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Chymase Inhibitor as a Novel
Therapeutic Agent for Non-alcoholic
Steatohepatitis

Shinji Takai* and Denan Jin

Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki, Japan

Non-alcoholic steatohepatitis (NASH) is characterized by inflammation and fibrosis, in
addition to steatosis, of the liver, but no therapeutic agents have yet been established.
The mast cell protease chymase can generate angiotensin I, matrix metalloproteinase-9
and transforming growth factor-g, all of which are associated with liver inflammation or
fibrosis. In animal models of NASH, augmented chymase has been observed in the liver.
In histological analysis, chymase inhibitor prevented hepatic steatosis, inflammation, and
fibrosis. Chymase inhibitor also attenuated the augmentation of angiotensin Il, matrix
metalloproteinase-9, and transforming growth factor-p observed in the liver of NASH.
Oxidative stress, inflammatory markers, and collagen were attenuated by chymase
inhibition. Moreover, chymase inhibitor showed a mitigating effect on established NASH,
and survival rates were significantly increased by treatment with chymase inhibitor. In this
review, we propose that chymase inhibitor has potential as a novel therapy for NASH.

Keywords: angiotensin Il, chymase, fibrosis, inflammation, inhibitor, matrix metalloproteinase-9, non-alcoholic
steatohepatitis, transforming growth factor-g

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has been recognized as the most common form of liver
disease (Angulo, 2002; Clark et al., 2002). Non-alcoholic steatohepatitis (NASH) mimics alcoholic
hepatitis despite the absence of a history of drinking (Ludwig et al., 1980). NAFLD and NASH are
associated with metabolic syndrome resulting from obesity, insulin resistance, hyperlipidemia, and
hypertension. NAFLD is considered to be the most common liver disease and typically presents
as simple hepatic steatosis (Tiniakos et al., 2010). In contrast, NASH is characterized by severe
steatosis, lobular inflammation, and fibrosis of the liver (Powell et al., 1990; Bertot and Adams,
2016). Although the mechanism responsible for the development of NASH remains unclear, NASH
is proposed to be caused by a ‘multiple-hit’ process, with hepatic steatosis as the ‘first hit’ and
subsequent hits such as inflammation, oxidative stress, and endotoxins (Tilg and Moschen, 2010).
NASH is closely related to metabolic syndrome, and several clinical studies have investigated the
therapeutic treatment of NASH by focusing on the symptoms of diabetes, hyperlipidemia, and
hypertension (Georgescu et al., 2009; Park et al., 2010; Mahady et al., 2011). However, no commonly
accepted therapeutic agents have been established.

Chymase may be involved in the pathogenesis of hepatic fibrosis. Chymase activity was
significantly increased in the livers of patients with fibrosis or cirrhosis and there was a significant
correlation between chymase level and degree of fibrosis (Komeda et al., 2008). Although increased
chymase activity has not been reported in patients with NASH, it has been observed in animal
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models of NASH (Tashiro et al., 2010; Masubuchi et al., 2013;
Miyaoka et al., 2017). In contrast, the inhibition of chymase
using low molecule inhibitors resulted in a significant reduction
of inflammation, steatosis, and fibrosis in rat and hamster
NASH models (Tashiro et al., 2010; Masubuchi et al., 2013;
Miyaoka et al., 2017). These findings indicate that chymase may
be involved in inflammation, steatosis, and fibrosis during the
development and progression of NASH (Figure 1).

