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The use of therapeutic peptides in various inflammatory diseases and autoimmune
disorders has received considerable attention; however, the identification of anti-
inflammatory peptides (AIPs) through wet-lab experimentation is expensive and often
time consuming. Therefore, the development of novel computational methods is
needed to identify potential AIP candidates prior to in vitro experimentation. In this
study, we proposed a random forest (RF)-based method for predicting AIPs, called
AIPpred (AIP predictor in primary amino acid sequences), which was trained with
354 optimal features. First, we systematically studied the contribution of individual
composition [amino acid-, dipeptide composition (DPC), amino acid index, chain-
transition-distribution, and physicochemical properties] in AIP prediction. Since the
performance of the DPC-based model is significantly better than that of other
composition-based models, we applied a feature selection protocol on this model and
identified the optimal features. AIPpred achieved an area under the curve (AUC) value of
0.801 in a 5-fold cross-validation test, which was ∼2% higher than that of the control
RF predictor trained with all DPC composition features, indicating the efficiency of the
feature selection protocol. Furthermore, we evaluated the performance of AIPpred on
an independent dataset, with results showing that our method outperformed an existing
method, as well as 3 different machine learning methods developed in this study, with
an AUC value of 0.814. These results indicated that AIPpred will be a useful tool for
predicting AIPs and might efficiently assist the development of AIP therapeutics and
biomedical research. AIPpred is freely accessible at www.thegleelab.org/AIPpred.

Keywords: AIPpred, anti-inflammatory peptides, random forest, hybrid features, parameter optimization

INTRODUCTION

Inflammatory responses are tightly controlled under normal conditions and are essential for
the initiation of protective immunity (Medzhitov, 2008; Basith et al., 2011b, 2012). When these
responses occur in the absence of infection or persist after their routine function, these processes
become pathological, resulting in chronic inflammation and autoimmune disorders, including
neurodegenerative disease, rheumatoid arthritis, asthma, psoriasis, diabetes, and multiple sclerosis
(Asadullah et al., 2002; Balague et al., 2009; Murdoch and Lloyd, 2010; Steinman et al., 2012;
Patterson et al., 2014). The current therapy for inflammatory and autoimmune disorders involves
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the use of non-specific anti-inflammatory drugs and other
immunosuppressants, which are often associated with potential
side effects, such as ineffectiveness against inflammatory
disorders and induction of a higher risk of infectious diseases
(Tabas and Glass, 2013).

Because peptide-based therapy has several advantages over
small molecules owing to their high specificity and minimal
toxicity under normal conditions, anti-inflammatory peptides
(AIPs) act as potent therapeutic agents for inflammatory and
autoimmune disorders (de la Fuente-Nunez et al., 2017; Wu
et al., 2017). For example, chronic nasal administration of
human amyloid-β peptide (40 amino acid residues) in an
Alzheimer’s disease mouse model resulted in reduced deposition
of amyloid-β, which is a pathological marker of Alzheimer’s
disease, microgliosis, astrocytosis, and neuritic dystrophy in
the brain (Weiner et al., 2000). Vasoactive intestinal peptide
reduces inflammation in rheumatoid arthritis by altering the
immune response to reduce cytokine production in CD4+ T cells
(Delgado et al., 2001). RDP58, a synthetic decapeptide, effectively
inhibits the production of inflammatory cytokines, such as tumor
necrosis factor-α, interferon (IFN)-γ, IL-2, and IL-12, as well as
the infiltration of inflammatory cells associated with urothelial
inflammatory response in an in vivo model of lipopolysaccharide-
induced cystitis (Boismenu et al., 2002; Gonzalez et al., 2005).
Furthermore, AIPs act as potent candidates for cancer prevention
and therapy because inflammation is closely linked to cancer
(Rayburn et al., 2009).

