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Spinal cord injury (SCI) represents an extremely debilitating condition for which no
efficacious treatment is available. One of the main contributors to the inhospitable
environment found in SCI is the vascular disruption that happens at the moment of
injury that compromises the blood-spinal cord barrier (BSCB) and triggers a cascade
of events that includes infiltration of inflammatory cells, ischemia and intraparenchymal
hemorrhage. Due to the unsatisfactory nature of revascularization following SCI,
restoring vascular perfusion and the BSCB seems an interesting way of modulating the
lesion environment into a regenerative phenotype, with a potential increase in functional
recovery. Certain biomaterials possess interesting features to enhance SCI therapies,
and in fact have been applied as angiogenic promoters in other pathologies. The present
mini-review intends to highlight the contribution that biomaterials could make in the
development of novel therapeutic solutions able to restore proper vascularization and
the BSCB.
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INTRODUCTION

Vascular disruption following SCI plays a critical role in triggering some of the secondary events
associated with this injury such as uncontrolled infiltration of inflammatory cells and ischemia.
The extension of intraparenchymal hemorrhage that appears as a consequence of SCI has been
correlated with the area occupied by the cystic cavity (Noble and Wrathall, 1989a,b). Two days
following the incidence of SCI, the density of blood vessels decreases and only residual levels
are observed at the injury site (Ng et al., 2011). Angiogenesis (the growth of blood vessels from
preexisting ones) initiates 3 to 4 days after injury and is seen up to 1 week after SCI (Casella et al.,
2002; Dray et al., 2009). Although different studies showed revascularization similar to pre-lesion
levels or even fivefold higher, these new vessels are not associated with astrocytes, pericytes, or
neurons. Moreover, no restoration of Glut-1 transporters (essential for the continuous supply of
glucose to metabolically unbalanced neurons) was seen until 2 weeks following SCI (Ng et al., 2011).
This demonstrates that endothelial cells (ECs) within newly formed vessels are not in the desired
phenotype, and hence, do not guarantee satisfactory recovery from the initial disruption. Different
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therapeutic approaches have correlated improvements in
functional recovery with augmented densities of blood vessels in
spinal cord tissue (Glaser et al., 2006; Kaneko et al., 2007). This
is further sustained by the elevated metabolic need of neurons,
making these cells more susceptible to damage during prolonged
ischemia (Attwell and Laughlin, 2001). Moreover, the proper
restoration of the blood-spinal cord barrier (BSCB) may help
control the influx of inflammatory cells into the damaged spinal
cord and direct the inflammatory response toward a regenerative
path.

The angiogenic response following SCI appears to be
modulated by a complex interplay between different proteins
(Kundi et al., 2013). Among these, vascular endothelial growth
factor (VEGF) is thought to possess an ambiguous role in SCI
angiogenesis, since some studies show that it has no impact
(Benton et al., 2009) or increases the lesion volume (Benton
and Whittemore, 2003). Others correlate the administration of
VEGF with higher densities of blood vessels, tissue sparing
and improved motor outcomes (Widenfalk et al., 2003; Kim
et al., 2009). This might be due to the roles that different
VEGF isoforms have on SCI angiogenesis and pathophysiology,
the route of administration, dose and short circulatory half-life
(Crafts et al., 2015). The synergistic action between VEGF and
angiopoietin-1 (ANG-1) in the context of SCI was explored by
administering these GFs into the lesion immediately after injury.
This therapeutic approach promoted vascular stabilization,
reduced the lesion volume and functionally translated into
improved locomotor behavior in the chronic phase (Herrera
et al., 2010). ANG-1 limits vascular permeability, helping to
maintain the integrity of the BSCB by reducing the number
and size of the gap junctions between ECs (Baffert et al.,
2006). Additionally, ANG-1 contributes to the stabilization
and maturation of blood vessels during the final phases
of angiogenesis (Wong et al., 1997). During an SCI event,
mRNA expression and protein levels of ANG-1 are diminished,
contributing to decreased integrity of the BSCB (Durham-Lee
et al., 2012). Delivery of ANG-1 into an SCI animal model
resulted in the preservation of blood vessels at the injury site
whilst improving locomotor function and permanently rescuing
white matter, features that correlated with increased perfused
blood vessels (Han et al., 2010). Matrix metalloproteinases
(MMPs) have also been implicated in the vascular events
following SCI (Verslegers et al., 2013). This class of enzymes
are capable of cleaving all the extracellular matrix (ECM)
components and are key to cell migration (Nagase et al., 2006).
Depletion of MMP-2 in a contusion SCI animal model led to
a decrease in EC division during the first 2 weeks following
SCI and to significant vascular decline 21 days post-injury
(Trivedi et al., 2016). On the other hand, up-regulation of
MMP-11 during the acute phase of SCI seemed to be involved
in disrupting the BSCB and increasing its permeability. The
expression of MMP-11 reaches a maximum at 24 h after
injury, followed by a dramatic reduction at 72 h and then
undetectable at 7 days (Noble et al., 2002). These results open
the possibility of using modulation of the expression of MMPs
as a target for improved vascularization and functional outcomes
in SCI.

