2.748-14.90NS1 nM MT714.3 \pm 1.23512.49 \pm 2.741-12.66NS-4.86NS-2.3510 nM MT714.52 \pm 1.61211.97 \pm 2.159-17.56NS-3.39NS-6.41100 nM MT711.45 \pm 1.4589.407 \pm 2.037-17.84= 0.0226-23.82NS-26.45OTControl36.610 \pm 3.0979.624 \pm 0.857-73.71= 0.0011-14.07NS-32.97=0TMT731.46 \pm 2.2836.451 \pm 0.725-79.49= 0.0005-14.07NS-32.97=										
Pons Control 15.030 ± 2.633 12.79 ± 2.748 -14.90 NS 1 nM MT7 14.3 ± 1.235 12.49 ± 2.741 -12.66 NS -4.86 NS -2.35 10 nM MT7 14.52 ± 1.612 11.97 ± 2.159 -17.56 NS -3.39 NS -6.41 100 nM MT7 11.45 ± 1.458 9.407 ± 2.037 -17.84 $= 0.0226$ -23.82 NS -26.45 OT Control 36.610 ± 3.097 9.624 ± 0.857 -73.71 $= 0.0011$ 10.011 10.011 10.011 10.0011 10.0015 -14.07 NS -32.97 $= 32.97$ <	Brain area		M ₄ WT (nCi/mg)	M ₄ KO (nCi/mg)	WT vs. KO (%)	P-value	M ₄ WT control vs. M ₄ WT MT7	P-value	M ₄ KO control vs. M ₄ KO MT7	P-value
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pons	Control	15.030 ± 2.633	12.79 ± 2.748	-14.90	NS				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 nM MT7	14.3 ± 1.235	12.49 ± 2.741	-12.66	NS	-4.86	NS	-2.35	NS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 nM MT7	14.52 ± 1.612	11.97 ± 2.159	-17.56	NS	-3.39	NS	-6.41	NS
OT Control 36.610 ± 3.097 9.624 ± 0.857 -73.71 $= 0.0011$ 1 nM MT7 31.46 ± 2.283 6.451 ± 0.725 -79.49 $= 0.0005$ -14.07 NS -32.97 $=$		100 nM MT7	7 11.45 \pm 1.458	9.407 ± 2.037	-17.84	= 0.0226	-23.82	NS	-26.45	NS
1 nM MT7 31.46 ± 2.283 6.451 ± 0.725 -79.49 = 0.0005 -14.07 NS -32.97 =	OT	Control	36.610 ± 3.097	9.624 ± 0.857	-73.71	= 0.0011				
		1 nM MT7	31.46 ± 2.283	6.451 ± 0.725	-79.49	= 0.0005	-14.07	NS	-32.97	= 0.003
$10 \text{ nM} \text{ MI} 7$ 26.16 ± 1.063 4.969 ± 0.219 -81.01 < 0.0001 -28.54 = 0.006 -48.37 <		10 nM MT7	26.16 ± 1.063	4.969 ± 0.219	-81.01	< 0.0001	-28.54	= 0.006	-48.37	< 0.001
$100 \text{ nM MT7} 16.16 \pm 0.13 \qquad 4.094 \pm 0.323 \qquad -74.67 \qquad < 0.0001 \qquad -55.86 \qquad < 0.001 \qquad -57.46 \qquad < 0.001 \qquad $		100 nM MT7	7 16.16 \pm 0.13	4.094 ± 0.323	-74.67	< 0.0001	-55.86	< 0.001	-57.46	< 0.001

TABLE 8 | Continued

Statistical significance determined using one-way ANOVA with post-hoc Sidak analysis or Student unpaired t-test (WT vs. KO). MT7, MT7 toxin. For other abbreviations see text.

Moreover, irreversible, and very specific toxin MT7 showed dose-dependent reduction of ³H-AFDX-384 specific binding in M_4 KO mice further supporting binding of ³H-AFDX-384 to M_1 MR. It is therefore possible to conclude that ³H-AFDX-384 is not suitable ligand for M_2 MR. Moreover, we were not successful in designing any protocol to block M_4 or M_1 MR and increase the selectivity of ³H-AFDX-384 autoradiography of M_2 MR.

All five MR subtypes are highly expressed in the brain (Levey et al., 1991; Wess et al., 2003; Oki et al., 2005). The M_1 and M_4 MRs represent the most abundant subtypes with the highest expression in the cortex, hippocampus and striatum that can be well illustrated using ³H-QNB autoradiography in our M_1 KO and M_4 KO mice.

