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Background: Prospective pharmacological studies on breathomics profiles in COPD

patients have not been previously reported. We assessed the effects of treatment and

withdrawal of an extrafine inhaled corticosteroid (ICS)-long-acting β2-agonist (LABA)

fixed dose combination (FDC) using a multidimensional classification model including

breathomics.

Methods: A pilot, proof-of-concept, pharmacological study was undertaken in 14

COPD patients on maintenance treatment with inhaled fluticasone propionate/salmeterol

(500/50 µg b.i.d.) for at least 8 weeks (visit 1). Patients received 2-week treatment

with inhaled beclomethasone dipropionate/formoterol (100/6 µg b.i.d.) (visit 2), 4-week

treatment with formoterol alone (6 µg b.i.d.) (visit 3), and 4-week treatment with

beclomethasone/formoterol (100/6 µg b.i.d.) (visit 4). Exhaled breath analysis with

two e-noses, based on different technologies, and exhaled breath condensate (EBC)

NMR-based metabolomics were performed. Sputum cell counts, sputum supernatant

and EBC prostaglandin E2 (PGE2) and 15-F2t-isoprostane, fraction of exhaled nitric oxide,

and spirometry were measured.

Results: Compared with formoterol alone, EBC acetate and sputum PGE2, reflecting

airway inflammation, were reduced after 4-week beclomethasone/formoterol. Three

independent breathomics techniques showed that extrafine beclomethasone/formoterol

short-term treatment was associated with different breathprints compared with regular

fluticasone propionate/salmeterol. Either ICS/LABA FDC vs. formoterol alone was

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00258
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00258&domain=pdf&date_stamp=2018-04-17
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paolo.montuschi@unicatt.it
https://doi.org/10.3389/fphar.2018.00258
https://www.frontiersin.org/articles/10.3389/fphar.2018.00258/full
http://loop.frontiersin.org/people/19557/overview
http://loop.frontiersin.org/people/541674/overview
http://loop.frontiersin.org/people/26612/overview
http://loop.frontiersin.org/people/522356/overview
http://loop.frontiersin.org/people/541731/overview
http://loop.frontiersin.org/people/308538/overview
http://loop.frontiersin.org/people/22831/overview
http://loop.frontiersin.org/people/541688/overview
http://loop.frontiersin.org/people/19683/overview


Montuschi et al. Breathomics for Assessing Pharmacological Treatment in COPD

associated with increased pre-bronchodilator FEF25−75% and FEV1/FVC

(P = 0.008–0.029). The multidimensional model distinguished fluticasone

propionate/salmeterol vs. beclomethasone/formoterol, fluticasone propionate/salmeterol

vs. formoterol, and formoterol vs. beclomethasone/formoterol (accuracy > 70%, P <

0.01).

Conclusions: Breathomics could be used for assessing ICS treatment and withdrawal

in COPD patients. Large, controlled, prospective pharmacological trials are required

to clarify the biological implications of breathomics changes. EUDRACT number:

2012-001749-42

Keywords: breathomics, inhaled corticosteroids, long-acting β2-agonists, COPD, pharmacotherapy

INTRODUCTION

Respiratory inflammation has a central role in the
pathophysiology of COPD. Inhaled corticosteroids (ICS)
are the principal anti-inflammatory treatment for COPD (Global
initiative for chronic obstructive lung disease (GOLD), 2018),
but little is known about the pattern of inflammatory markers
which are affected by this pharmacotherapy. While ICS are
generally effective in asthma, their anti-inflammatory efficacy in
COPD is not clearly established (Barnes, 2010).

Electronic noses (e-noses), consisting of cross-reactive
chemical sensor arrays for the detection of volatile chemical
species (Horvath et al., 2017), discriminate between patients
with COPD, asthmatic patients, healthy smokers and healthy
non-smokers (Fens et al., 2009), and predict oral corticosteroid
responsiveness in asthmatic patients (van der Schee et al., 2013).
E-nose breathprints are associated with airway inflammatory
markers, including sputum eosinophils and neutrophils, in
COPD patients and can be useful for subphenotyping (Fens
et al., 2011, 2013). Metabolomics is a global approach to
understanding regulation of metabolic pathways and metabolic
networks of a biological system (Rochfort, 2005). Nuclear
magnetic resonance (NMR)-based metabolomic analysis
of exhaled breath condensate (EBC), the liquid fraction of
exhaled breath, is suitable for identifying and quantifying
semi-volatile/non-volatile small molecular weight metabolites
and has been applied to the assessment of airway inflammation
in COPD patients (De Laurentiis et al., 2008; Motta et al., 2012;
Airoldi et al., 2016). Published prospective clinical studies on
effects of pharmacological treatment on breathomics in COPD
patients are not available.

We aimed to assess the effects of treatment and steroid
withdrawal of an extrafine ICS/long-acting β2-agonist (LABA)
fixed dose combination (FDC) on breathprints and non-invasive
inflammatory outcomes in COPD patients; to compare accuracy
of a multidimensional classification model vs. a standard
spirometry-based model.

METHODS

Study Subjects
Fourteen COPD ex-smokers for at least 1 year with stable
mild, moderate or severe airflow limitation (GOLD stage I-III,

post-bronchodilator forced expiratory volume in 1 s (FEV1)
>30% predicted value, FEV1/FVC < 70%, GOLD group A-D),
who were on a fixed dose combination (FDC) of fluticasone
propionate/salmeterol delivered via a dry powder inhaler (DPI)
at a constant dose of 500/50 µg b.i.d. for at least 8 weeks,
were studied. Diagnosis of COPD was based on GOLD guideline
criteria (Global initiative for chronic obstructive lung disease
(GOLD), 2018). Six subjects had clinical and radiological signs
of emphysema. Three patients had bronchiectasis documented
by chest CT scan. Regarding co-morbidities, six patients with
COPD had concomitant ischemic heart disease, four patients
had congestive heart failure, five patients had arterial blood
hypertension, three patients had type 2 diabetes mellitus, and one
patient had peripheral vascular disease.

COPD patients had negative reversibility test to 400 µg of
inhaled salbutamol (<12% and 200ml increase in FEV1), no
history of asthma and atopic disease, negative skin prick test
results, no upper respiratory tract infections in the previous
3 weeks, and were excluded from the study if they had used
systemic corticosteroids in the previous 4 weeks.

