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Background: Adverse events (AEs) can be caused not only by one drug but also by

the interaction between two or more drugs. Therefore, clarifying whether an AE is due

to a specific suspect drug or drug-drug interaction (DDI) is useful information for proper

use of drugs. Whereas previous reports on the search for drug-induced AEs with signal

detection using spontaneous reporting systems (SRSs) are numerous, reports on drug

interactions are limited. This is because in methods that use “a safety signal indicator”

(signal), which is frequently used in pharmacovigilance, a huge number of combinations

must be prepared when signal detection is performed, and each risk index must be

calculated, which makes interaction search appear unrealistic.

Objective: In this paper, we propose association rule mining (AR) using large dataset

analysis as an alternative to the conventional methods (additive interaction model (AI) and

multiplicative interaction model (MI)).

Methods: The data source used was the Japanese Adverse Drug Event Report

database. The combination of drugs for which the risk index is detected by the

“combination risk ratio (CR)” as the target was assumed to be true data, and the accuracy

of signal detection using the AR methods was evaluated in terms of sensitivity, specificity,

Youden’s index, F-score.

Results: Our experimental results targeting Stevens-Johnson syndrome indicate that

AR has a sensitivity of 99.05%, specificity of 92.60%, Youden’s index of 0.917, F-score

of 0.876, AI has a sensitivity of 95.62%, specificity of 96.92%, Youden’s index of 0.925,

and F-score of 0.924, and MI has a sensitivity of 65.46%, specificity of 98.78%, Youden’s

index of 0.642, and F-score of 0.771. This result was about the same level as or higher

than the conventional method.

Conclusions: If you use similar calculation methods to create combinations from the

database, not only for SJS, but for all AEs, the number of combinations would be so

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00197
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00197&domain=pdf&date_stamp=2018-03-09
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:noguchiy@gifu-pu.ac.jp
mailto:teramachih@gifu-pu.ac.jp
https://doi.org/10.3389/fphar.2018.00197
https://www.frontiersin.org/articles/10.3389/fphar.2018.00197/full
http://loop.frontiersin.org/people/442389/overview
http://loop.frontiersin.org/people/464158/overview
http://loop.frontiersin.org/people/469926/overview


Noguchi et al. New Search Method for Drug-Drug Interaction

enormous that it would be difficult to perform the calculations. However, in the AR

method, the “Apriori algorithm” is used to reduce the number of calculations. Thus, the

proposed method has the same detection power as the conventional methods, with the

significant advantage that its calculation process is simple.

Keywords: drug-drug interaction, spontaneous reporting systems, signal detection, association rule mining,

apriori algorithm

INTRODUCTION

Pharmacovigilance is defined as “the science and activities
relating to the detection, assessment, understanding and
prevention of drug-related problems” by the World Health
Organization (WHO) (World Health Organization, 2002). For
adverse drug events (ADEs) that cannot be found in clinical trials,
numerous risk assessments of drugs using spontaneous reporting
systems (SRSs) based on spontaneous reports of drug-adverse
event (AE) pairs including post-marketing survey data have been
reported (Poluzzi et al., 2013; Zorych et al., 2013; Fujimoto et al.,
2014; Ali et al., 2015; Noguchi et al., 2015; Mizuno et al., 2016;
Gahr et al., 2017).

For risk assessment, the data mining algorithms of the
quantitative signal detection from such a large database,
include the proportional reporting ratio (PRR) (Evans et al.,
2001) is used in the Medicines and Healthcare Products
Regulatory Agency (MHRA), the reporting odds ratio (ROR)
(van Puijenbroek et al., 2002) which is used by the Netherlands
Pharmacovigilance Centre Lareb, the information component
(IC) as Bayesian Confidence Propagation Neural Network
(BCPNN) (Bate et al., 1998) is used by the Uppsala Monitoring
Centre, Sweden, and the Gamma-Poisson Shrinker (GPS)
(Szarfman et al., 2002) as empirical Bayes geometric mean
(EBGM). These methods are useful for early detection of
unknown ADEs. However, in pre-marketing randomized clinical
trials, patients with multiple drug use are usually excluded
because focus is on establishing the safety and efficacy of single
drugs and not on the investigation of drug-drug interactions
(DDIs).