MULTIPUL FUNCTIONS OF CHYMASE

Chymase in Mast Cells

Chymase (EC 3.4.21.39) is expressed in the secretory granules
of mast cells. Chymase is produced as an inactive prochymase
within secretory granules, and requires dipeptidyl peptidase I
(DPPI) for activation. DPPI is a thiol proteinase and its optimum
pH is 6.0. The optimal pH value is consistent with the proposed
function of DPPI to activate prochymase, since the pH within
secretory granules is regulated at pH 5.5 (De Young et al., 1987)
(Figure 2). However, chymase has no enzymatic activity within
mast cells at this pH, because the optimal pH for chymase is
between 7 and 9 (Takai et al., 1996, 1997). Following activation
of mast cell granules by stimuli such as inflammation and injury,
chymase is released and exhibits enzymatic function at its optimal
pH 7.4 (Figure 2).
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FIGURE 1 | NAFLD and NASH are linked to metabolic syndrome by obesity,
insulin resistance, hyperlipidemia, and hypertension. NASH is thought to
develop via a ‘multiple-hit’ process, with hepatic steatosis as the “first hit” and
subsequent hits such as inflammation, oxidative stress and endotoxins, and is
characterized by severe steatosis, inflammation, and fibrosis. Chymase may
be involved in the progression of steatosis, inflammation, and fibrosis in liver.
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FIGURE 2 | Chymase is stored in the secretory granules of inactive mast
cells. The pH within granules is maintained at pH 5.5, a condition in which
chymase has no enzymatic activity. Chymase exhibits its enzymatic functions,
such as formation of angiotensin Il, MMP-9, TGF-g, collagen | and SCF, upon
release from mast cell granules, following activation by inflammation and injury.

Multiple Enzymatic Functions of

Chymase

Chymase is a serine protease and cleaves the C-terminal side
of proteins after aromatic amino acids such as Phe, Tyr, and
Trp in general. Chymase can cleave the Phe®-His’ bond of
the non-bioactive peptide angiotensin I and form its bioactive
peptide angiotensin II in mammalian tissues including human
(Urata et al., 1990; Takai et al., 1996, 1997). In addition, chymase
enzymatically cleaves the precursors of matrix metalloproteinase
(MMP)-9, transforming growth factor (TGF)-f and collagen I
to their active forms (Kofford et al., 1997; Takai et al., 2003;
Furubayashi et al., 2008). Furthermore, enzymatic function of
chymase can produce stem cell factor (SCF) by enzymatic
cleavage of the inactive membrane-bound form of SCF, which
induces the formation of mature mast cells from immature mast
cells via the stimulation of c-kit receptor (Longley et al., 1997).
Thus, chymase has multiple enzymatic functions, including
activation of angiotensin II, MMP-9, TGF-B, collagen I, and SCF
(Figure 2).

Enzymatic Function of Chymase in NASH
Angiotensin II may promote hepatic steatosis and inflammation
by increasing reactive oxygen species (ROS) following
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stimulation of angiotensin II receptors in animal NASH
models (Hirose et al., 2007; Nabeshima et al., 2009). Angiotensin
IT also induced hepatic fibrosis via induction of a-smooth muscle
actin (SMA) in hepatic stellate cells (HSCs) (Yoshiji et al,
2001). MMP-9 has been reported to induce the infiltration of
neutrophils and macrophages via degradation of intercellular
matrixes such as vitronectin and fibronectin, resulting in
augmentation of inflammation (Medina et al., 2006). In NASH
patients, a significant increase of MMP-9 gene expression was
observed in the liver compared to normal controls (Ljumovic
etal., 2004). Hepatic overexpression of TGF- in transgenic mice
produced severe hepatic fibrosis via augmentation of procollagen
I gene expression (Casini et al., 1993). Both TGF-f formation and
collagen I accumulation are known to induce hepatic fibrosis.
Activation of SCF induces increases in mast cell number, and
its enzymatic function may result in an increase of chymase
activity in fibrotic tissues (Maruichi et al., 2004). These enzymatic
functions of chymase may be involved in steatosis, inflammation
and fibrosis, all of which are observed in the livers of NASH
patients and animal models (Figure 2).