In vitro receptor autoradiography has been used for decades for mapping anatomical distribution and quantification of broad range of receptors (Manuel et al., 2015; Farar and Myslivecek, 2016). The standard autoradiography is based on equilibrium binding of radioactively labeled antagonist. The key aspect of autoradiography is thus the selectivity of radioligand toward its target. MR subtypes show often overlapping pattern of expression and most MR ligands have poor selectivity, making the discrimination of individual subtypes difficult. While there are several ligands available, which specifically label MR, they do not distinguish individual MR subtypes. In vitro heterologous expression systems have helped to describe the affinity of a broad range of antagonists toward each of the five MR (Buckley et al., 1989; Dörje et al., 1991; Dong et al., 1995). These studies have identified so-called preferential MR ligands such as AFDX-384 and pirenzepine, which are commonly used to target putative M₂ and M₁MR, respectively. AFDX-384 has the highest affinity toward M2MR, but also similar affinity toward M4MR (Dörje et al., 1991).

We have proofed here that autoradiography protocol for ³Hpirenzepine is suitable for M_1MR detection (with limitations in CPu, NAc and OT) where pirenzepine binds also by approximately 10% to another MR subtype, likely M_4MR). Thus, this ligand can be used as M_1MR specific as before (e.g., Wamsley et al., 1984; McCabe et al., 1987; Farar and Myslivecek, 2016). On the other hand, ³H-AFDX-384 is not suitable to detect M_2MR as believed previously (Entzeroth and Mayer, 1990; Wolff et al., 2008; Grailhe et al., 2009). However, there are some studies that previously correctly defined ³H-AFDX-384 as M_2 partially selective (Mulugeta et al., 2003) or as M_2/M_4 ligand (Nieves-Martinez et al., 2012).

The fact that ³H-AFDX-384 is not selective toward M_2MR was predictable in the light of AFDX-384 affinity to MR subtypes (see **Table 1**). However, almost identical binding to M_2MR and M_4MR is a new finding. We also tried to find specific protocol for M_2MR specific binding using different antagonists (PD102807, MT3 toxin, pirenzepine, and MT7 toxin). None of these antagonists were able to completely block other receptors. And thus it is necessary to conclude that there is no way to make the binding more specific to M_2MR .

Another aspect of our data is demonstration of M1MR, M2MR, and M4MR distribution. It can be deduced from Figure 1 that M₁MR are not as hugely present in the cortical structures as in some hippocampal areas (dorsal hippocampus, CA1 area, and dentate gyrus). Very low M₁MR density is in the thalamus. Comparing binding in M2WT and M2KO mice we can conclude that there is relatively high density of M₂MR in cortical structures, medulla oblongata, pons and thalamus. In contrast, hippocampus and striatum does not have high amount of M₂MR. Striatum is, however, rich in M₄MR similarly to nucleus accumbens and olfactory tubercles. Also, the density of M₄MR in the cortex is relatively high. However, one should take into account that these data represent relative proportions of respective MR subtypes, since the binding was determined in radioligand concentrations around K_D and the receptors were not saturated. ³H-pirenzepine has pK_D around 7.9 (Watson et al., 1984), ³H-AFDX 384 has KD between 3 and 4 nmol.l⁻¹ (Castoldi et al., 1991) what is comparable to ³H-pirenzepine. In order to verify the proportion of respective MR subtypes we have used specific MR knockouts (M1, M2, and M4 KOs) and measured a decrease in non-specific radioligand (³H-QNB) binding. This radioligand has much higher affinity to MR and pK_D ranging between 10.6 and 10.8 (Peralta et al., 1987). These experiments showed the highest proportion (usually above 50%) of M₁MR in virtualy all studied brain areas. M₂MR take up

FIGURE 3 | Changes in ³H-QNB specific binding in M₁KO mice (**top**), M₂KO mice (**middle**), and M₄KO mice (**bottom**) when compared to WT animals. Non-specific binding was determined in the presence of 10 μ M atropine sulfate. Ordinate: brain areas [motor cortex (MOCx), somatosensory cortex (SSCx), visual cortex (VisCx), medulla oblongate (MY), pons Varoli (pons), striatum (Caudatum-Putamen, CPu), nucleus accumbens (NAc), thalamus (TH), hippocampus (Hipp) and its specific areas CA1, CA3 and dentate gyrus (DG), olfactory tubercle (OT]], abscissa: relative density [nCi/mg]. WT, wild type; KO, knockout mice. *p < 0.05, **p < 0.01, ***p < 0.001.