Study Design
This was a single center, prospective, open label, pilot, proof-
of-concept, pharmacological study of ICS withdrawal and
treatment in COPD patients on maintenance treatment with
inhaled fluticasone propionate/salmeterol at full doses (visit
1, screening visit). Study duration was 10 weeks including
4 visits (Figure 1). After a 2-week phase treatment with
inhaled beclomethasone/formoterol (100/6 µg 2 puffs b.i.d. via
pressurized metered dose inhaler [pMDI]) (visit 2, baseline
visit) to allow them to become familiar with the new inhaler,
patients received inhaled formoterol alone (6 µg 2 puffs b.i.d.
via pMDI) for 4 weeks (visit 3, post-withdrawal visit), and
inhaled beclomethasone/formoterol (100/6 µg 2 puffs b.i.d.) for
4 weeks (visit 4, post-treatment visit) (Figure 1). Breathomics
included analysis of exhaled breath gaseous phase with two
different e-noses, and NMR-based metabolomics of exhaled
breath condensate (EBC). Sputum cell counts, prostaglandin
(PG) E2 and 15-F2t-isoprostane in sputum supernatants and
EBC, and fraction of exhaled nitric oxide (FENO) were also
measured.

Both informed and written consent was obtained from
patients. The study was approved by the Ethics Committee
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FIGURE 1 | Study design and detail of interventions. At screening visit (visit 1), treatment with a constant dose of inhaled fluticasone propionate/salmeterol xinafoate

fixed dose combination (FDC) (500/50 µg b.i.d. via a dry powder inhaler) for at least 8 weeks was switched to an extrafine formulation of inhaled beclomethasone

dipropionate (BDP)/formoterol fumarate (FOR) FDC (100/6 µg 2 puffs b.i.d. via a pressurized metered dose inhaler [pMDI]). After a run-in phase of 2 weeks, the FDC

containing beclomethasone was suspended (visit 2, baseline visit), while maintaining formoterol alone (6 µg 2 puffs b.i.d. via pMDI). After 4 weeks of beclomethasone

withdrawal (visit 3, post-withdrawal visit), treatment with inhaled beclomethasone/formoterol FDC at the same dose (100/6 µg 2 puffs b.i.d. via pMDI) was

reintroduced. Exhaled breath sampling for e-nose analysis, measurement of fraction of exhaled nitric oxide (FENO), exhaled breath condensate (EBC) collection,

pulmonary function tests (PFT), and sputum induction were performed at each visit. Study duration was 10 weeks.

(A.942/C.E./2012) of the Catholic University of the Sacred Heart,
University Hospital Agostino Gemelli, Rome, Italy. EudraCT
number: 2012-001749-42.

Pulmonary Function
Spirometry was performed with a Pony FX spirometer (Cosmed,
Rome, Italy) and the best of three consecutive maneuvers chosen.

FENO Measurement
FENO was measured with the NIOX system (Aerocrine,
Stockholm, Sweden) with a single breath on-line method at
constant flow of 50 ml/sec according to American Thoracic
Society guidelines (American Thoracic Society and European
Respiratory Society, 2005; Dweik et al., 2011). Exhalations were
repeated after 1min relaxation period until the performance
of three FENO values varies less than 10% (American
Thoracic Society and European Respiratory Society, 2005). FENO
measurements were obtained before spirometry.

Collection of Exhaled Breath
Exhaled breath was collected from each subject at 8.30 a.m. as
previously described (Fens et al., 2009; Bofan et al., 2013) and
based on recent ERS technical standard (Horvath et al., 2017).
No food or drinks were allowed at least 12 h prior to sampling.

Subjects were asked to breathe tidally volatile organic
compound (VOC)-filtered air for 5min, while wearing a nose-
clip, into a 2-way non-rebreathing valve with an inspiratory VOC
filter and an expiratory silica reservoir to reduce sample water
vapor (Röck et al., 2008). Then, subjects were asked to inhale

to maximal inspiration and perform a FVC maneuver into a
Tedlar R© bag. Two consecutive samples were collected 15min
apart and immediately analyzed.

Electronic Noses
The first sample was analyzed with a commercially available
e-nose (Cyranose 320, Sensigent, Baldwin Park, USA) (Lewis,
2004; Fens et al., 2009) which consists of an array of 32 cross-
reactive carbon black polymer composite sensors and detects
resistance variations; the second sample was analyzed with an e-
nose prototype (Ten 2011, University of Rome Tor Vergata, Italy)
(Montuschi et al., 2010) which consists of an array of 8 cross-
reactive quartz microbalance gas sensors coated by molecular
films of metallo-porphyrins and detects frequency variations
(Montuschi et al., 2010). Breathprints were analyzed by pattern
recognition algorithms (Bishop, 2006).

Ambient VOCs were subtracted from measures and results
were automatically adjusted for ambient VOCs.

EBC Sampling
Before EBC collection, subjects refrained from eating for at
least 3 h. EBC was collected using a condenser (Ecoscreen,
Jaeger, Hoechberg, Germany) (Motta et al., 2012), in a
windowless clinic facility without disinfectant dispensers (Motta
et al., 2012). Samples were snap frozen in liquid nitrogen to
immediately “quench” metabolism and preserve the metabolite
concentrations.
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Metabolomic Analysis of EBC With NMR
Spectroscopy
1H-NMR spectra for EBC samples were acquired using a Bruker
600 MHz spectrometer operating at 600.13 MHz using standard
nuclear Overhauser effect spectroscopy (NOESY) experiments

TABLE 1 | Subject characteristics*.

COPD patients (n = 14)

Age, years 73.6 ± 1.8

Gender, females/males 2/14

Pack-years 64.3 ± 8.1

GOLD I/II/III, airflow limitation severity 5/5/4

GOLD A/B/C/D classification 1/7/3/3

§Skin prick tests, positive/negative 0/14

History of atopy, positive/negative 0/14

#Sputum eosinophils ≥ 3% at visit 1 0/14

*Data are expressed as numbers or mean ± SEM. §Common aeroallergens were tested.
#Expressed as percentage of total non-squamous cells.

and standard protocols for sample preparation (Bertini et al.,
2014). Signals of interest were assigned on template one-
dimensional NMR profiles and integrated to calculate their
relative concentrations (Montuschi et al., 2012; Motta et al., 2012;
Bertini et al., 2014). Multilevel partial least squares (PLS) analysis
was used to analyse EBC spectra from the same subject obtained
at paired visits.