Involvement of Chymase in NASH Animal

Models

The methionine- and choline-deficient (MCD) diet has been
widely used to induce a typical NASH model. In hamsters fed the
MCD diet, significant increases in total bilirubin, triglyceride, and
hyaluronic acid were observed in plasma (Tashiro et al., 2010).
Moreover, accumulation of inflammatory cells and increases
of lipid deposit area and fibrotic area were observed in the
liver. In this MCD diet-induced NASH model, hepatic chymase
activity and related factors, such as angiotensin II, MMP-9 and
collagen I, were significantly increased (Tashiro et al., 2010;
Masubuchi et al., 2013). Recently, a new NASH model was
developed in which stroke-prone spontaneously hypertensive
5/Dmcr (SHRSP5/Dmcr) rats were fed a high-fat and -cholesterol
(HFC) diet (Kitamori et al., 2012). This model showed symptoms
of metabolic syndrome thought to clinically resemble those of
NASH patients (Kitamori et al., 2012). In the HFC diet-induced
NASH model, hypertension and hyperlipidemia were observed,
and severe steatosis, fibrosis, and inflammatory cell accumulation
were detected in the liver (Miyaoka et al., 2017). Further, a
significant augmentation of chymase activity was observed along
with MMP-9, TGF-B, and collagen I in the liver (Miyaoka et al.,
2017). Thus, there appears to be a close relationship between
chymase and NASH pathogenesis in animal models of NASH.

EFFECT OF CHYMASE INHIBITOR IN
NASH ANIMAL MODELS

Effect of Chymase Inhibitor in NASH
Animal Models

A low molecule chymase inhibitor significantly attenuated
chymase activity and decreased angiotensin II, MMP-9 and
collagen I levels in the liver in an MCD diet-fed NASH hamster
model, when administration of the inhibitor was initiated at the

same time as the MCD diet (Tashiro et al., 2010; Masubuchi et al.,
2013). The chymase inhibitor significantly prevented hepatic
steatosis, fibrosis, and inflammatory cell accumulation in this
NASH model (Tashiro et al., 2010; Masubuchi et al., 2013).
Oxidative stress is thought to play a role in the ‘multiple-hit
theory of NASH development, and augmentation of the oxidative
stress marker malondialdehyde was significantly attenuated in
the liver by the chymase inhibitor (Masubuchi et al., 2013).
In a hamster MCD diet-induced NASH model, the chymase
inhibitor showed an ameliorative effect when administered in
established NASH (Masubuchi et al., 2013). The degrees of both
steatosis and fibrosis in the liver were reduced compared to
before administration of the chymase inhibitor (Masubuchi et al.,
2013).

In the liver of a hypertensive rat HFC diet-induced NASH
model, a low molecule chymase inhibitor attenuated the levels of
chymase as well as MMP-9, TGF-f and collagen I, which are all
chymase-associated factors (Miyaoka et al., 2017). The chymase
inhibitor significantly attenuated hepatic steatosis and fibrosis,
and reduced myeloperoxidase as a marker of inflammation,
particularly of neutrophil infiltration (Miyaoka et al., 2017). In
this HFC diet-induced model, survival of the placebo-treated
group was 0% at 14 weeks following the start of the HFC diet,
and resulted from severe liver failure (Miyaoka et al., 2017).
However, the chymase inhibitor-treated group, in which the rats
were treated with the chymase inhibitor immediately following
the start of the HFC diet, showed 100% survival at 14 weeks.
Moreover, a 50% survival rate was reported for rats treated with
the chymase inhibitor beginning 8 weeks after the start of HFC
diet feeding, at which point NASH was established (Miyaoka
etal., 2017).

Therefore, chymase inhibitors could be useful agents for the
prevention and improvement of NASH in animal models. On
the other hand, angiotensin II also indirectly promotes hepatic
inflammation, steatosis, and fibrosis via increases of MMP-9 and
TGF-p gene expression. Both MMP-9 and TGF-$ are closely
involved in the pathogenesis of NASH, but these factors are not
necessarily induced only by angiotensin II (Takai et al., 2010).
Factors other than angiotensin II stimulation contribute to the
increases of MMP-9 and TGF-f gene expression (Takai et al.,
2010). In such cases, angiotensin II receptor blocker (ARB) is not
able to attenuate MMP-9 and TGF-p actions; however, a chymase
inhibitor could have attenuating effects via inhibition of MMP-9
and TGF-p activation, indicating a potential treatment course for
the prevention of NASH progression.