to 20% in cortical areas and 34% in thalamus. M_4MR were abundant (40% approximately) in thalamus, striatum and ventral striatum (NAc and OT), about 20% of M_4MR can be found in cortical structures. This is in general agreement with previously published data (Levey et al., 1991; Wess et al., 2003; Oki et al., 2005), although we have obtained slightly different pattern of MR subtypes distribution what can be caused by the use of different radioligand. Some discrepancies between results could be attributed to the fact that not all antibodies are selective (Pradidarcheep and Michel, 2016). As referenced by Manuel et al. (2015) relatively good correlation exists between the radioligand detected receptor number and the immunolabeled receptor protein for M_1 subtype.

Our results concerning the MR distribution are generally in in agreement with previous study (Oki et al., 2005) which employed different muscarinic knockouts but used non-specific radioligand (³H-NMS). However, in this study less brain areas were investigated and different method (direct radioligand binding) used. We sldo found similar pattern of MR subtype distribution as investigated using antibodies and electron microscopy (Hersch et al., 1994), immunoprecipitation (Levey et al., 1991; Tice et al., 1996) and radioligand binding (Flynn and Mash, 1993). Another study (Ferrari-Dileo et al., 1994) that used selective labeling found similar pattern of M4MR distribution as here. All five MR subtypes are highly expressed in the brain (Levey, 1996; Oki et al., 2005). The M1 and M4 MR represent the most abundant subtypes with the highest expression in the cortex, hippocampus and striatum that can be well illustrated using ³H-QNB autoradiography in our M₁ KO and M₄ KO mice. Previous research has shown that MRs, mostly M1 and M4 MRs, might be an interesting pharmacological target for the treatment of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia, depression and also drug abuse (Bodick et al., 1997; Scarr et al., 1999; Brady et al., 2008; Langmead et al., 2008; Bradley et al., 2017; Dall et al., 2017). Therefore, in vitro radioligand binding studies, direct and indirect, represent an important pharmacological tool to precisely characterize the involvement of specific MR subtypes in such a disease as well as to study the binding properties, affinity and efficacy of new chemical compounds with the potential to become a selective drug toward the receptor.

CONCLUSION

We can therefore conclude that ³H-pirenzepine showed high selectivity toward M_1MR and can be used with minor limitations as M_1MR specific ligand. In contrast, ³H-AFDX-384 binding sites represent different populations of MR subtypes which is brain-region-specific. This finding has to be taken into account when interpreting the binding data. Our experiments with ³H-QNB binding decrease in M_1 , M_2 , and M_4 KO animals showed the highest proportion of M_1MR in virtualy all studied brain areas. M_2MR were expressed in cortical areas and in thalamus. M_4MR were abundant in thalamus, striatum and ventral striatum (NAc and OT as well as in cortical structures.

AUTHOR CONTRIBUTIONS

JM and VF contributed to the conception and design of the reported studies. PV, IK, and VF conducted all of the experiments. SF, VF, and PV analyzed the data. PV and VF contributed to the drafting and revision of the manuscript. JM wrote the manuscript in the final form. All authors approved the final version and agreed to be accountable for all aspects of the work.