Biomaterials can aid modulation of the vascular response
following SCI via two distinct mechanisms, namely acting
as vehicles for the delivery of pro-angiogenic molecules (Yu
et al., 2016) or as ECM-mimetic platforms that support cell
growth and proliferation (Rauch et al., 2009). The capacity that
biomaterials have for protecting cells and therapeutic agents
from the harsh conditions found in SCI lesion sites puts
them in a privileged position for the development of targeted
regenerative therapies. Furthermore, this is complemented by
the possibility of tailoring their mechanical properties to match
native ECM and to their biocompatible and biodegradable
characteristics (Haggerty et al., 2017). Biocompatibility reduces
the risk of triggering toxic or immunological responses
within the CNS, a feature that if not fulfilled could induce
chronic inflammation at the biomaterial interface resulting
in the restrain of the scaffold by an avascular glial scar
(Orive et al., 2009; Slaughter et al., 2009; Sensharma et al.,
2017). The natural degradation processes of biomaterials under
physiological conditions, without originating toxic metabolites,
represents another advantage in SCI as it eliminates the need
of follow-up surgical procedures for their subsequent removal.
Tuning the degradation of these materials allows control of
the rate of release of angiogenic factors thereby enabling the
optimization of bioavailability and therapeutic concentration
(Sensharma et al., 2017). Therefore, the present mini-review
intends to give an overview of the potential of biomaterials
as modulators of vascularization in SCI lesion sites. Emphasis
will be given to their capacity to deliver neurovascular agents
in a localized manner and to their suitability to act as ECM-
like structures that aim to restore vascularization and BSCB
following SCI.