However, the reality is that in post-marketing pharmaceutical
products, unlike pre-marketing trials, not only ADEs caused by a
single drug but also ADEs caused by DDI by two or more drugs
exist. The proportion of ADEs due to DDI is estimated to be
up to 30% of unexpected ADEs (Pirmohamed and Orme, 1998).
Therefore, clarifying whether the ADEs expressed are due to a
specific suspected drug or DDI would be useful when a patient
uses the drugs.

To take into consideration the interaction between Drug A
and Drug B, as in the case of a single drug, a “Drug A and Drug
B-AE 2 × 2 contingency table” should first be prepared and the
respective signal values calculated. Furthermore, to detect the
signal at the time of concomitant use as a DDI, it must be stronger
than the signal of each single drug.

Methods such as the additive interaction model (AI) (=
risk difference) and the multiplicative interaction model (MI)
(= risk ratio) are used to evaluate interactions with ADEs
expression when two drugs are used in combination (Thakrar

et al., 2007). However, in searching for drug interactions, Susuta
et al. proposed “combination risk ratio (CR),” in which the ratio
of signal detection using a plurality of drugs in combination to
the signal detection calculated by focusing on one drug is utilized
(Susuta and Takahashi, 2014). If the PRR value of ADE when two
concomitant drugs are used is more than twice the PRR value of
each drug, then it is regarded as a DDI. This method proposed
by Susuta et al. is used searching for drug interactions in Japan
(Noguchi et al., 2015; Mizuno et al., 2016).

However, in these methods as AI, MI, and CR, it is necessary
to compose a huge combination of medicines from SRS and
compare the signal of these drugs with the signal of a single drug
in order to detect drug interaction. Consequently, it is difficult
to efficiently conduct a cross-sectional search aimed at early
detection of DDI.

Association rule mining (AR) is used to find “interesting
patterns hidden in a database.” Algorithms that simplify
operations such as the “Apriori algorithm” (Agrawal and Srikant,
1994) are used for AR and, in recent years, utilization of
ADEs as signal detection has also been reported (Shirakuni
et al., 2009; Harpaz et al., 2010; Wang et al., 2012; Fujiwara
et al., 2016). Therefore, to construct a simple ADE search
method for DDI, we modified existing AR such that risk
variation due to a combination of drugs can be evaluated and
investigated combinations of drugs that may cause Stevens-
Johnson syndrome (SJS) as DDI.

MATERIALS AND METHODS

Data Sources
We used the SRS dataset from the first quarter of 2004 to
the fourth quarter of 2015 from the Japanese Adverse Drug
Event Report (JADER) database. The JADER database was
downloaded from the website of the Pharmaceuticals and
Medical Devices Agency in Japan. The structure of JADER
complies with the international safety reporting guidelines
(ICH E2B). The database consists of four tables: “DEMO,”
“DRUG,” “REAC,” and “HIST.” The “DEMO” table contains
information on gender, age, weight, etc., The “DRUG” table
contains information on suspect drug, concomitant usage,
etc. The “REAC” table contains information on AE and
outcome. The “HIST” table contains information on primary
disease, secondary disease, etc. In this study, we combined
these four tables (Figure 1) and analyzed 374,327 cases, with
cases having gender and age deficiency and cases that have
ambiguous reports of age such as “youth” and “elderly” being
excluded.
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FIGURE 1 | Four information tables included in Japanese Adverse Drug Event Report.

Definitions of Adverse Drug Events
The drugs targeted for the survey are all registered and classified
as “suspect drugs” in JADER. The AE investigated was SJS. To
extract the AEs from JADER, the preferred term (PT) in the
Medical Dictionary for Regulatory Activities (Japanese version
(MedDRA /J) version 18.1) was used. Further, the definition of
SJS was the same as that used by Susuta et al. in a previous study
(Susuta and Takahashi, 2014).

Association Rule Mining Model
In this paper, we propose AR as an alternative to the conventional
ADE search methods for DDI. However, in this study, because
the degree of the influence on Drug A-induced AE C by
Drug B is used as an indicator of the DDI, the association
rule “B→ A ∩ C” (where B is Drug B and A ∩ C is the
Drug A-induced AE C) was used instead of the typically used
association rule “A ∩ B → C” (where A is Drug A, B is Drug B,
and C is the AE C). In association rule “A ∩ B → C”, the signal
by the combination of Drug A and Drug B is detected, but the

influence due to the addition of Drug B cannot be investigated. In
addition, we used “lift” and “conviction” as the detection criteria
for searching the association rule. The calculation methods are
shown in Figures 2, 3 and the following formulas.