REFERENCES

- Aubert, I., Cécyre, D., Gauthier, S., and Quirion, R. (1992). Characterization and autoradiographic distribution of [3H]AF-DX 384 binding to putative muscarinic M2 receptors in the rat brain. *Eur. J. Pharmacol.* 217, 173–184. doi: 10.1016/0014-2999(92)90843-S
- Bodick, N. C., Offen, W. W., Shannon, H. E., Satterwhite, J., Lucas, R., van Lier, R., et al. (1997). The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. *Alzheimer Dis. Assoc. Disord.* 11(Suppl. 4), S16–S22.
- Bradley, S. J., Bourgognon, J., Sanger, H. E., Verity, N., Mogg, A. J., White, D. J., et al. (2017). M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J. Clin. Invest. 127, 487–499. doi: 10.1172/JCI87526
- Brady, A. E., Jones, C. K., Bridges, T. M., Kennedy, J. P., Thompson, A. D., Heiman, J. U., et al. (2008). Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327, 941–953. doi: 10.1124/jpet.108. 140350
- Buckley, N. J., Bonner, T. I., and Brann, M. R. (1988). Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8, 4646–4652.
- Buckley, N. J., Bonner, T. I., Buckley, C. M., and Brann, M. R. (1989). Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. *Mol. Pharmacol.* 35, 469–476.
- Buckley, N. J., and Burnstock, G. (1986). Autoradiographic localization of peripheral M1 muscarinic receptors using [3H]pirenzepine. *Brain Res.* 375, 83–91. doi: 10.1016/0006-8993(86)90961-3
- Bymaster, F. P., McKinzie, D. L., Felder, C. C., and Wess, J. (2003). Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. *Neurochem. Res.* 28, 437–442. doi: 10.1023/A:1022844517200
- Castoldi, A. F., Fitzgerald, B., Manzo, L., Tonini, M., and Costa, L. G. (1991). Muscarinic M2 receptors in rat brain labeled with [3H] AF-DX 384. Res. Commun. Chem. Pathol. Pharmacol. 74, 371–374.
- Cea-del Rio, C. A., Lawrence, J. J., Tricoire, L., Erdelyi, F., Szabo, G., and McBain, C. J. (2010). M3 Muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J. Neurosci. 30, 6011–6024. doi: 10.1523/JNEUROSCI.5040-09.2010
- Cortes, R., and Palacios, J. M. (1986). Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. *Brain Res.* 362, 227–238. doi: 10.1016/0006-8993(86)90448-8
- Dall, C., Weikop, P., Dencker, D., Molander, A. C., Conn, P. J., Fink-Jensen, A., et al. (2017). Wörtwein, G., and Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine. *Drug Alcohol Depend* 176, 154–161. doi: 10.1016/j.drugalcdep.2017.03.014
- Dong, G. Z., Kameyama, K., Rinken, A., and Haga, T. (1995). Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J. Pharmacol. Exp. Ther. 274, 378–384.
- Dörje, F., Wess, J., Lambrecht, G., Tacke, R., Mutschler, E., and Brann, M. R. (1991). Antagonist binding profiles of five cloned human muscarinic receptor subtypes. *J. Pharmacol. Exp. Ther.* 256, 727–733.

FUNDING

This research was supported by Supported by Grant 328314 from GAUK, CZ, PROGRES Q25/1LF/2 from Charles University, CZ, and by Czech Science Foundation Grant No 17-03847S.

ACKNOWLEDGMENTS

The authors thank Katerina Janisova for her technical assistance.

- Eglen, R. (2012). "Overview of muscarinic receptor subtypes," in *Muscarinic Receptors*, eds A. D. Fryer, A. Christopoulos, and N. M. Nathanson (Berlin; Heidelberg: Springer), 3–28.
- Entzeroth, M., and Mayer, N. (1990). Labeling of rat heart muscarinic receptors using the new M2 selective antagonist [3H]AF-DX 384. *Biochem. Pharmacol.* 40, 1674–1676. doi: 10.1016/0006-2952(90)90473-X
- Farar, V., Mohr, F., Legrand, M., d'Incamps, B. L., Cendelin, J., Leroy, J., et al. (2012). Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 122, 1065–1080. doi:10.1111/j.1471-4159.2012.07856.x
- Farar, V., and Myslivecek, J. (2016). "Autoradiography assessment of muscarinic receptors in the central nervous system," in *Muscarinic Receptor: From Structure to Animal Models*, eds J. Myslivecek and J. Jakubik (New York, NY: Springer), 159–180.
- Ferrari-Dileo, G., Waelbroeck, M., Mash, D. C., and Flynn, D. D. (1994). Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. *Mol. Pharmacol.* 46, 1028–1035.
- Flynn, D. D., and Mash, D. C. (1993). Distinct kinetic binding properties of N-[3H]-methylscopolamine afford differential labeling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain. *Synapse* 14, 283–296. doi: 10.1002/syn.890140406
- Gomeza, J., Shannon, H., Kostenis, E., Felder, C., Zhang, L., Brodkin, J., et al. (1999a). Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. *Proc. Natl. Acad. Sci. U.S.A.* 96, 1692–1697. doi: 10.1073/pnas.96.4.1692
- Gomeza, J., Zhang, L., Kostenis, E., Felder, C., Bymaster, F., Brodkin, J., et al. (1999b). Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. *Proc. Natl. Acad. Sci. U.S.A.* 96, 10483–10488. doi: 10.1073/pnas.96.18.10483
- Grailhe, R., Cardona, A., Even, N., Seif, I., Changeux, J.-P., and Cloëz-Tayarani, I. (2009). Regional changes in the cholinergic system in mice lacking monoamine oxidase A. *Brain Res. Bull.* 78, 283–289. doi: 10.1016/j.brainresbull.2008.12.004
- Hersch, S. M., Gutekunst, C. A., Rees, H. D., Heilman, C. J., and Levey, A. I. (1994). Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. *J. neurosci.* 14, 3351–3363.
- Jositsch, G., Papadakis, T., Haberberger, R. V., Wolff, M., Wess, J., and Kummer, W. (2009). Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor genedeficient mice. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 379, 389–395. doi: 10.1007/s00210-008-0365-9
- Kow, R. L., and Nathanson, N. M. (2012). Structural biology: muscarinic receptors become crystal clear. *Nature* 482, 480–481. doi: 10.1038/482480a
- Kruse, A. C., Ring, A. M., Manglik, A., Hu, J., Hu, K., Eitel, K., et al. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. *Nature* 504, 101–106. doi: 10.1038/nature12735
- Langmead, C. J., Watson, J., and Reavill, C. (2008). Muscarinic acetylcholine receptors as CNS drug targets. *Pharmacol. Ther.* 117, 232–243. doi: 10.1016/j.pharmthera.2007.09.009
- Levey, A. I. (1996). Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. *Proc. Natl. Acad. Sci.* U.S.A. 93, 13541–13546. doi: 10.1073/pnas.93.24.13541