Although AIPs specifically bind to the receptor and activate
signaling cascades in cells, experimental identification and
development of novel AIPs represent extremely expensive and
often time-consuming processes. Therefore, the development of
sequence-based computational methods is necessary to allow the
rapid identification of potential AIP candidates prior to their
synthesis. It should be noted that the prediction methods prior to
synthesis would help a number of previous design studies (Geetha
et al., 2005; Grieco et al., 2005; Park et al., 2009). To this end,
Gupta et al. (2017b) developed a support vector machine (SVM)-
based method to predict AIPs using trinucleotide composition
and motif features. This represents the first and only method
available for AIP prediction, and although this method has
stimulated further development in this area, additional work is
needed for the following reasons: (i) with the steadily increasing
number of anti-inflammatory epitopes or peptides in the Immune
Epitope Database (IEDB), it is necessary to develop more accurate
prediction methods with a larger benchmark dataset. (ii) The
feature space used by the existing method is incomplete; hence,
additional potent features are needed to be characterized. Owing
to these deficiencies, other methods are necessitated to accurately
predict AIPs by taking advantage of machine learning (ML)
algorithms and informative feature extraction based on high-
quality benchmarking datasets.

In this study, we developed a random forest (RF)-based
method to predict AIPs, called AIPpred (AIP predictor from
primary amino acid sequences), in which optimal features
were selected using a feature selection protocol, which has
been implemented in addressing various biological problems
(Manavalan and Lee, 2017; Manavalan et al., 2017b, 2018). First,

we studied the contribution of individual composition [amino
acid composition (AAC), amino acid index (AAI), dipeptide
composition (DPC), chain-transition-composition (CTD),
and physicochemical properties (PCP)] in AIP prediction.
Since the DPC-based model significantly outperformed other
composition-based models, we applied a feature selection
protocol on DPC and identified the optimal features. In addition
to AIPpred, we also developed SVM, extremely randomized tree
(ERT), and k-nearest neighbors (k-NN)-based methods. It is to
be noted that, when objectively evaluated using an independent
dataset, AIPpred displayed superior performance compared
to the currently available method AntiInflam and 3 other ML
methods (ERT, SVM, and k-NN) developed in this study.

MATERIALS AND METHODS

For the development of our method, we followed the 5 guidelines
(Chou, 2011) mentioned in a series of recent publications (Chen
W. et al., 2016; Chen et al., 2017; Feng et al., 2017; Liu et al.,
2017) on new peptide-prediction methods that could be easily
accessed by both experimentalists and theoretical scientists:
(i) construct a valid benchmarking dataset to train and test
the prediction model; (ii) formulate the biological-sequence
samples with an effective mathematical expression truly reflecting
their intrinsic correlation with the target to be predicted; (iii)
introduce or develop a powerful algorithm (or engine) to operate
the prediction; (iv) properly perform cross-validation tests to
objectively evaluate the anticipated accuracy of the predictor;
and (v) establish a user-friendly web server for the predictor
that is accessible to the public. Below, we describe in detail the
application of each of these steps.

Dataset Construction
To build a classification model, a well curated dataset is
required. Hence, we extracted experimentally validated positive
and negative linear peptides or epitopes from the IEDB (Zhang
et al., 2008; Fleri et al., 2017). A peptide induced any one
of the anti-inflammatory cytokines [IL-10, IL-4, IL-13, IL-22,
TGFβ, and IFN-α/β] in T-cell assays of human and mouse
(Marie et al., 1996), was considered positive. Similarly, linear
peptides testing negative for anti-inflammatory cytokines were
considered negative. To generate a non-redundant (nr) dataset,
we eliminated redundant peptides using CD-HIT (Huang et al.,
2010) by applying a sequence identity threshold of 0.8, indicating
that sequence identity between any two sequences greater than
80% is discarded. Using a more stringent criterion, such as 30
or 40%, as imposed in (Gupta et al., 2013; Ding et al., 2014;
Chen X-X. et al., 2016), could improve the credible reliable of the
model. However, in this study we do not use such a stringent
criterion, because the currently available data does not allow it.
Otherwise, the number of samples for some subsets would be
insufficient for statistical significance.