Measurement of PGE2 and
15-F2t-isoprostane in Sputum
Supernatants and EBC
PGE2 and 15-F2t-isoprostane concentrations in sputum
supernatants and EBC were measured with radioimmunoassays
developed in our laboratory, previously validated and compared
with gas chromatography/mass spectrometry and high
performance liquid chromatography (Wang et al., 1995;
Montuschi et al., 2003).

Sputum Cell Analysis
Sputum induction, processing and analysis were performed
according to the European Respiratory Society (ERS) guidelines

TABLE 2 | Lung function tests, pre-bronchodilator values*.

Visit 1 Visit 2 Visit 3 Visit 4 P

Screening Baseline Post-withdrawal Post-treatment value

(n = 14) (n = 14) (n = 14) (n = 14)

FEV1, L 1.66 ± 0.21 1.68 ± 0.22 1.65 ± 0.21 1.67 ± 0.21 0.907

FEV1, % predicted 61.8 ± 6.9 62.7 ± 7.0 61.9 ± 6.7 62.4 ± 6.5 0.962

FVC, L 2.80 ± 0.28 2.86 ± 0.28 2.92 ± 0.28 2.91 ± 0.28 0.440

FVC, % predicted 79.9 ± 6.3 81.8 ± 5.9 84.0 ± 6.0 83.3 ± 5.5 0.534

FEV1/FVC, % 58.1 ± 3.21 57.2 ± 3.1 55.3 ± 3.21 56.3 ± 3.3 0.008

PEF, L/s 4.81 ± 0.652 5.24 ± 0.722 4.89 ± 0.70 4.93 ± 0.62 0.044

PEF, % predicted 65.5 ± 8.12 71.3 ± 8.92 66.8 ± 8.8 67.2 ± 7.4 0.033

FEF25−75%, L/s 0.92 ± 0.14 0.94 ± 0.153 0.86 ± 0.133 0.92 ± 0.14 0.029

FEF25−75%, % predicted 32.4 ± 4.6 32.9 ± 4.93 30.2 ± 4.23 32.6 ± 5.4 0.026

*Data are expressed as numbers or mean± SEM. Within-group comparisons were performed with ANOVA for repeated measures and paired t-test. P< 0.05 was considered significant.
1V1 vs. V3; 2V1 vs. V2; 3V2 vs. V3.

Abbreviations: FEF25−75%, forced expiratory flow at 25–75% of the forced vital capacity; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow.

TABLE 3 | Lung function tests, post-bronchodilator values*.

Visit 1 (n = 14) Visit 2 (n = 14) Visit 3 (n = 14) Visit 4 (n = 14) P-Value

FEV1, L 1.77 ± 0.22 1.80 ± 0.22 1.79 ± 0.22 1.79 ± 0.22 0.902

FEV1, % predicted 66.2 ± 7.0 67.6 ± 7.2 67.0 ± 7.0 66.4 ± 7.0 0.854

FVC, L 2.98 ± 0.28 3.01 ± 0.28 3.07 ± 0.26 3.06 ± 0.28 0.547

FVC, % predicted 85.3 ± 6.2 86.4 ± 6.0 88.7 ± 5.9 87.5 ± 5.6 0.587

FEV1/FVC, % 58.3 ± 3.3 58.5 ± 3.3 56.5 ± 3.1 56.7 ± 3.3 0.110

PEF, L/sec 5.38 ± 0.72 5.29 ± 0.64 5.19 ± 0.70 5.12 ± 0.71 0.427

PEF, % predicted 73.1 ± 8.9 72.4 ± 7.9 70.9 ± 8.70 69.4 ± 8.50 0.437

FEF25−75%, L/sec 0.99 ± 0.15 1.03 ± 0.16 0.96 ± 0.15 0.96 ± 0.16 0.447

FEF25−75%, % predicted 34.7 ± 4.8 36.3 ± 5.2 33.7 ± 4.9 34.0 ± 5.5 0.493

*Data are expressed as numbers or mean± SEM. Within-group comparisons were performed with ANOVA for repeated measures and paired t-test. P< 0.05 was considered significant.

FEF25−75%, forced expiratory flow at 25–75% of the forced vital capacity; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow.
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(Djukanovic et al., 2002; Efthimiadis et al., 2002; Paggiaro et al.,
2002).

Baseline FEV1 was recorded before sputum induction.
Subjects were pre-treated with inhaled salbutamol (400 µg), and,
after 10min, a spirometry was repeated (Paggiaro et al., 2002).
Subjects were asked to inhale hypertonic saline (3%) for 5min
and then, to rinse their mouths and try to expectorate into
a sterilized box (Paggiaro et al., 2002). Five-minute inhalation
sessions were repeated four times for a total of 20min (Paggiaro
et al., 2002). A spirometry was performed after each inhalation
session to detect significant fall of FEV1. The procedure was
stopped when approximately 1 g of plugs was collected, or
if patients had symptoms or/and if FEV1 was reduced more
than 20% over baseline values (Paggiaro et al., 2002). Sputum
was processed within 2 h to ensure optimum cell counting
and staining, with the sample always kept in ice (Efthimiadis
et al., 2002). One hundred to 500µg sputum was selected for
sputum analysis. Dithiothreitol (DTT) 0.1%was added to sputum
samples which were kept in a shaking rocker at room temperature
for 20min for sample homogenization (Efthimiadis et al., 2002).
Samples were filtered through a 48µm nylon mesh into a
pre-weighed conical tube and filtrate was weighed. Total cell
count was performed manually using a haemocytometer and cell
viability was assessed by the trypan blue exclusion method before
centrifugation (Efthimiadis et al., 2002). To separate cell pellet
from sputum supernatants, samples were centrifuged at 4◦C for
10min with a centrifugal force of 1,200 × g (Efthimiadis et al.,
2002). Sputum supernatant samples were collected and stored
at −80◦C for measurement of PGE2 and 15-F2t-isoprostane