lift (B → A ∩ C)

= confidence (B → A ∩ C)/support (A ∩ C)

= {nAB1/(nAB+ + nB+)}/{(nAB1 + nA1)/n++}

conviction (B → A ∩ C)

= (1− Support (A ∩ C))/(1− Confidence (B → A ∩ C))

= {1− (nAB1 + nA1)/n++}/{1− nAB1/(nAB+ + nB+)}

“Lift” is an index that indicates the relative magnitude of the
probability of observing A ∩ C under the condition of B,
compared to the overall probability of observing A∩C.When lift
= 1, the two events, B and A ∩ C, are independent of each other.
When the lift value is greater than one, the two events, B and
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A ∩ C, are not independent, and the higher the value, the greater
the relevance of the interaction (Hahsler et al., 2005).

On the other hand, “conviction” is an indicator that evaluates
whether the rule makes a wrong prediction, paying particular
attention to the exclusion event of the conclusion part of the
obtained rule. If the conviction value is large, it is less likely that

FIGURE 2 | Drug A, Drug B, and AE C by Venn diagram from the

spontaneous report system. AE, adverse events; T, total of report (all reports);

n, the number of reports (e.g., n++, the number of all reports; nAB1, the

number of Drug A and Drug B induced AE C report).

the conclusion A ∩ C is not true for the premise B (Brin et al.,
1997).

In this study, lift > 1 and conviction > 1 were used as the
detection standard for the AR method. However, in order to
investigate the power of detection, because the combination of
drugs for which the risk index is detected by the CR as the target
was assumed to be true data, it was found that nAB1 < 3 was
not detected in the “combined risk ratio.” That combination was
therefore excluded from the signal and nAB1 ≥ 3 was added to the
detection condition.

AR Criteria of DDI for this study:

nAB1 ≥ 3, Lift (B → A ∩ C) > 1 and Conviction (B → A ∩ C) > 1

Combination Risk Ratio Model
Susuta et al. proposed a CR model to generate DDI signals. In
their method, AE C as DDI risk of drug A and drug B is estimated
by the following procedure (Susuta and Takahashi, 2014):

1) PRR, which is a statistical signal detection indicator, is used to
evaluate the increase in AE C as DDI risk of Drug A and Drug
B.

2) PRR about one drug (= Drug A) of two target suspicious
drugs is calculated individually.

3) The case where the ratio of the PRR of the two drug
concomitant usage to the PRR obtained individually exceeds
two is judged as a DDI risk.

DDI risk ratio = PRRDrug A and B/PRRDrug A

DDI risk criteria : nAB1 ≥ 3, PRRDrug A and B > 2and χ2
Drug A and B

> 4 and DDI risk ratio > 2

FIGURE 3 | Four-by-two contingency table for AR from the Venn diagram in Figure 2. AR, association rule mining; AE, adverse events; n, the number of reports (e.g.,

n++, the number of all reports; nAB1, the number of Drug A and Drug B induced AE C reports).
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FIGURE 4 | Two-by-two contingency table for calculation of AI and MI. AI,

additive interaction; MI, multiplicative interaction; AE, adverse events; n, the

number of reports (e.g., nAB1, the number of Drug A and Drug B induced AE

C reports), P, the proporation of reports (e.g., P11,the proportion of Drug A

and Drug B induced AE C report to Drug A and Drug B induced all AEs).

Additive Interaction Model
Thakrar et al. proposed an AI model to generate DDI signals

(Thakrar et al., 2007). In their proposed method, under the additive

assumption, no interaction is established when the excess risk

associated with Drug A in the absence of Drug B is the same as the

excess risk associated with Drug A in the presence of Drug B:

risk (Drug A, not B) − risk (not Drug A, not B) = risk (Drug A, B)

−risk (not Drug A, B)

This equality implies:

Risk Difference (RD)11 = (RD10 + RD01)

i.e. the excess risk associated with the combination is the same as the

sum of the excess risks associated with each exposure in the absence

of the other, where RD11 = risk (DrugA,B) – risk (notDrugA,notB) is the

excess risk associated with the two drugs in combination and similarly

for RD10 and RD01.

The AI is calculated from the two-by-two contingency table shown

in Figure 4 and the following formulas.