Finally, we obtained an nr dataset of 1678 AIPs and 2,516
non-AIPs, whose size is ∼2-fold bigger than the dataset used
in the previous method (i.e., AntiInflam) (Gupta et al., 2017b).
From this nr dataset, 80% of the data was randomly selected

Frontiers in Pharmacology | www.frontiersin.org 2 March 2018 | Volume 9 | Article 276

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00276 March 26, 2018 Time: 17:34 # 3

Manavalan et al. Anti-inflammatory Peptide Prediction Using AIPred

as the benchmarking dataset (i.e., 1258 AIPs and 1,887 non-
AIPs) to develop a prediction model, whereas the remaining 20%
was considered the independent dataset (i.e., 420 AIPs and 629
non-AIPs).

Feature Extraction
We formulated the AIP-prediction task as a binary classification
problem (AIP or non-AIP) and solved it using RF, SVM, k-NN,
and ERT algorithms. An important aspect of this process involves
the extraction of a set of relevant features. Therefore, we used
AAC, AAI, DPC, PCP, and CTD, whose definitions are briefly
discussed in the following subsections.

Amino Acid Composition
AAC is defined as the fraction of each amino acid in the given
peptide sequence, and it was calculated using the following
equation (1).

AAC(i) =
Frequency of amino acid (i)

Length of the peptide
(1)

where i can be any one of the 20 natural amino acids. AAC has a
fixed length of 20 features.

Amino Acid Index
The AAIndex database contains amino acid indices of various
physicochemical and biochemical properties (Kawashima et al.,
2008). Saha et al. (2012) classified these amino acid indices into
eight clusters, and the central indices of each cluster were named
as high-quality amino acid indices: BLAM930101, BIOV880101,
MAXF760101, TSAJ990101, NAKH920108, CEDJ970104,
LIFS790101, and MIYS990104. We averaged eight high-quality
amino acid indices (i.e., a 20-dimensional vector) as an input
feature.

CTD
The CTD feature was introduced by Dubchak et al. (1995) for
predicting protein-folding classes. Thereafter, it was successfully
applied in various sequence-based classification algorithms (Cai
et al., 2003; Magnan et al., 2009; Wang et al., 2016; Hasan et al.,
2017). CTD represents the distribution of amino acid patterns
along the primary sequence, based on their physicochemical or
structural properties. There are seven physiochemical properties,
including hydrophobicity, polarizability, normalized van der
Waals volume, secondary structure, polarity, charge and solvent
accessibility.

All amino acids are divided into three groups: polar, neutral
and hydrophobic. C consists of three percentage composition
values for a given peptide: polar, neutral and hydrophobic. T
consists of the percentage frequency of a polar followed by
a neutral residue or of a neutral by a polar residue. It may
also consist of a polar, followed by a hydrophobic residue or
a hydrophobic followed by a polar residue. It may also consist
of a neutral, followed by a hydrophobic or a hydrophobic,
followed by a neutral residue. D consists of five values for
each of the three groups. It measures the chain length, within
which the first, 25, 50, 75, and 100 % of the amino acids of
a specific property are located. There are three descriptors and

3(C) + 3(T) + 5 × 3(D) = 21 descriptor values for a single
amino acid attribute. Consequently, seven different amino acid
attributes produce a total of 7× 21= 147 features.

Dipeptide Composition
DPC is defined as the total number of dipeptides normalized
against 400 possible dipeptides in the given peptide sequence and
was calculated using the following equation (2):

DPC (i)=
Total number of dipeptides (i)

Total number of all possible dipeptides′
(2)

where i can be any one of the 400 possible dipeptides. DPC has a
fixed length of 400 features.

Physicochemical Properties
Frequencies of the following features are directly computed from
the sequence consisting of: (1) hydrophobic (i.e., F, I, W, L, V,
M, Y, C, A); (2) hydrophilic (i.e., R, K, N, D, E, P); (3) neutral
(i.e., T, H, G, S, Q); (4) positively charged (i.e., K, H, R); (5)
negative-charged (i.e., D, E); (6) turn-forming residues fraction
(i.e., (N+G+ P+ S)/n, where n= sequence length); (7) absolute
charge per residue (i.e.,

∣∣R+K−D−E
n − 0.03

∣∣); (8) molecular weight
and (9) aliphatic index (i.e., ( A+2.9V+3.9I+3.9L)/n).