concentrations. Cell pellets were resuspended in PBS buffer and
cell concentrations were adjusted to 1 × 106 cells/ml. Cytospins
were prepared by adding 40–60 µl of cell resuspension to each
cytospin and using a Shandon cytocentrifuge at 22 × g for
6min (Efthimiadis et al., 2002). Cytospins were stained for
differential cell counts using Giemsa staining (Efthimiadis et al.,
2002). The differential cell counts were performed by counting a
minimum of 400 nonsquamous cells and reported as the relative
numbers of eosinophils, neutrophils, macrophages, lymphocytes,
and bronchial epithelial cells, expressed as a percentage of total
non-squamous cells (Efthimiadis et al., 2002). The percentage of
squamous cells was reported separately. Slides with squamous
cells >30% of total cells were discarded. Slides were read blindly
by two qualified and fully trained physicians. Monthly quality
control was performed including internal slide reading and
equipment calibration.

Skin Testing
Atopy was assessed by skin prick tests for common aeroallergens
(mixture for house dust mite [Dermatophagoides pteronyssinus
and Dermatophagoides farinae, grass pollen [cocksfoot and
timothy], weed pollen [Parietaria officinalis and Ambrosia
artemisifolia], tree pollen [birch, ash tree, olive tree, oak,
and cypress], animal danders [cat and dog allergens], and
fungal allergens [Aspergillus species and Alternaria alternata];
(Stallergenes, Antony, France) (Montuschi et al., 2006). A
positive skin test response was defined as a wheal with a mean
diameter (mean of maximum and 90◦ midpoint diameters) of

FIGURE 2 | Pre-bronchodilator forced expiratory flow at the 25-75% of the forced vital capacity (FEF25−75% ) and peak expiratory flow (PEF) values in 14 patients

with COPD at visit 1 (V1) to visit 4 (V4). (A) FEF25−75% percentage predicted values; (B) absolute FEF25−75% values; (C) PEF percentage predicted values;

(D) absolute PEF values. Mean values ± SEM are shown.
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TABLE 4 | Univariate analysis of carbon polymer sensor e-nose response*.

V1 V2 V3 V4 P-value

Sensor 1

2.507 ± 0.2171 2.843 ± 0.1636 2.891 ± 0.2411 3.208 ± 0.1857 0.0480

V1 vs. V4 0.0055

Sensor 2

1.664 ± 0.1427 1.891 ± 0.0979 1.934 ± 0.1537 2.181 ± 0.1260 0.0212

V1 vs. V2 0.0364

V1 vs. V4 0.0053

Sensor 3

2.527 ± 0.2057 2.768 ± 0.1549 2.868 ± 0.2432 3.183 ± 0.1993 n.s.

Sensor 4

1.447 ± 0.1191 1.640 ± 0.0891 1.693 ± 0.1378 1.926 ± 0.1249 0.0209

V1 vs. V4 0.0040

Sensor 5

11.27 ± 1.195 12.86 ± 0.8729 13.38 ± 1.261 16.70 ± 2.785 n.s.

Sensor 6

6.574 ± 0.7314 7.547 ± 0.5477 7.757 ± 0.8441 8.510 ± 0.6821 n.s.

Sensor 7

0.001109 ± 0.0962 0.001253 ± 0.0678 0.001265 ± 0.1008 0.001409 ± 0.0763 0.0409

V1 vs. V4 0.0053

Sensor 8

0.6803 ± 0.05038 0.7709 ± 0.03499 0.7732 ± 0.05597 0.8569 ± 0.05064 0.0259

V1 vs. V2 0.0216

V1 vs. V4 0.0058

Sensor 9

2.154 ± 0.2058 2.462 ± 0.1496 2.542 ± 0.2280 2.811 ± 0.1892 n.s.

Sensor 10

1.283 ± 0.1128 1.474 ± 0.08070 1.492 ± 0.1259 1.649 ± 0.1020 n.s.

Sensor 11

1.277 ± 0.1155 1.429 ± 0.0759 1.460 ± 0.1267 1.607 ± 0.0973 n.s.

Sensor 12

1.321 ± 0.1193 1.487 ± 0.0781 1.559 ± 0.1282 1.715 ± 0.0970 0.0300

V1 vs. V4 0.0046

Sensor 13

1.036 ± 0.0877 1.185 ± 0.0624 1.196 ± 0.0981 1.315 ± 0.0757 n.s.

Sensor 14

0.8994 ± 0.0752 1.014 ± 0.0542 1.048 ± 0.0820 1.163 ± 0.0604 0.0258

V1 vs. V4 0.0051

Sensor 15

2.225 ± 0.1933 2.513 ± 0.1338 2.577 ± 0.2234 2.881 ± 0.1799 0.045

V1 vs. V4 0.0071

Sensor 16

1.241 ± 0.1085 1.405 ± 0.0809 1.447 ± 0.1203 1.577 ± 0.0962 0.0100

V1 vs. V4 0.0094

Sensor 17

1.430 ± 0.1237 1.603 ± 0.0880 1.637 ± 0.1437 1.804 ± 0.1222 n.s.

Sensor 18

2.643 ± 0.2480 3.000 ± 0.1781 3.093 ± 0.2729 3.385 ± 0.2228 n.s.

Sensor 19

0.9070 ± 0.0727 1.033 ± 0.0569 1.075 ± 0.0908 1.172 ± 0.0648 0.0273

V1 vs. V2 0.0320

V1 vs. V4 0.0052

(Continued)
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TABLE 4 | Continued

V1 V2 V3 V4 P-value

Sensor 20

2.341 ± 0.2267 2.658 ± 0.1648 2.702 ± 0.2400 2.910 ± 0.1990 n.s.

Sensor 21

0.8288 ± 0.0683 0.9423 ± 0.0510 0.9509 ± 0.0762 1.057 ± 0.0597 0.0362

V1 vs. V2 0.0307

V1 vs. V4 0.0062

Sensor 22

1.004 ± 0.0863 1.132 ± 0.0594 1.132 ± 0.0935 1.233 ± 0.0767 n.s.