BIOMATERIALS AS TOOLS FOR THE
MODULATION OF ANGIOGENESIS AND
VASCULARIZATION

ECM-Like Platforms to Support
Angiogenesis and Vascularization
In their native environment, cells are embedded in a three-
dimensional ECM responsible for providing adequate
mechanical and physical cues that provide instructions to
engage in specific behaviors (Guvendiren and Burdick, 2013).
Additionally, the ECM confers to cells mechanical support and
protection from the external environment (Slaughter et al., 2009).
This structure interacts with angiogenic GFs, to coordinate their
bioavailability, concentration, and signaling (Martino et al.,
2015). For instance, VEGF disseminates across the interstitial
space and binds both to the ECM and receptors on the surface of
cells creating a concentration gradient that attracts endothelial
sprouts in the direction of hypoxic regions (Vempati et al., 2011).
Cell-derived proteases regulate the availability of functional GFs
linked to the matrix through their capacity to degrade ECM
constituents or by cleaving these molecules into isoforms with
reduced bioactivity that are incapable of binding to the ECM
(Briquez et al., 2016).
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Given the importance of the ECM during angiogenesis,
developing precise analogs of this structure to therapies that aim
to restore vascular perfusion seems particularly promising. On
this front, biomaterials seem a perfect fit due to their ability to
mimick the mechanical properties of the ECM and to provide
specific molecular cues (Devolder and Kong, 2012). Commonly,
these biomaterials can be of natural origin (ECM-derived or
otherwise) or synthetic. Hydrogels from ECM-derived proteins
like fibrin, collagen or gelatin are normally used and can be
modified regarding their mechanical properties, degradability,
cell adhesion, and GF-bearing capacity to a limited extent
(Browne and Pandit, 2017). Natural non-protein biomaterials,
including alginate (Dalheim et al., 2016), pectin (Neves et al.,
2015), dextran (Riahi et al., 2017) and gellan gum (Gomes et al.,
2016), are bioinert and require functionalization with appropriate
adhesion motifs to acquire biological activity. Additionally,
mechanical properties and degradation profiles are adjustable by
varying the degree and nature of crosslinking or by including
cell degradable peptides, respectively (Lau and Wang, 2013).
On the other hand, synthetic biomaterials such as polyethylene
glycol (PEG), poly(ε-caprolactone) (PCL) and poly(lactic-co-
glycolide) (PLGA) are excellent alternatives to natural polymers
due to the possibility to modulate their properties to a greater
extent. Moreover, they can be obtained in a reproducible manner,
which enables control over molecular weight, mechanical
strength, degradation, crosslinking degree, and cell adhesive
behavior (Zhu and Marchant, 2011). Therefore, incorporating cell
adhesion motifs together with protease-sensitive sites represents
a common strategy to induce angiogenesis and vascularization
of natural and synthetic materials and the biomaterial-tissue
interface (Hanjaya-Putra et al., 2012; Tsurkan et al., 2013;
Chwalek et al., 2015; Jha et al., 2016). Interestingly, by
controlling the spatial distribution and density of these molecular
cues it is possible to modulate not only the maturation
and formation of newborn blood vessels but also the rate
at which they degrade the engineered ECM and infiltrate
into host tissue or vice versa (Hanjaya-Putra et al., 2011,
2012). Thus, these types of materials can be considered blank
canvasses to create tunable platforms that can modulate the
angiogenic response in a specific way unlike ECM-derived
materials.

Enhancers of the Delivery of
Angiogenic GFs
Delivery of angiogenic GFs has been acknowledged as a
promising tool to stimulate angiogenesis and restore vascular
perfusion. Nevertheless, clinical translation has proven difficult
as these molecules have short in vivo half-lives, dosages are
sub-optimal and poor retention kinetics (Browne and Pandit,
2017).

Biomaterials provide a route to circumvent some of these
problems as they can protect GFs from degradation and can
be tuned to release them in a controllable way (Abdeen and
Saha, 2017). Consequently, biomaterials can be designed to
create a chemical gradient during the release of GFs, mimicking
in vivo angiogenesis, and affecting the rate of EC invasion,
its direction, structure and network formation (Guo et al.,

2012; Akar et al., 2015). Biomaterials can be functionalized
with more than one type of GFs and further replicate native
angiogenesis, a process that depends on distinct concentration
gradients and bioavailability of these molecules (Richardson
et al., 2001; Shin et al., 2011; Assal et al., 2013; Rufaihah
et al., 2017). Indeed, both synthetic and natural biomaterials
have been used either by physically entrapping the GFs or by
establishing chemical bonds with the matrix (Wang et al., 2009;
Anderson et al., 2011; Des Rieux et al., 2014; Mittermayr et al.,
2016). Perhaps the best approach to enhance the angiogenic
response would be to combine the delivery of GFs with molecules
capable of inducing their expression, such as sonic hedgehog
(Shh). Consequently, Shh induces the expression of VEGF, Ang-
1 and Ang-2, increasing their concentration and leading to
the formation of more functional and stable vessels in vivo
(Pola et al., 2001; Rivron et al., 2012). This methodology
enables cells to regulate the secretion of GFs, whilst helping
the formation of microgradients and granting the possibility of
expressing different GFs simultaneously (Baiguera and Ribatti,
2013).