Mechanism of Hepatic Inflammation
Attenuated by Chymase Inhibitor

Chymase inhibitor was able to reduce inflammation in hamster
MCD diet- and rat HFC diet-induced NASH models (Tashiro
et al, 2010; Masubuchi et al, 2013; Miyaoka et al., 2017).
Chymase inhibitor treatment significantly attenuated chymase
activity in the liver as well as reduced angiotensin II and
MMP-9 levels (Tashiro et al., 2010; Masubuchi et al., 2013;
Miyaoka et al, 2017). In HSC, angiotensin II induces ROS
generation such as hydrogen peroxide and superoxide through
the activation of nicotinamide adenine dinucleotide phosphate
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(NADPH) oxidase (De Minicis and Brenner, 2007). Chymase
inhibitor resulted in reductions in the gene expression of
the NADPH oxidase component Rac-1 and the oxidative
stress marker malondialdehyde in addition to a reduction
of angiotensin II levels in a hamster MCD-induced NASH
model (Masubuchi et al, 2013). Angiotensin II-induced
augmentation of ROS promoted MMP-9 gene expression
in neutrophils and macrophages (Yaghooti et al, 2011;
Kurihara et al,, 2012). Therefore, chymase inhibitor directly
inhibits the activation of proMMP-9 to MMP-9 and indirectly
reduces MMP-9 gene expression via decreased angiotensin
II. MMP-9 cleaves extracellular matrix constituents, such as
vitronectin and fibronectin, leads to the disintegration of
hepatic integrity and induces the infiltration of macrophages
and neutrophils (Medina et al., 2006). In a HFC diet-induced
NASH model, a significant increase in myeloperoxidase
expression in macrophages and neutrophils was observed in
the liver, and was reduced by chymase inhibitor (Miyaoka
et al., 2017). Therefore, the mechanism of inflammation
attenuated by chymase inhibitor may be dependent on
the reduction of angiotensin II and MMP-9 levels in the
liver.

Mechanism of Hepatic Steatosis
Attenuated by Chymase Inhibitor

Angiotensin II may influence hepatic steatosis via ROS
production. In murine HSC, an inhibitor of NADPH oxidase
significantly decreased ROS production and an ARB slowed
the development of hepatic steatosis via attenuation of ROS
production (Hirose et al., 2007; Guimardes et al., 2010). Ina MCD
diet-induced NASH mouse model, a significant attenuation of
steatosis was observed in angiotensin II receptor-deficient mice
(Nabeshima et al., 2009). Both in vivo and in vitro experiments
showed that angiotensin II upregulated sterol regulatory
element-binding protein (SREBP)-1c and fatty acid synthase
(FAS) gene expression, both of which are important factors
in the regulation of lipogenesis, following ROS augmentation
(Kim et al, 2001; Hongo et al, 2009). In contrast, ARB
attenuated hepatic steatosis along with downregulating the gene
expression of SREBP-1c and FAS via ROS attenuation in a
mouse NASH model (Kato et al., 2012). In a hamster MCD
diet-induced NASH model, significant attenuation of SREBP-1c
and FAS gene expression was observed following treatment with
a low molecule chymase inhibitor (Masubuchi et al, 2013).
Therefore, the ameliorative mechanism of hepatic steatosis by
chymase inhibitor may be dependent on the reduction of
ROS production via reduced angiotensin II generation in the
liver.