Sensor 23

9.586 ± 0.9759 10.94 ± 0.7091 11.47 ± 1.157 13.26 ± 1.443 n.s.

Sensor 24

1.403 ± 0.1185 1.597 ± 0.0943 1.704 ± 0.1439 1.904 ± 0.0872 0.0084

V1 vs. V2 0.0404

V1 vs. V4 0.0030

V2 vs. V4 0.0365

Sensor 25

1.426 ± 0.1198 1.618 ± 0.0865 1.635 ± 0.1300 1.849 ± 0.1003 0.0286

V1 vs. V2 0.0494

V1 vs. V4 0.0051

Sensor 26

0.003672 ± 0.3577 0.004201 ± 0.2878 0.004370 ± 0.4194 0.004926 ± 0.4143 n.s.

Sensor 27

0.0005989 ± 0.0456 0.0006938 ± 0.0359 0.0007088 ± 0.0597 0.0007838 ± 0.0412 0.0182

V1 vs. V2 0.0170

V1 vs. V4 0.0013

Sensor 28

0.004238 ± 0.4047 0.004810 ± 0.2025 0.004937 ± 0.4320 0.005434 ± 0.3809 n.s.

Sensor 29

2.228 ± 0.2167 2.521 ± 0.1581 2.573 ± 0.2285 2.890 ± 0.2030 n.s.

Sensor 30

0.9987 ± 0.0863 1.151 ± 0.0666 1.170 ± 0.0987 1.301 ± 0.0946 n.s.

Sensor 31

15.13 ± 1.761 17.41 ± 1.240 18.35 ± 2.133 24.58 ± 6.076 n.s.

Sensor 32

0.6599 ± 0.0538 0.7333 ± 0.0397 0.7486 ± 0.0599 0.8363 ± 0.0437 0.0426

V1 vs. V4 0.0066

The behavior of each sensor (sensor 1–sensor 32) is shown. Sensors whose mean values differ across visits are shown in bold.
*Data, expressed as mean± SEM, are relative changes in sensor resistance [(Rmax-R0)/R0] (µOhms). Intra-group, between-visit comparisons were performed with ANOVA for repeated

measures. If overall P was lower than 0.05, considered significant, paired t-test was performed. n.s., not significant; V, visit.

at least 3mm greater than that produced with a saline control
(Montuschi et al., 2006).

Multivariate Data Analysis
E-nose and NMR spectroscopy data analysis requires
multivariate statistical algorithms (Bishop, 2006; Wilson
and Baietto, 2009). Multilevel PLS was used for data reduction;
the K-nearest neighbors method, applied on the multilevel
PLS scores, was used for classification purposes (Bishop, 2006;
Wilson and Baietto, 2009). The global classification accuracy
was assessed by means of Monte Carlo cross-validation scheme.
The threshold for significant classification was set at a value of

70% (Bijlsma et al., 2006). Correlations among multidimensional
data were calculated using the algorithm implemented in the
R-library “psych” (Hahsler et al., 2008; Revelle, 2017) and are
shown as a heatmap built using the R-function “heatmap.2,”
implemented in the “gplots” package (Warnes et al., 2016).

Statistical Analysis
Data were expressed as mean ± SEM or medians and
interquartile ranges (25th and 75th percentiles), after assessing
for normality with the D’Agostino-Pearson omnibus normality
test. Depending on data distribution, repeated-measures
ANOVA or Friedman test was used for assessing within-group
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TABLE 5 | Univariate analysis of quartz crystal sensor e-nose response*.

V1 V2 V3 V4 P

Sensor 1

21.5

(14.75–31)

30 (19–38) 27.5

(21.75–36.75)

30.5

(22.75–38.25)

n.s.

Sensor 2

19 (14–29) 27.5

(20.5–32.75)

25

(21.5–35.25)

30.5

(25.5–38)

0.0092

V1 vs. V4 0.0329

Sensor 3

49

(38.25–76.25)

79.5

(57–105.8)

66.5

(53.5–106.5)

89 (65.5–101) n.s.

V1 vs. V2 0.0279

Sensor 4

31 (26.75–48) 48.5

(37.25–58.25)

44 (36–66.75) 54.4

(43.5–67)

0.0523

V1 vs. V2 0.0445

V1 vs. V4 0.0413

Sensor 5

12.5 (9–16.8) 19

(13.3–22.5)

15.5

(12.5–25.5)

19.5

(15.8–24.3)

n.s.

Sensor 6

24

(18.8–33.3)

29.5

(23.3–43.8)

36 (25–41) 32 (24.8–45) n.s.

Sensor 7

20.5

(15.3–32)

29 (22.3–38) 29

(25.8–41.3)

32.5

(29–36.8)

n.s.

Sensor 8

30.5

(20.3–44.5)

42

(32.5–55.3)

30

(27.5–48.3)

41.5

(29.5–49.5)

n.s.

The behavior of each sensor (sensor 1–sensor 8) is shown. Sensors whose mean values

differ across visits are shown in bold.
*Data, expressed as median and interquartile range, are relative changes in sensor

frequency [(Rmax-R0)/R0] (Hz). Intra-group, between-visit comparisons were performed

with Friedman’s test. If overall P was lower than 0.05, considered significant, Wilcoxon

signed rank test was performed. n.s., not significant; V, visit.

pharmacological treatment effect. If overall P value was found
significant, paired t-test or Wilcoxon signed rank test were
performed. Correlation was expressed as a Pearson coefficient.
Significance was defined as a value of P < 0.05.

In this pilot, proof-of-concept study, we did not adjust
our analysis for multiple testing to reduce the risk of missing
promising biomarkers, but this also increased our risk of a type
I error. Further details on the methodology are provided in the
online Supplementary Material (Presentation 1).

RESULTS

Study Subjects
Subject characteristics are shown in Table 1.

Pulmonary Function Testing
Pre-bronchodilator and post-bronchodilator lung function test
values across visits in patients with COPD are shown in
Tables 2, 3, respectively. Higher mean pre-bronchodilator forced
expiratory flow at 25–75% of forced vital capacity (FEF25−75%) T
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percentage of predicted and absolute values were observed
after 2-week inhaled beclomethasone/formoterol FDC (visit 2)
compared with post-4-week treatment with inhaled formoterol
alone (visit 3) (P = 0.026 and P = 0.029, respectively)
(Figures 2A,B; Table 2).