Integration of Biomaterials in SCI
Angiogenic Therapies
Reestablishing the BSCB and potentiating the recovery of
adequate blood supply in SCI would appear a fundamental
requirement for efficacious therapies. Han et al. (2010)
administered intravenous injections of Ang-1 and C16 (an
angiogenic peptide) in a thoracic SCI mouse model and observed
neuroprotective action of this treatment materialized by sparing
epicenter blood vessels and white matter, increased angiogenesis
and reduction of harmful inflammation. Most importantly,
these histological findings correlated with significant motor
recovery of the animals. Ang-1 reduced vascular permeability,
monocyte transmigration as well as microglia/macrophages
activation and infiltration (important players in white matter
damage). Adding to its effect on preserving blood vessels at
injury site, C16 showed pro-angiogenic activity and, noteworthy,
also anti-inflammatory properties as it decreased monocyte
transmigration across an EC layer in vitro (Han et al., 2010). This
study clearly demonstrates the potential of developing strategies
aiming to restore vascularization following SCI. As depicted
in the previous sections, biomaterials can provide interesting
platforms to enhance these particular therapies and in fact have
shown the capacity to modulate angiogenesis and vascularization
following SCI (Bakshi et al., 2004; Rauch et al., 2009; King et al.,
2010; Hurtado et al., 2011; Zeng et al., 2011; López-Dolado
et al., 2016; Chedly et al., 2017). Accordingly, Duan et al. (2015)
utilized neurothrophin-3 (NT-3) loaded chitosan tubes to fill
the void left by the transection of rat spinal cords and found
that this material promoted nerve growth, neurogenesis and
functional recovery of the animals. Thus, this study found
an upregulation on genes related to vascular development,
angiogenesis and hypoxia response in the NT-3 treatment
group, when compared to uninjured and untreated animals
(Duan et al., 2015). Differently, Rauch et al. (2009) created a
co-culture system consisting of ECs and neural progenitor cells
(NPCs) in a biodegradable PLGA scaffold and tested its ability
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to form functional vessels in an SCI hemisection model. After
implantation, this system created a suitable environment for
vessel inosculation and angiogenesis in the experimental group,
contributing to a 3.5-(PLGA implantation without cells group)
and 5-fold (lesioned animals group) increase in number of
functional vessels at injury epicenter at 8 weeks. The crosstalk
between ECs and NPCs was fundamental due to the secretion
of NO by NPCs, which induces the production of VEGF and
brain-derived neurotrophic factor on ECs and contribute to
further enhance NO production, promoting vessel formation
and stabilization. Notably, the co-culture platform seemed
to promote the re-establishment of BSCB since half of the
vessels in the experimental group were positive to endothelial
barrier antigen (a major marker for BSCB). In contrast, all
the other cohorts (untreated, PLGA implantation, PLGA and
ECs implantation and PLGA harboring NPCs group) had no
expression of this marker (Rauch et al., 2009). Even though the
authors did not assess BSCB functionality and observed limited
regeneration, this work underlines the potential of integrating
biomaterial-based ECs transplantation into SCI experimental
treatments due to their capacity of reestablishing perfusion and
BSCB, helping to modulate a regenerative phenotype. In an
interesting approach, López-Dolado et al. (2016) evaluated the
regenerative capacity of graphene oxide scaffolds in a hemisection
rat model due to its capacity of inducing neuronal and astrocytic
growth and neurogenesis. Upon implantation, these scaffolds
promoted angiogenesis inside their structure, showing abundant
and functional new vessels in their proximity in comparison to
lesioned animals without scaffold implantation. Additionally,
the scaffolds also seemed to have immunomodulatory capacity
due to an increased presence of pro-regenerative macrophages
on its interface. On the other hand, infiltration of neurons
into the scaffolds was very low and no measurements on
functional outcomes were assessed (López-Dolado et al., 2016).
Nevertheless, this study presents some encouraging results and
it is worth underlining the outstanding conductible properties
of graphene, a feature that can play a pivotal role in therapies
that apply electric stimulation to induce neural growth (Li et al.,
2013; Akhavan et al., 2016). Ropper et al. (2017) implanted a
PLGA scaffold encapsulating human mesenchymal stem cells
(hMSCs) in a thoracic hemisection rat model to study the
potential of this system in SCI recovery. This treatment induced
significant moto-sensory improvements regarding untreated
animals or the groups where either scaffold insertion or hMSCs
transplantation occurred. Additionally, treatment with hMSCs
encapsulated in PLGA lead to significant decreases in lesion
volume and improvements in neuropathic pain in comparison
to controls. Furthermore, histological analysis of spinal cord
sections showed an increased angiogenesis around the epicenter
(observable by a significant increase in laminin concentration
on the treatment group) which together with neurotrophic,
anti-inflammatory and neurogenic mechanisms helps explaining
the obtained moto-sensory improvements of this experimental
approach. Nevertheless, therapeutic differences between the
direct application of hMSCs and their prior encapsulation
in PLGA may reside in the protective action of the polymer
toward the inhospitable environment found on SCI, which was