Mechanism of Hepatic Fibrosis
Attenuated by Chymase Inhibitor

Chymase may be closely associated with the progression of
tissue fibrosis, since it contributes to the formation of TGF-f
from the non-bioactive precursor TGF-f, and TGF- is known
to strongly induce the growth of fibroblasts (Takai et al.,
2003; Oyamada et al, 2011). TGF-B is known to play a

central role in the progression of fibrosis in NASH patients
via activated HSC (Williams et al., 2000). Inhibition of TGF-
function via gene expression and signaling resulted in improved
hepatic fibrosis in experimental models (George et al, 1999;
Arias et al., 2003). In a rat HFC diet-induced NASH model,
attenuation of chymase activity by chymase inhibitor resulted
in reductions in TGF-B level and fibrotic area in the liver
(Miyaoka et al, 2017). Thus, the reduction in TGF-f by
chymase inhibitor may contribute to the prevention of hepatic
fibrosis.

Angiotensin II may also be involved in the induction
of hepatic fibrosis. Angiotensin II induces contraction and
proliferation of HSC, and also induces the gene expression
of TGF-B in fibroblasts in vitro (Kagami et al.,, 1994; Bataller
et al, 2000). Both TGF-B levels and the degree of collagen
accumulation and fibrotic lesions were observed by bile duct
ligation in wild-type mice, however, these were attenuated in
angiotensin II receptor-deficient mice (Yang et al., 2005). In
a rat NASH model, ARB also attenuated hepatic fibrosis via
the reduction of TGF-p gene expression (Hirose et al.,, 2007).
There may also be a relationship between angiotensin II and
hepatic fibrosis other than angiotensin II-induced TGF-f gene
expression. In patients with chronic hepatitis C, ARB reduced
collagen gene expression via Rac-1 gene expression (Colmenero
et al., 2009). HSC are recognized as the main producing cells
of collagen in the liver, and augmentation in the expression
of a-smooth muscle actin (SMA) in HSC strongly induces
extracellular matrix deposition, including collagen I (De Minicis
and Brenner, 2007). Angiotensin II can induce a-SMA gene
expression in rat HSC. In contrast, angiotensin II blockade
results in the attenuation of hepatic fibrosis along with reduction
of a-SMA (Yoshiji et al., 2001). Although not evaluated in
patients with NASH, both chymase and angiotensin II-forming
activities were significantly augmented in fibrotic regions of livers
from patients with cirrhosis, and significant correlations among
chymase, angiotensin II-forming activity and hepatic fibrosis
were observed (Komeda et al., 2008). In a hamster tetrachloride-
induced hepatic cirrhosis model, significant increases in chymase
and angiotensin II-forming activity were observed, which were
significantly attenuated along with hepatic cirrhosis following
treatment with a low molecule chymase inhibitor (Komeda et al.,
2010).

The mast cell stabilizer tranilast could inhibit the activation
of mast cells, blocking the release of chymase and thereby
preventing the development of hepatic fibrosis in a rat diabetes
and HFC diet-induced NASH model (Uno et al., 2008). Chymase
promotes the proliferation of mast cells via SCF activation by
its enzymatic function (Longley et al., 1997). In NASH animal
models, chymase inhibitor reduced the increase in mast cell
number in the liver, resulting in reduced chymase activity
following direct inhibition by chymase inhibitor and an indirect
reduction of chymase expression in mast cells (Masubuchi et al.,
2013; Miyaoka et al., 2017).

Therefore, chymase inhibitor may contribute to the
prevention of hepatic fibrosis via inhibition of TGF-f activation
by chymase inhibition and/or attenuation of TGEF-f level via
reduction of angiotensin II and mast cell proliferation.
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CONCLUSION

Metabolic syndrome comprising obesity, insulin resistance,
hyperlipidemia, and hypertension is closely related to
the development of NASH, and trials of anti-diabetic,
anti-hyperlipidemic, and anti-hypertensive agents have been
conducted for the treatment of NASH. The concept behind
these agents is to attenuate the symptoms of metabolic syndrome
(Georgescu et al.,, 2009; Park et al., 2010; Mahady et al., 2011).
Previous reports have demonstrated that chymase inhibitor
attenuates inflammation and fibrosis without influencing blood
glucose and lipid levels and blood pressure in animal models of
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