Machine Learning Methods
In general, the major advantage of the ML method is that it can
identify the hidden relationship between the input features and
the objective values in a complex dataset, which will be helpful for
accurate prediction (Cao et al., 2014, 2016a,b, 2017; Manavalan
et al., 2014, 2017a, 2010b; Cao and Cheng, 2016; Manavalan
and Lee, 2017). In this study, we used 4 different ML methods
(ERT, RF, k-NN and SVM) to develop their prediction models
using benchmarking datasets. The description of these methods
is provided as follows.

Random Forest
Breiman (2001) proposed RF as an ensemble technique to
perform predictions using 100s or 1000s of independent decision
trees. RF is one of the most popular ML methods and is used
as a computational approach to numerous biological problems.
Detailed descriptions of the RF algorithm have been provided in
earlier studies (Lee et al., 2013, 2015; Manavalan et al., 2014). In
the RF algorithm, the number of trees (ntree), variables randomly
chosen at each node split (mtry), and the minimum number of
samples required to split an internal node (nsplit) are the 3 most
influential parameters that require optimization. We optimized
these parameters using a grid search within the following ranges:
ntree from 50 to 1,000, with a step size of 20; mtry from 1 to 7,
with a step size of 1; and nsplit from 2 to 10, with a step size of 1.

Extremely Randomized Tree
Geurts et al. (2006) proposed ERT as an ensemble technique
utilizing hundreds of independent decision trees to perform
classification. Although the ERT algorithm is similar to that of RF,
the major differences are that ERT uses the entire training sample
instead of a bootstrap sample (RF) to construct a tree, and the
ERT splitting criterion is random, whereas RF uses information
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gain measured by the Gini impurity. Furthermore, the parameter-
optimization procedure is the same as that used for the RF
method.

Support Vector Machine and k-Nearest Neighbors
Descriptions of SVM and k-NN along with their optimization
procedures have been provided in earlier studies (Manavalan
et al., 2015, 2017a, 2010b; Manavalan and Lee, 2017). We followed
the same procedures in this study.

Evaluation Metrics
To compare the prediction methods, we used the following five
metrics: sensitivity, specificity, accuracy, Mathews’ correlation
coefficient (MCC), and the area under receiver operating
characteristics (ROC). All these metrics are commonly used in
the literature to measure the quality of binary classification (Porto
et al., 2017b). 

Sensitivity = TP
PS ,

Specificity= TN
NS ,

Accuracy= TP+TN
PS+NS ,

MCC =
1−
(

FN
PS +

FP
NS

)√(
1+ FP− FN

PS

)(
1+ FN− FP

NS

) ,
(3)

where TP, FN, TN, and FP respectively represent the number of
true positive, false negative, true negative and false positive. PS
and NS respectively represent the total number of sequences in
the positive set (AIPs) and negative set (non-AIPs).

AUC is the area under the ROC curve, representing the
relationship between TP rate and FP rate of the model. The AUC
is an indicator of the performance quality of the binary classifier.

Development of a Prediction Server
We developed an online prediction server using hypertext mark-
up language and JavaScript, with a Python script executed in
the background upon submission of peptide sequences in the
FASTA format. Users can submit single or multiple sequences
containing only standard amino acid residues in FASTA format.
The AIPpred web server outputs the predicted class along with
probability values for the given peptide sequence.

RESULTS

Compositional and Positional
Information Analysis
We performed compositional analysis using the combined
dataset (i.e., benchmarking and independent). AAC analysis
revealed that average composition of certain residues, including
Arg, Leu and Lys, were dominant in AIPs. However, Gly, Asp,
Val, Tyr and Pro were dominant in non-AIPs (Welch’s t-test;
P ≤ 0.05) (Figure 1A). Furthermore, DPC analysis revealed
that 19% of dipeptides differed significantly between AIPs and
non-AIPs (Welch’s t-test; P ≤ 0.05). Of these, the top-10 most
abundant dipeptides in AIPs and non-AIPs were LL, SL, LE,
LI, LS, LK, YL, IK, RI and KR, and DV, KG, DD, EF, GD, FD,
YP, TY, GH and HV, respectively (Figure 1B). These results

suggest that the most abundant dipeptides in AIPs consist
primarily of pairs of aliphatic-aliphatic, positively charged-
positively charged or -aliphatic, and hydroxyl group-aliphatic or
-aromatic amino acids. However, the most abundant dipeptides
in the non-AIPs were negatively charged-negatively charged
or -aliphatic, and positively charged-negatively charged amino
acids. Overall, significant differences observed in compositional
analysis could be incorporated into ML algorithms to improve
prediction performances. Hence, we considered them as input
features.