Mean pre-bronchodilator FEV1/FVC ratio was higher on
maintenance treatment with fluticasone propionate/salmeterol
FDC (visit 1) compared with post-treatment with formoterol
alone (visit 3) (P = 0.008) (Table 2).

Higher mean pre-bronchodilator peak expiratory flow
(PEF) percentage of predicted and absolute values were
observed after 2-week beclomethasone/formoterol FDC
(visit 2) compared with maintenance treatment with inhaled
fluticasone propionate/salmeterol (visit 1) (P = 0.033 and P =

0.044, respectively) (Figures 2C,D, Table 2). No within-group
differences in post-bronchodilator functional parameters were
observed (Table 3).

Electronic Nose
E-nose analysis with either e-nose was successfully performed
in all 14 subjects at all visits. A total of 56 breathprints
for each e-nose was collected. Fifteen out of 32 carbon
polymer sensors showed significant mean differences between
inhaled fluticasone propionate/salmeterol FDC maintenance
treatment (visit 1) and post-4-week beclomethasone/formoterol
FDC treatment (visit 4), whereas 7 sensors showed significant
mean differences between fluticasone propionate/salmeterol
maintenance treatment (visit 1) and 2-week treatment with
beclomethasone/formoterol (visit 2) (Table 4).

Consistent with carbon polymer sensor behavior, two quartz
crystal sensors showed significant mean differences between
fluticasone propionate/salmeterol maintenance treatment (visit
1) and post-4-week beclomethasone/formoterol FDC treatment
(visit 4); sensor 3 and 4 showed significant mean differences
between fluticasone propionate/salmeterol maintenance
treatment (visit 1) and 2-week beclomethasone/formoterol
treatment (visit 2) (Table 5).

There was no difference in sensor response using either e-nose
when other paired visits were compared (Tables 4, 5).

Metabolomic Analysis of EBC With NMR
Spectroscopy
A total of 56 EBC NMR spectra obtained from 14 study
subjects across visits were analyzed. Typical EBC 1H-NMR
spectra obtained from a COPD patient across visits are shown
in Figure S1. EBC metabolomics with NMR spectroscopy
discriminated between fluticasone propionate/salmeterol
FDC maintenance treatment (visit 1) and treatment with
beclomethasone/formoterol FDC for 4 weeks (visit 4) (accuracy
= 72%, P = 0.01) (Figure S2). Formate levels were higher
at visit 1 (694.9 ± 360.5 arbitrary units, median ± median
absolute deviation [MAD]) than at visit 4 (409.2 ± 224.8
arbitrary units, P = 0.029) (Table 6, Figures S3A,B). Other
paired comparisons showed accuracy below the significant
threshold set at 70% (Table S1). After 4-week treatment with
beclomethasone/formoterol FDC (visit 4), EBC acetate levels
were lower than those measured after 4-week treatment with
formoterol alone (visit 3) (P = 0.009) (Table 6). Several

EBC metabolites, including formate, phenol, methanol,
trimethylamine, acetone, acetoine, acetate, n-butyrate, lactate, 3-
hydroxyisovalerate, ethanol, propionate, and leucine-o-butyrate
were identified (Figure 3). Apart from formate and acetate, their
levels were similar across visits (Table 6).

FENO
There was no difference in FENO concentrations in patients with
COPD across visits (overall P = 0.35) (Table S2).

Measurement of PGE2 and
15-F2t-isoprostane in Sputum
Supernatants and EBC
PGE2 concentrations were detected in 49 out of a total of
56 sputum supernatant samples. Compared with formoterol
alone post-treatment values (visit 3), lower sputum PGE2
concentrations were observed after 4-week treatment with
beclomethasone/formoterol FDC (visit 4) (P = 0.008) and on
maintenance treatment with fluticasone propionate/salmeterol
FDC (visit 1) (P = 0.021) (Table S3). These data suggest
that treatment with ICS FDC, containing either fluticasone
propionate or beclomethasone dipropionate, reduces sputum
PGE2 concentrations. There was no between-visit differences
in EBC PGE2 or sputum and EBC 15-F2t-isoprostane
concentrations (Table S3).

Sputum Cell Analysis
Eight patients with COPD had a complete set of sputum slides
(visit 1 to visit 4) (Table S4). No patient with COPD had sputum
eosinophilia, as defined by sputum cell counts >3%, at visit
1 (screening visit). There was no within-group difference in
sputum cell counts (Table S4). Percentage sputum cell counts in
all valid sputum slides are shown in Table S5.

Correlations
Responses within each individual e-nose and between e-noses
were correlated, whereas EBC metabolites detected by NMR
spectroscopy were not correlated with either e-noses, except EBC
phenol which was correlated with 16 carbon polymer sensors
(Figure 4). In EBC, there was a correlation between PGE2 and
formate (r = 0.78, P = 5.06·10−11), acetone (r = 0.63, P =

1.64·10−6), lactate (r = 0.64, P = 6.03·10−7), n-butyrate (r =

0.82, P = 5.89·10−13), propionate (r = 0.59, P = 8.26·10−6), and
acetate (r = 0.71, P = 1.23·10−8) (Figure 4).

Quartz crystal sensor 4 (r = −0.35, P = 0.023) and 7 (r =
−0.31, P= 0.041) negatively correlated with sputum neutrophils.
These showed negative correlation with FEV1/FVC (r=−0.34; P
= 0.028) (Figure 4).

Multidimensional Integrated Model for
Assessment of Pharmacological Treatment
In the 14 COPD study participants, multidimensional
pairwise discrimination models were built. The models
discriminated between maintenance treatment with fluticasone
propionate/salmeterol (visit 1) vs. 4-week treatment with
formoterol alone (visit 3) (accuracy = 71.5%, P < 0.01); the
univariate analysis showed differences in sputum supernatant
PGE2 and FEV1/FVC ratio (Table 7); between maintenance
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FIGURE 3 | An example of a typical EBC NMR spectrum at 600 MHz. All metabolites assigned and quantified are reported in figure.

treatment with fluticasone propionate/salmeterol (visit 1) vs.
4-week treatment with beclomethasone/formoterol (visit 4)
(accuracy = 82.5%, P < 0.01); the univariate analysis showed
differences in EBC formate and e-noses (Table 7); between
4-week treatment with formoterol alone (visit 3) vs. 4-week
treatment with beclomethasone/formoterol (visit 4) (accuracy =
74.6%, P < 0.01); the univariate analysis showed differences in
sputum PGE2 and EBC acetate (Table 7).