AI = RD11 − (RD10 + RD01) = (P11 − P00)− {(P10 − P00)

+(P01 − P00)} = P11 − P10 − P01 + P00

P: the proportion of reports

(e.g. P11: the proportion of Drug A and Drug B induced reports to

Drug A and Dug B induced all AEs)

When RD11 > RD10 + RD01 (i.e., RD11 – (RD10 + RD01) > 0)

there is a potential interaction with an increased risk for the

combination compared with that expected based on the individual

drugs. On the other hand, in the absence of an interaction

under the additive assumption, the excess risk associated with the

combination is the same as the sum of the excess risk associated

with each drug separately (Thakrar et al., 2007). However, in

this study, because it was found that nAB1 < 3 is not detected

in the “combined risk ratio,” that combination was excluded

from the signal, and nAB1 ≥ 3 was added to the detection

condition.

Multiplicative Interaction Model
Thakrar et al. proposed an MI model to generate DDI signals

(Thakrar et al., 2007). In their proposed model, when there is no

interaction on themultiplicative scale, the relative risk associated with

Drug A is the same in both the absence and presence of exposure to

Drug B.

risk(Drug A, not B)/risk(not Drug A, not B)

= risk(Drug A, B)/risk(not Drug A, B)

This equality implies:

Risk Ratio (RR)11 = (RR10×RR01)

where RR11 = risk (DrugA,B)/risk (notDrugA,notB) is the relative risk

associated with the two drugs in combination and similarly for RR10

and RR01.

The MI is calculated from the two-by-two contingency table

shown in Figure 4 and the following formulas.

MI = RR11/(RR10×RR01) = (P11/P00)/{(P10/P00)×(P01/P00)}

= (P11×P00)/(P10×P01)

If RR11/(RR10 × RR01) is statistically different from one, it is

considered evidence of an interaction. In particular, whenever this

measure is greater than one, there is a positive interaction that is

of interest from a safety perspective. In such a situation, the relative

risk associated with two drugs administered in combination is greater

than the product of the relative risks associated with each drug

separately (Thakrar et al., 2007). However, in this current study,

because it was found that n < 3 is not detected in the “combined risk

ratio,” that combination was excluded from the signal, and n ≥ 3 was

added to the detection condition.

Application of the Models
Since true data of unknown DDIs cannot be prepared, in this study,

we treated the drug-drug combination detected CR model as true

data. This model is used for searching DDI signals in Japan (Noguchi

et al., 2015; Mizuno et al., 2016), but, if a calculation model that

simply creates combinations from the database was used, the number

of combinations that need to be calculated would be enormous.

Therefore, there is a need for a simplemethod to obtain a search result

similar to this method.

The accuracy of signal detection using the AR, AI, andMImethods

was examined using sensitivity, specificity, Youden’s index, positive

predictive value (PPV), negative predictive value (NPV), F-score and

area under the receiver operating characteristic (ROC) curve (AUC).

Analysis Software
Data management and analyses were performed using Visual Mining

Studio software (version 8.1; Mathematical Systems, Inc. Tokyo,

Japan). Drawing of the ROC curve and AUC calculation were

performed using JMP 11.2.0 (SAS Institute Inc.,).

RESULTS

Among all the cases analyzed (374,327 cases), there were 7,848 drug–

AE (SJS) combinations. The number of signals detected using the

“combined risk ratio” was 1,672 pairs.

Table 1 shows the signal detection power of AR, AI, and MI.

For AR, the sensitivity was 99.05%, specificity was 92.60%, Youden’s
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index was 0.917, positive predictive value (PPV) was 78.57%, negative

predictive value (NPV) was 99.72% and F-score was 0.876. For AI,

the sensitivity was 95.62%, specificity was 96.92%, Youden’s index

was 0.925, PPV was 89.47%, NPV was 98.78% and F-score was 0.924.

For MI, the sensitivity was 65.46%, specificity was 98.78%, Youden’s

index was 0.642, PPV was 93.64%, NPV was 91.26% and F-score was

0.771. Among the threemodels, AR had the highest sensitivity and the

highest NPV, whereas MI had the highest Specificity and the highest

PPV. On the other hand, for Youden’s index and F-score, AI had

slightly higher values than those obtained by the AR model proposed

in this study.

Figure 5 shows the ROC curve. For AR, the AUC was 0.959; for

AI, the AUC was 0.956; and for MI, the AUC was 0.959. For all three

models, the AUC was greater than 0.95, which shows that AR has

detection power that is on par with conventional methods such as AI

and MI.