To understand the positional information of each residue,
a sequence logo of the first ten residues from the N- and the
C-terminal of AIPs and non-AIPs were generated using two
sample logos. To test their statistical significance, the height
of the peptide logos were scaled (t-test by P < 0.05). At the
N-terminal, we found that, compared to other amino acids, R,
at positions 4 and 5; L, at positions 1, 5, 7, 8, and 10; F, at
positions 4 and 8; and Y, at positions 4 and 6 were significantly
overrepresented. Alternatively, negatively charged residue D, at
positions 4, 8, and 10; and S/T, at positions 3, 6, and 7 were
significantly underrepresented (Figure 1C). No significant amino
acids were found at enriched position 9 or the depleted positions
2 and 9. C-terminal R/K, at positions 2 and 10; and L, at
positions 2, 5, 6, 7, and 8 were significantly overrepresented.
Alternatively, negatively charged residues D, at positions 3, 5, and
8 and G, at positions 4 and 5 were significantly underrepresented
(Figure 1D). No significant amino acids were found at enriched
position 1, 3, 4, and 9 or the depleted positions 1, 6, and 9.
These results suggest that comparatively residues, L and R/K,
are preferred in AIPs. This is consistent with the AAC analysis
observation. Furthermore, positional preference analysis will be
helpful for experimenters who design de novo AIPs and substitute
amino acids at particular positions to make the peptides more
effective.

The Overall Framework of the AIPpred
Approach
The overall framework of AIPpred is shown in Figure 2. It
consists of the following 4 stages: (1) construction of a nr
benchmarking dataset of 3,145 peptides (1,258 AIPs and 1,887
non-AIPs) and an independent dataset of 1,049 peptides (420
AIPs and 629 AIPs); (2) extraction of various features from
peptide sequences, including AAC, AAI, CTD, DPC, and PCP; (3)
systematic evaluation of individual composition and generation
of 35 different feature sets based on the feature importance scores
(FISs) computed using the RF algorithm. These different feature
sets were inputted to RF, and their respective prediction models
were built; and (4) selection of the best model.

Performances of RF Models Based on
Individual Composition
To test the effectiveness of individual composition in AIP
prediction, we inputted each composition separately to RF and
developed their corresponding prediction models, as well as a
model based on hybrid features (linear combination of individual
composition). The performance of these models is shown in
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FIGURE 1 | Compositional and positional preference analysis. (A) and (B) respectively represent the amino acid and dipeptide preferences between AIPs and
non-AIPs. (B) Significant differences in top-30 dipeptides are shown. (C,D) Represent positional conservation of ten residues at N- and C-terminal between AIPs and
non-AIPs, respectively, generated using two sample logos.

Figure 3. At a P-value threshold of 0.05, the DPC-based model
significantly outperformed 4 other individual (PCP, AAI, CTD,
and AAC) composition-based models and hybrid (H) models.
Hence, we considered only the DPC-based model for further
analysis. In the DPC-based model, all possible dipeptides are
not equally important for the trained model performance. The
inclusion of irrelevant dipeptides during training might reduce
model performance. Therefore, a feature selection paradigm
is essential to remove irrelevant dipeptides and consequently
improve the prediction performance.