- Levey, A. I., Kitt, C. A., Simonds, W. F., Price, D. L., and Brann, M. R. (1991). Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. *J. Neurosci.* 11, 3218–3226.
- Manuel, I., Barreda-Gómez, G., González De San Román, E., Veloso, A., Fernández, J. A., Giralt, M. T., et al. (2015). Neurotransmitter receptor localization: from autoradiography to imaging mass spectrometry. ACS Chem. Neurosci. 6, 362–373. doi: 10.1021/cn50 0281t
- McCabe, R. T., Gibb, J. W., Wamsley, J. K., and Hanson, G. R. (1987). Autoradiographic analysis of muscarinic cholinergic and serotonergic receptor alterations following methamphetamine treatment. *Brain Res. Bull.* 19, 551–557. doi: 10.1016/0361-9230(87)90072-4
- Mulugeta, E., Karlsson, E., Islam, A., Kalaria, R., Mangat, H., Winblad, B., et al. (2003). Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. *Brain Res.* 960, 259–262. doi: 10.1016/S0006-8993(02)03542-4
- Myslivecek, J., Klein, M., Novakova, M., and Ricny, J. (2008). The detection of the non-M-2 muscarinic receptor subtype in the rat heart atria and ventricles. *Naunyn-Schmiedebergs Arch. Pharmacol.* 378, 103–116. doi: 10.1007/s00210-008-0285-8
- Nieves-Martinez, E., Haynes, K., Childers, S. R., Sonntag, W. E., and Nicolle, M. M. (2012). Muscarinic receptor/G-protein coupling is reduced in the dorsomedial striatum of cognitively impaired aged rats. *Behav. Brain Res.* 227, 258–264. doi: 10.1016/j.bbr.2011.10.048
- Oki, T., Takagi, Y., Inagaki, S., Taketo, M. M., Manabe, T., Matsui, M., et al. (2005). Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. *Mol. Brain Res.* 133, 6–11. doi: 10.1016/j.molbrainres.2004. 09.012
- Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. (1987). Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. *EMBO J.* 6, 3923–3929.
- Pradidarcheep, W., and Michel, M. C. (2016). "Use of antibodies in the research on muscarinic receptor subtypes," in *Muscarinic Receptor: From Structure to Animal Models*, eds J. Myslivecek and J. Jakubik (New York, NY: Springer), 83–94.
- Reiner, C., and Nathanson, N. (2012). "Muscarinic receptor trafficking," in *Muscarinic Receptors*, eds A. D. Fryer, A. Christopoulos, and N. M. Nathanson (Berlin; Heidelberg: Springer), 61–78.
- Scarr, E., Dean, B., Der Zee, E. A., and Luiten, P. G. (1999). Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J. Neurochem. 107, 1188–1195. doi: 10.1111/j.1471-4159.2008.05711.x
- Shin, J. H., Adrover, M. F., Wess, J., and Alvarez, V. A. (2015). Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. *Proc. Natl. Acad. Sci. U.S.A.* 112, 8124–8129. doi: 10.1073/pnas.1508846112
- Thomsen, M., Sørensen, G., and Dencker, D. (2017). Physiological roles of CNS muscarinic receptors gained from knockout mice. *Neuropharmacology*. doi: 10.1016/j.neuropharm.2017.09.011. [Epub ahead of print].
- Tice, M. A., Hashemi, T., Taylor, L. A., and McQuade, R. D. (1996). Distribution of muscarinic receptor subtypes in rat brain from postnatal to old age. *Dev. Brain Res.* 92, 70–76. doi: 10.1016/0165-3806(95)01515-9
- Tien, L.-T., Fan, L.-W., Sogawa, C., Ma, T., Loh, H. H., and Ho, I.-K. (2004). Changes in acetylcholinesterase activity and muscarinic receptor bindings in μ-opioid receptor knockout mice. *Mol. Brain Res.* 126, 38–44. doi: 10.1016/j.molbrainres.2004.03.011
- Vilaró, M. T., Palacios, J. M., and Mengod, G. (1990). Localization of m5 muscarinic receptor mRNA in rat brain examined by *in situ* hybridization histochemistry. *Neurosci. Lett.* 114, 154–159. doi: 10.1016/0304-3940(90)90064-G