The multidimensional models showed higher accuracy than
the models based on spirometry alone (Table 8). PLS score
plots are centrosymmetric given the pairwise nature of the
analyses performed which leads to a matrix with a two block
structure with opposite signs, thus producing symmetric PLS
scores. This explains the same values of sensitivity and specificity.
During cross-validation, when a multilevel PLS model is built
from the training set, the entire variation splitting procedure is
performed (van Velzen et al., 2008; Westerhuis et al., 2010). The
procedure should, therefore, be adapted to keep the paired data
structure both in the training and in the test set. As a result,
complete individuals are left out of the training set (per individual
validation, not per sample). At each step, if a sample of one
individual is mistaken, inevitably the other is mistaken in the
opposite way, leading to a fully symmetric confusion matrix. Of
course, this symmetry is broken when considering more than just
two time points. Further information on results is provided in the
online Supplementary Material (Presentation 1).

DISCUSSION

The principal messages of the present study are: (1) breathomics
can be successfully applied to assessment of effects of
corticosteroid treatment and withdrawal with ICS/LABA in

patients with COPD; (2) breathomics results are confirmed
by the concordance of three different breathomics techniques
(carbon polymer sensor e-nose, quartz crystal sensor e-nose,
NMR-based metabolomics) applied to the gaseous and aerosol
particle (EBC) phase of the exhaled breath. These techniques
provide complementary information; (3) a multidimensional,
integrated, model including breathomics, improves the ability of
identifying pharmacological treatment-induced effects compared
with a monodimensional model based on standard pulmonary
function testing; (4) this approach provides insights into the anti-
inflammatory effects of ICS in patients with COPD as reflected
by reduced sputum PGE2 and EBC acetate concentrations after
beclomethasone/formoterol FDC vs. formoterol alone.

In a breathomics multidimensional approach to assessment
of drugs for COPD, we show anti-inflammatory effects of an
extrafine beclomethasone/formoterol FDC pMDI vs. formoterol
alone as reflected by reduced levels of sputum PGE2, a potent
inflammatorymediator in the airways (Clarke et al., 2005; Holden
et al., 2010), and EBC acetate which were found elevated in
COPD patients (De Laurentiis et al., 2008, 2013; Airoldi et al.,
2016; Santini et al., 2016).

We also show that short-term treatment with an extrafine
beclomethasone/formoterol FDC pMDI is associated with
different breathprints as compared with regular fluticasone
propionate/formoterol FDC DPI in patients with COPD. These
results might suggest that various ICS/LABA formulations
have different effects on breathomics outcomes, although the
biological implications of these findings are unknown and have
to be defined.

Treatment with either ICS/LABA FDC vs. inhaled formoterol
alone was associated with a slight, but significant, increase
in small airway function as reflected by FEF25−75% and
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FIGURE 4 | Heatmap showing correlations between study outcome measures in 14 patients with COPD at visit 1 to visit 4 (n = 56). R values are shown as different

degree of color intensity (red, positive correlations; blue, negative correlation).

FEV1/FVC values, whereas higher PEF values were observed after
beclomethasone/formoterol (visit 2) than on regular fluticasone
propionate/salmeterol (visit 1), suggesting that treatment-
induced e-nose breathprint variations parallel the observed
functional changes only to a limited extent. Interestingly,
functional effects were observed after only 4-week treatment with
inhaled beclomethasone/formoterol, a relatively short duration
of treatment for COPD trials, and in patients with COPD who
had normal sputum eosinophils, negative reversibility test to

bronchodilators, negative skin prick tests, and no history of
atopy, thus, excluding an asthma component, on which ICS are
generally more effective.

The strong correlation between most sensors within each
individual e-nose indicates a high degree of sensor redundancy,
whereas a similar behavior of e-nose based on different
technologies confirms the results of the exhaled breath analysis.
Of note, quartz crystal sensors, but not carbon polymer sensors,
showed correlation with sputum neutrophils. On the other
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TABLE 7 | Classification accuracies with 95% confidence interval and P values among different pharmacological treatments from visit 1 to visit 4 based on

multidimensional PLS models in 14 patients with COPD.

Comparison Overall accuracy

(P-value)

Model quality Variable P-value

Visit 1 vs. Visit 2 66.4%
(CI 95% 66.0–66.9%)

(P = 0.12)

AUC 0.714
Youden’s J 0.294

Carbon polymer sensor e-nose Sensor2 0.036

Sensor8 0.021

Sensor19 0.032

Sensor21 0.031

Sensor24 0.040

Sensor25 0.049

Sensor27 0.017

Quartz crystal sensor e-nose Sensor 3 0.028

Sensor 4 0.044

Spirometry PEF, % pred 0.033

PEF, L 0.044

Visit 1 vs. Visit 3 71.5%
(CI 95% 71.1–72.0%)

(P < 0.01)

AUC 0.704
Youden’s J 0.446

Eicosanoids PGE2 in sputum supernatants 0.021

Spirometry FEV1/FVC, % 0.008

Visit 1 vs. Visit 4 82.5%
(CI 95% 82.0–83.0%)

(P < 0.01)

AUC 0.857
Youden’s J 0.666

NMR spectroscopy Formate in EBC 0.029

Carbon polymer sensor e-nose Sensor1 0.006

Sensor2 0.005

Sensor4 0.004

Sensor7 0.005

Sensor8 0.006

Sensor12 0.005

Sensor14 0.005

Sensor15 0.007

Sensor16 0.009

Sensor19 0.005

Sensor21 0.006

Sensor24 0.003

Sensor25 0.005

Sensor27 0.001

Sensor32 0.007

Quartz crystal sensor e-nose Sensor 2 0.032

Sensor 4 0.041

Visit 2 vs. Visit 3 59.9%
(CI 95% 58.8–61.1%)

(P = 0.23)

AUC 0.571
Youden’s J 0.134

Spirometry FEF25−75%, L 0.029

FEF25−75%, % pred 0.026

Visit 2 vs. Visit 4 59.8%

(CI 95% 58.2–61.3%)

(P = 0.12)

AUC 0.556

Youden’s J 0.214

Carbon polymer sensor e-nose Sensor 24 0.037

Visit 3 vs. Visit 4 74.6%
(CI 95% 73.9–75.2%)

(P < 0.01)

AUC 0.760
Youden’s J 0.454

Eicosanoids PGE2 in sputum supernatants 0.008

NMR spectroscopy Acetate in EBC 0.009

The significant variables in the univariate analysis of each experimental technique are also reported (Wilcoxon signed rank test P-values).