Feature Selection Protocol
The feature selection protocol employed in this study is the
same as the one used in recent studies (Manavalan et al., 2017b;
Manavalan and Lee, 2017). First, we applied the RF algorithm
and estimated the FISs of 400 dipeptides in distinguishing AIPs
and non-AIPs. In short, all features were inputted to the RF, and
5-fold cross-validation was carried out using the benchmarking
dataset. For each round of cross-validation, we built 10,000
trees, and the number of variables at each node was chosen
randomly from 1 to 50. The average FISs from all the trees
are shown in Figure 4A and Supplementary Table S1, where
∼36% of the features (FIS ≥ 0.003) contributed significantly to
AIP prediction. Second, we excluded 9 features that have a low
FIS (less than 0.0005) and generated 35 different feature sets
based on FIS cut-off (0.0005 ≤ FIS ≤ 0.0039, with a step size of

0.0001) with the remaining 391 features. In general, the optimal
feature set lies in between a large number of features that contain
considerable irrelevant information and a small number of only
important features (describing a part of AIP properties). The
35 different feature sets generated have a feature size ranging
from 49 to 391. Basically, we eliminated less important features
in a step-wise manner. Finally, we inputted each set into the
RF algorithm and optimized ML parameters (mtry, ntree, and
nsplit) by 5-fold cross-validation on the benchmarking dataset.
To check the robustness of the model performance, we carried
out 5-fold cross-validation 10 times by randomly portioning the
benchmarking dataset and considering median ML parameters
and average performance measures. Finally, the performances
of 35 prediction models were compared, and the best model
that produced the highest area under the curve (AUC), whose
corresponding feature set was considered optimal, was selected.

Selection of the Optimal Model
Figure 4B shows the performances of the RF-based models in
terms of AUC using different feature sets, where a fluctuation
was found in the initial phase, peaking in an F354-based model
with an AUC of 0.801. Afterward, the AUC showed a stable
performance followed by downward trend with the decrease in
the number of features. Here, we selected the F354-based model
as the final one owing to its best performance and named it
AIPpred; its optimal ML parameters were ntree = 430, mtry = 1,
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FIGURE 2 | Overall framework of the proposed predictor. AIPpred development involved the following steps: (1) dataset curation, (2) feature extraction,
(3) generation of different feature sets and development of prediction models using RF algorithm, and (4) model selection.

and nsplit = 2. Interestingly, our feature selection protocol
excluded most of the Trp, Cys and Met containing dipeptides
and selected the remaining 354 dipeptides as optimal candidates
that covered all 20 amino acids (Supplementary Table S1), which
produced the best performance.

Due to the imbalanced dataset, the optimal probability cut-
off value of 0.36 was chosen via grid search for AIPpred
to define the class. To demonstrate the effect of our feature
selection protocol, we compared AIPpred with the control
(using all DPC features). Figure 4C shows that AIPpred MCC,
accuracy, and AUC were respectively 5, 2.5, and ∼4% higher
than those of the control. These results demonstrated that
the numerous redundant or uninformative features present
in the original feature set were eliminated through our
feature selection protocol, thereby significantly improving the
performance.

Comparison of AIPpred With Other ML
Algorithms
Generally, ML-based methods are problem specific (Dreiseitl
et al., 2001; Silva et al., 2011; Khondoker et al., 2016). Hence,
it is necessary to explore different ML methods on the same

dataset to select the best one instead of selecting a ML method
arbitrarily. In addition to RF, we also developed ERT-, k-NN-, and
SVM-based models using the same feature selection protocol and
benchmarking dataset. Each ML method has its own advantages
and disadvantages (Khan et al., 2010). A detailed description
of these 3 methods has been provided in our recent studies
(Manavalan and Lee, 2017; Manavalan et al., 2017b). Here, the
procedure of ML parameter optimization for these 3 methods,
final model selection, and optimal probability cut-off value
was the same as that for AIPpred. The overall performance
comparison of the RF method with the other 3 methods is
shown in Figure 5, where RF and ERT produced a similar
performance regardless of the feature set used, thus indicating
that ensemble-based algorithm is better suited for AIP prediction.
Interestingly, the final selected model for the 3 methods (SVM,
ERT, and k-NN) is better than that of their corresponding
control (using all dipeptide composition), again emphasizing
the efficiency of the feature selection protocol. We also checked
whether the final selected optimal model for these 3 methods is
better than other composition-based and hybrid models. Figure 6
shows that the optimal model significantly better than their
counterparts.
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FIGURE 3 | A graphical illustration to show the performance of various
composition-based RF models in terms of ROC curves obtained from the
5-fold cross-validation. A pairwise comparison of AUC between DPC and the
other composition-based model was computed using a two-tailed t-test
(Hanley and McNeil, 1982). A P ≤ 0.05 indicates a statistically meaningful
difference between DPC and the selected model (shown in bold).