transduced in augmented hMSCs survival upon implantation for
that group (Ropper et al., 2017). The positive impact of MSCs
on the angiogenesis and vascularization of SCI was probably
driven by the secretome of these cells which is extremely rich
in pro-angiogenic GFs (Ranganath et al., 2012). Accordingly,
several researchers have taken advantage of the aforementioned
features of biomaterials to explore delivery of angiogenic GFs in
SCI animal models and assess their impact on recovery following
injury (De Laporte et al., 2011; Kang et al., 2012; Des Rieux et al.,
2014; Wen et al., 2016; Yu et al., 2016). Combinatorial approaches
utilizing different angiogenic GFs perhaps represent the best
way of attaining better functional outcomes following SCI.
Consequently, Yu et al. (2016) delivered PLGA microspheres
containing VEGF, ANG-1 and basic fibroblast growth factor into
the injury site of a contusion rat model and observed increased
axonal growth on the treated animals in comparison to animals
that received the empty microspheres. The authors associated
these results with increased density of functional vessels and
neural precursors recruitment to the injury site. Moreover,
these cells closely associated with blood vessels opening the
possibility of the microvascular network having a role on
axonal guidance and growth across the lesion cavity. This study
also found increased expression levels of miR-210 in treated
animals, an inducer of VEGF expression, and suppression of
ephrin-A3 (negative modulator of neurogenesis), a finding that
demonstrates that increased neurogenesis found on the treated
group was probably directly due to the GFs administration,
broadening their spectrum of action (Yu et al., 2016).

CONCLUSION

The application of biomaterials to influence
angiogenesis/vascularization in SCI has shown interesting
results. Biomaterials can deliver angiogenic GFs efficiently,
enhancing their action and replicating some of the features found
in native angiogenesis. Moreover, biomaterials protect cells from
the harsh environment found in SCI, allowing their proliferation
and exertion of biological effects, and a route (in some cases) to
bridge the cavity that forms following SCI, allowing neuronal
recovery. Addressing SCI vascularization using biomaterials
certainly has potential and their incorporation in future therapies
may be essential. Indeed due to the complex nature of SCI,
unidimensional approaches are unlikely to be the best strategy
or succeed. Therefore, integrating revascularization approaches
in therapies that provide a means for neuronal growth and
to modulate the environment into regenerative pathways is
probably the best option moving forward. Due to their versatility,
biomaterials can provide excellent platforms to be integrated into
the development of more effective therapies.
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