Figure 6 shows the correlation between the lift value and DDI risk

ratio signal intensity. These show a positive correlation, the decision

coefficient (R2)= 0.170.

Since there are many combinations of SJS-expressing drugs with

7848 pairs, in this paper, we will explain the case where Drug B is

a combination that is loxoprofen. There were 195 pairs where Drug

B was loxoprofen. Among them, 67 pairs of signals were detected.

Table 2 shows some of them.

DISCUSSION

Whereas previous reports on the search for drug-induced AEs

using SRS are numerous, reports on drug interactions are limited.

This is because in methods that use a safety signal indicator,

which is frequently used in pharmacovigilance, a huge number of

combinations must be prepared when signal detection is performed,

and each risk index must be calculated, which makes interaction

search appear unrealistic.

A potential solution to this issue would be to utilize AR. However,

although AR is often used to efficiently analyze large datasets, there

are only a few examples of it being used in the medical field, especially

in SRS analysis.

Wang et al. recently conducted a simulation study that is

considered the gold standard of AR signal detection criteria for

searching for ADEs due to single drugs (Wang et al., 2012). However,

there are few examples of utilization of AR for early detection of drug

interaction.

The method proposed by Susuta et al. can be considered as a prior

research method in the search for DDI induced ADEs (Susuta and

Takahashi, 2014). In this study, we treated the drug-drug combination

detected by Susuta et al.’s method (= CR) as true data. Then, we

evaluated the detection power of our proposed method by calculating

the sensitivity, specificity, PPV, NPV, and F-score.

In general, when searching for AE C with drugs A and B, the

AR model uses “A ∩ B → C”. However, this model only shows

the association between the combination used and the AE C, it does

not show the influence of DDI. To show the influence of DDI, the

addition of Drug B requires that the indicator be larger than the

original Drug A -induced AE C (“B → A ∩ C”). Therefore, in this

study, the degree of influence on Drug A-induced AE C by Drug B is

used as an indicator of the DDI. In this way, the lift value calculated

in this study is a variation value of the probability of occurrence of AE

C caused by Drug A by using Drug B in combination.

TABLE 1 | Ability of AR, AI, and MI to detect signals.

Models Sensitivity (%) Specificity (%) Youden’s index PPV (%) NPV (%) F-score

AR 99.05 92.60 0.917 78.57 99.72 0.876

AI 95.62 96.92 0.925 89.47 98.78 0.924

MI 65.46 98.78 0.642 93.64 91.26 0.771

AR, Association rule mining; AI, additive interaction model (= risk difference), MI, multiplicative interaction model (= risk ratio), PPV, positive predictive value; NPV, negative predictive

value.

FIGURE 5 | ROC curve and AUCs of AR, AI, and MI. AUE, area under the ROC curve; AR, association rule mining; AI, additive interaction; MI, multiplicative interaction.
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For AR Criteria, the lift value is common. However, an indicator

that evaluates whether the rule has made a wrong prediction needs to

be included among the criteria. Therefore, the conviction value was

also added as a criterion.

The sensitivity for AR was 99.05%. That is, using AR, it was

revealed that almost all of the combination of drug interactions

expressing SJS indicated as signal detection in the combination

risk index was detected. In addition, the sensitivity of AR was

higher than both the 95.62% of AI and the 65.46% of MI, which

are conventional methods. For Youden’s index, which considers

sensitivity to sensitivity, AR was 0.917, which is comparable to the

0.925 of AI, and exceeds the 0.642 of MI. Also, for F-score, AR was

0.876, which is near to the 0.924 of AI, and exceeds the 0.771 of MI.

From these results, it is clear that the detection accuracy of AR is as

high as that of AI and higher than that of MI.

The NPV of AR was 99.72%, that of AI was 98.78%, and

that of MI was 91.26%. None of the detection methods had a

negative misdetection signal. Of the three methods, AR was the least

FIGURE 6 | The correlation between log lift value and log DDI risk ratio. DDI,

drug-drug interaction.

erroneous. On the other hand, with PPV, AR: 78.57% was lower than

AI: 89.47%, and MI: 93.64%.

This result is because data using positive combination risk

index, which is one of the signal detection criteria of existing drug

interaction, were used as true data. AR can detect a combination of

DDI induced SJS that cannot be detected with a combination risk

index; hence, there is a possibility that PPV was underestimated.