Finally, we compared AIPpred performance with that of
the other 3 methods; the results are shown in Table 1, where
the methods are ranked according to the AUC associated
with predictive capability. The accuracy, AUC, and MCC of
AIPpred were higher than those of other methods by 0.5–9%,
0.6–11%, and 1–17%, respectively. Using a P-value threshold
of 0.05, AIPpred significantly outperformed SVM and k-NN,
and was better than ERT, thus indicating the superiority of
AIPpred. To check the transferability of AIPpred, we evaluated

an independent dataset and compared it with the state-of-
the-art method and 3 other ML methods developed in this
study.

Performance of Various Methods on an
Independent Dataset
We evaluated the performances of our 4 methods along
with that of the state-of-the-art method (AntiInflam) on an
independent dataset. Table 2 shows that AIPpred achieving
values of 0.479, 0.744 for MCC and accuracy, respectively. Indeed,
the corresponding metrics were ∼2–28% and ∼1–17%, higher
than those achieved by other methods, indicating superiority of
AIPpred.

Using a P-value threshold of 0.05, AIPpred significantly
outperformed SVM, k-NN and AntiInflam suggesting its
usefulness as an improvement to existing tools for predicting
AIPs. Interestingly, AIPpred performed consistently well, both
in training and on an independent dataset (Figure 7), suggesting
its ability to do well in unseen peptides when compared to other
ML-based models developed in this study.

Comparison of AIPpred With the
AntiInflam Method in Terms of
Methodology
A detailed comparison of the differences between AIPpred and
AntiInflam (Gupta et al., 2017b) in terms of methodology
resulted in the following findings: (i) larger size of the
benchmarking dataset used to develop AIPpred than AntiInflam.
(ii) AntiInflam uses an SVM-based algorithm, whereas we
explored 4 different ML-based algorithms, including SVM,
and reported that the RF-based method produced the best
performance, thus making AIPred the first application of
an RF-based method in AIP prediction. (iii) AntiInflam
uses hybrid features, whereas AIPpred uses optimal DPC
features identified by the feature selection protocol. (iv) AIPred
used a unique parameter-optimization procedure involving
10 independent 5-fold cross-validations to finalize the ML

FIGURE 4 | (A) The x- and y-axes represent each feature and its feature importance score (FIS), respectively. We applied a FIS cut-off of ≥0.0005 and selected 391
features (above the red line) as optimal feature candidates. (B) RF-based model performance in terms of AUC with respect to the different feature set. The final
selected optimal model is shown with an arrow. (C) A comparison between the optimal model and control.
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FIGURE 5 | Performance of 4 different ML-based classifiers. Performance of various classifiers in distinguishing between AIPs and non-AIPs. A total of 36 classifiers
(including the control) were evaluated using 10 independent 5-fold cross-validation techniques, and their average performances in terms of AUC is shown. The final
selected model for each ML-based method is shown with arrows.

FIGURE 6 | A graphical illustration to show the performance of various ML models in terms of ROC curves obtained from the 5-fold cross-validation. (A) ERT;
(B) SVM; and (C) k-NN.

parameters, whereas only one 10-fold cross-validation was
employed for AntiInflam.

The AIPpred Online Prediction Server
Prediction methodologies available on a web server are practically
beneficial to experimentalists, as well as to developers (Chen et al.,
2013, 2017; Chen W. et al., 2016; Liu et al., 2017). A few examples
of bioinformatics web servers that have been utilized for protein
function predictions are available in the literature (Govindaraj
et al., 2010, 2011; Manavalan et al., 2010a,b, 2011; Basith et al.,
2013, 2011a). We developed an online prediction server called
AIPpred.1 For checking the reproducibility of our findings, the
datasets used in this study can be downloaded from the AIPpred
web server.