AUC, area under the curve; EBC, exhaled breath condensate; FEF25−75%, forced expiratory flow at 25–75% of the forced vital capacity; FEV1, forced expiratory volume in 1 s; FVC,

forced vital capacity; NMR, nuclear magnetic resonance; PEF, peak expiratory flow; PGE2, prostaglandin E2; % pred, percentage of predicted value; PLS, partial least squares.

hand, the lack of correlation between EBC metabolites detected
by NMR spectroscopy and either e-noses suggests that a
comprehensive breathomics approach might be complementary
and increase the level of information. In EBC, there was a
correlation between PGE2, an eicosanoid which can have potent

pro-inflammatory effects in the airways, and formate (r = 0.78),
acetone (r = 0.63), lactate (r = 0.64), n-butyrate (r = 0.82),
propionate (r = 0.59), and acetate (r = 0.71) suggesting that
these EBC metabolites might reflect respiratory inflammation.
These correlations are unlikely to be explained by individual
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TABLE 8 | Comparison between a multidimensional integrated model including breathomics and a model based on spirometry alone used for assessing the effects of

pharmacological treatment in 14 patients with COPD.

Comparison Spirometry-based model Multidimensional integrated model

AUC P-value* OR Sensitivity Specificity AUC P-value* OR Sensitivity Specificity

Visit 1 vs. Visit 2 0.689 P = 0.06 3.45 0.650 0.650 0.714 P = 0.12 3.90 0.664 0.664

Visit 1 vs. Visit 3 0.704 P = 0.07 3.54 0.653 0.653 0.704 P < 0.01 6.29 0.715 0.715

Visit 1 vs. Visit 4 0.561 P = 0.90 0.34 0.367 0.367 0.857 P < 0.01 22.2 0.825 0.825

Visit 2 vs. Visit 3 0.729 P = 0.03 6.36 0.716 0.716 0.571 P = 0.23 2.23 0.599 0.599

Visit 2 vs. Visit 4 0.648 P = 0.43 0.85 0.480 0.480 0.556 P = 0.12 2.21 0.598 0.598

Visit 3 vs. Visit 4 0.658 P = 0.11 3.16 0.640 0.640 0.760 P < 0.01 8.63 0.746 0.746

AUC, area under the curve; OR, odds ratio. *P-values have been obtained through 100-fold permutation tests and are referred to the AUC values.

variability in aerosol particle formation (Effros et al., 2003)
as there was no correlation between EBC 15-F2t-isoprostane
and EBC metabolites nor between EBC PGE2 and EBC 15-
F2t-isoprostane. For discussion on correlations see also online
Supplemenatry Material (Presentation 1).

Unlike a standard efficacy model based on spirometry,
the multidimensional model used in our study was able
to distinguish between pharmacological treatments (accuracy
> 70%) in 3 out of 6 possible paired comparisons. This
might increase the chance of detecting drug effects in COPD
patients. In line with an anti-inflammatory effect of ICS,
sputum concentrations of PGE2, the key between-treatment
discriminating outcome measure, were lower after treatment
with either ICS/LABA FDC compared with formoterol alone.
By contrast, other inflammatory outcomes, including sputum
neutrophil cell counts, EBC PGE2, and sputum and EBC 15-F2t-
isoprostane, showed steroid resistance.

Most of the EBC metabolites derive from pyruvate
(Airoldi et al., 2016). Many breath volatile and non-volatile
compounds are product of bacterial metabolism (Airoldi
et al., 2016). Moreover, breathomics techniques, including
e-noses and NMR spectroscopy, can be used for detecting
and identifying bacterial species (Lim et al., 2016; Palama
et al., 2016). For these reasons, exhaled breath analysis
has been proposed as a powerful tool to identify bacterial
metabolomic signatures (Airoldi et al., 2016). However,
our approach is not suitable for identifying the cellular
source(s) of EBC metabolites for which in vitro studies are
required.

Elevated EBC formate and acetate levels have been reported
in COPD patients compared with healthy subjects (De Laurentiis
et al., 2008, 2013). These findings have been confirmed in a
recent 1H-NMR spectroscopy study showing that EBC acetate
is 36-fold higher and EBC formate is 2.5 higher in patients
with emphysema due to α1-antitrypsin deficiency than in healthy
subjects. Interestingly, we found reduced EBC levels of acetate
and formate after 4-week beclomethasone/formoterol treatment.
These preliminary findings suggest a potential anti-inflammatory
mechanism of ICS involving a change in bacterial metabolism
which might have profound implications in how ICS reduce
the frequency of COPD exacerbations or increase the risk of
pneumonia.

Study strengths rely on the fact that this is the first
prospective evidence of the effects of pharmacological treatment
and steroid withdrawal on breathomics in COPD patients, the
multidimensional, non-invasive, approach to drug assessment
requiring a systems medicine-based data analysis, the use of
complementary breathomics techniques, and the completeness
of data collected. The limited number of study subjects, the
open-label, uncontrolled, design of the pharmacological study,
the short duration of treatment/withdrawal phases, the lack of
training and testing validation and external validation cohorts,
represent limitations which preclude definitive conclusions.

In conclusion, breathomics can be used for assessing the
effects of treatment and steroid withdrawal with ICS/LABA
in patients with COPD. The present pilot, proof-of-concept,
study provides a rational basis for large, randomized, controlled,
pharmacological trials in patients with COPD using a similar
multidimensional approach.
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