However, as true data of “true risk” containing “unknown AEs”

does not exist in the world, these results for AR, AI, andMI cannot be

verified. It merely showed combinations of drugs with possible risks

due to combination of sensitivity index and high sensitivity for the CR

proposed by Susuta et al.

Since ARmodel proposed by us in this paper is represented by this

formula: “B→ A∩C”, if “Drug B→ AEC” is a known effect, “Drug

B → Drug A ∩ AE C” might be considered to be true for a random

Drug A. However, when we performed investigations in accordance

with this suggestion, we encountered a case in which the result was

not necessarily the same as this suggestion.

For example,WhenDrug B is loxoprofen, AE C is SJS, the lift value

of “loxoprofen → SJS” is 5.78. As shown in Table 2, among some

of the combinations where drug B is loxoprofen, DDI risk is detected

when Drug A is carbamazepine or clarithromycin. On the other hand,

when Drug A is lamotrigine, the lift value is 0.66. Also, when Drug

A is phenytoin, the lift value is 0.89. Even if “Drug B → AE C” is

well-known, “Drug B→ random Drug A n AE C” is not always true.

Themagnitude of the lift value and that of the DDI risk ratio signal

intensity are positively correlated. However, the hypothesis obtained

from the signal should be verified separately for ADEs with a large lift

value.

The CR is used for searching DDI signals in Japan (Noguchi et al.,

2015; Mizuno et al., 2016), and there is a need for a simple method to

obtain a search result similar to this method. If a similar calculation

method that simply creates combinations from the database was used

instead of AR, the number of combinations would be enormous and

it would be difficult to perform the calculations within a realistic time.

However, in the AR method, the “Apriori algorithm” can be used to

reduce the number of calculations. The Apriori algorithm is based on

the principle that “support of a certain item set is always less than or

equal to support of its partial item set” (Agrawal and Srikant, 1994).

Therefore, it is not necessary to calculate indices for all combinations,

as in the conventional methods including the CR.

In this study, to compare the signal detection powers, all

combinations were calculated in the AR analysis without using the

apriori algorithm. Therefore, it is unknown how much time can be

TABLE 2 | Signal of some combination of drug B: loxoprofen as examples of DDI.

Drug A nAB Combination risk ratio Association rule mining

PRR Drug A and B χ
2
Drug A and B DDI risk ratio lift conviction

Carbamazepine 20 18.70 320.29 2.75 4.77 1.00

(1.00343)

Clarithromycin 34 16.52 483.04 2.81 14.28 1.00

(1.00069)

lamotrigine 3 23.76 45.17 1.79 0.66 1.00

(0.99966)

phenytoin 1 9.90 1.59 1.35 0.89 1.00

(0.99997)

DDI, drug-drug interaction; nAB, the number of Drug A and Drug B induced AE C reports; PRR, proportional reporting ratio.
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shortened by the apriori algorithm, compared with the conventional

method. However, the pairs that can be a combination of drug

interactions are predicted to be enormous. In our proposed method,

since the calculation can be simplified by apriori algorithm in practice,

it is expected that the signal search time will definitely be shortened in

actual search.

So, it is possible to efficiently perform a cross-sectional search

aiming at early detection of drug interactions. Furthermore, our

proposed method can be applied not only to JADER but also to the

SRS of other countries, such as the US FDA Adverse Event Reporting

System (FAERS).

In this study, the true data for verification was created by CR, not

the “real” true data. Therefore, we cannot deny the possibility that

false positives are detected. We could not verify all combinations.

Therefore, our proposed method requires verification for ADEs

other than SJS. However, although only a part of the large data

is used, this result obtained in this study would suggest that

calculation is easy with the same detection power as the conventional

method.

Because SRS is the result of spontaneous reporting and is

influenced by reporting bias including underreporting, the value

of the signal easily varies depending on the time of investigation;

therefore, the analysis result is not a true risk but a risk hypothesis.

Consequently, in order to clarify the true risk, further fundamental

pharmacological research and clinical research are needed based

on the obtained risk hypothesis. However, in order to discover

an unknown ADE at an early stage, the issue of how to establish

this hypothesis early can be considered an important factor. In

pharmacovigilance, building a correct hypothesis is also important,

but we believe that simplemethods such as our proposedmethod with

the same detection power as the conventional methods are required.
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