- Villiger, J. W., and Faull, R. L. M. (1985). Muscarinic cholinergic receptors in the human spinal cord: differential localization of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding sites. *Brain Res.* 345, 196–199. doi: 10.1016/0006-8993(85)90854-6
- Wamsley, J. K., Gehlert, D. R., Roeske, W. R., and Yamamura, H. I. (1984). Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. *Life Sci.* 34, 1395–1402. doi: 10.1016/0024-3205(84)90012-2
- Wang, Q., Wei, X., Gao, H., Li, J., Liao, J., Liu, X., et al. (2014). Simvastatin reverses the downregulation of M1/4 receptor binding in 6-hydroxydopamine-induced parkinsonian rats: the association with improvements in long-term memory. *Neuroscience* 267, 57–66. doi: 10.1016/j.neuroscience.2014.02.031
- Watson, M., Roeske, W. R., Johnson, P. C., and Yamamura, H. I. (1984). [3H]Pirenzepine identifies putative M1 muscarinic receptors in human stellate ganglia. *Brain Res.* 290, 179–182. doi: 10.1016/0006-8993(84)90751-0
- Weiner, D. M., Levey, A. I., and Brann, M. R. (1990). Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. *Proc. Natl. Acad. Sci. U.S.A.* 87, 7050–7054. doi: 10.1073/pnas.87.18.7050
- Wess, J., Duttaroy, A., Zhang, W., Gomeza, J., Cui, Y., Miyakawa, T., et al. (2003). M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. *Recept. Channels* 9, 279–290. doi: 10.3109/10606820308262
- Wess, J., Eglen, R. M., and Gautam, D. (2007). Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. *Nat. Rev. Drug Discov.* 6, 721–733. doi: 10.1038/nrd2379
- Wolff, S. C., Hruska, Z., Nguyen, L., and Dohanich, G. P. (2008). Asymmetrical distributions of muscarinic receptor binding in the hippocampus of female rats. *Eur. J. Pharmacol.* 588, 248–250. doi: 10.1016/j.ejphar.2008.04.002
- Yamamura, H. I., Wamsley, J. K., Deshmukh, P., and Roeske, W. R. (1983). Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine. *Eur. J. Pharmacol.* 91, 147–149. doi: 10.1016/0014-2999(83)90379-5
- Yasuda, R. P., Ciesla, W., Flores, L. R., Wall, S. J., Li, M., Satkus, S. A., et al. (1993). Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. *Mol. Pharmacol.* 43, 149–157.
- Zavitsanou, K., Katsifis, A., Mattner, F., and Huang, X.-F. (2003). Investigation of M1//M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. *Neuropsychopharmacology* 29, 619–625. doi: 10.1038/sj.npp.1300367
- Zhang, W., Basile, A. S., Gomeza, J., Volpicelli, L. A., Levey, A. I., and Wess, J. (2002). Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. *J. Neurosci.* 22, 1709–1717.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer AB and handling Editor declared their shared affiliation.

Copyright © 2018 Valuskova, Farar, Forczek, Krizova and Myslivecek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.