1www.thegleelab.org/AIPpred

DISCUSSION

Identifying the peptides that induce anti-inflammatory cytokines
is one of the challenging task in the field of vaccine design. The
computational identification of AIP candidates is essential for
shortening the laborious experimental tasks. AIPs prediction is
more challenging than other peptide-based prediction methods,
including anticancer, antiviral and cell-penetrating peptides
(Thakur et al., 2012; Tang et al., 2016; Manavalan et al.,
2017a). All these methods were developed on smaller dataset
with negative examples taken from randomly chosen UniProt
peptides, which are not experimentally validated. However, we
have used experimentally verified AIPs and non-AIPs from IEDB,
whose size was ∼2-fold bigger than the dataset used in the state-
of-the-art method (Gupta et al., 2017b). In general, methods
developed using such experimentally verified larger dataset have
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TABLE 1 | A Comparison of AIPpred performance with other ML-based methods developed in this study using the same benchmarking dataset.

Method MCC Accuracy Sensitivity Specificity AUC P-value

AIPpred 0.460 0.734 0.758 0.711 0.801

ERT 0.451 0.730 0.734 0.726 0.795 0.615

SVM 0.311 0.656 0.642 0.675 0.701 <0.000001

k-NN 0.291 0.641 0.512 0.770 0.692 <0.000001

The first column represents the method developed in this study. The second, the third, the fourth, and the fifth respectively represent the MCC, accuracy, sensitivity, and
specificity. The sixth column and the seventh represent the area under curve (AUC) and pairwise comparison of AUC between AIPpred and the other ML-based methods
computed using a two-tailed t-test (Hanley and McNeil, 1982). A P ≤ 0.05 indicates a statistically meaningful difference between AIPpred and the selected method (shown
in bold).

TABLE 2 | Performance of various methods on independent dataset.

Method MCC Accuracy Sensitivity Specificity AUC P-value

AIPpred 0.479 0.744 0.741 0.746 0.814

ERT 0.463 0.736 0.731 0.740 0.804 0.621

AntiInflam (MA) 0.210 0.601 0.786 0.417 0.706 <0.000001

SVM 0.298 0.651 0.621 0.680 0.704 <0.000001

k-NN 0.296 0.640 0.479 0.801 0.699 <0.000001

AntiInflam (LA) 0.197 0.575 0.258 0.892 0.647 <0.000001

The first column represents the method employed in this study. The second, the third, the fourth, and the fifth respectively represent the MCC, accuracy, sensitivity, and
specificity. The sixth column and the seventh represent the AUC and pairwise comparison of AUC between AIPpred and the other methods computed using a two-tailed
t-test. A P ≤ 0.05 indicates a statistically meaningful difference between AIPpred and the selected method (shown in bold). In the first column, LA and MA respectively
correspond to less accurate and more accurate prediction method. We note that AntiInflam LA and MA classification accuracy was computed using default threshold
value of 0.5 and −0.3 (reported in Gupta et al., 2017b), respectively.

FIGURE 7 | Receiver operating characteristic curves of the various prediction models. (A) 5-fold cross-validation on a benchmarking dataset and (B) independent
dataset. Higher AUC values indicated better method performance.

a wide range of applications in modern biology (Porto et al.,
2017a).

We have made a systematic attempt to understand the
nature of anti-inflammatory inducing peptides and to develop
the prediction model. The construction of experimentally
validated nr dataset is the backbone of this study. We
analyzed these peptides to understand the compositional and
positional preferences of residues in AIPs, as shown in result
section, Leu, Lys and Arg is highly abundant in AIPs,

compared to non-AIPs. Previous studies showed that Leu-
Lys rich peptides play an important role in inducing anti-
inflammatory cytokines in periodontal disease (Shang et al.,
2014). Furthermore, determining the biological significance of
various dipeptides in anti-inflammatory induction, observed
in our study, requires further studies and experimental
validation.

We explored four different ML algorithms (RF, SVM, ERT,
and k-NN) and compositional features, including AAC, AAI,
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DPC, CTD, and PCP for discriminating AIPs and non-AIPs.
It is worth mentioning that all these ML algorithms and
five different compositions were used in various sequence-
based classification methods (Lata et al., 2007; Dhanda et al.,
2013; Gautam et al., 2015; Gupta et al., 2017a; Manavalan
et al., 2017a; Nagpal et al., 2017). Since DPC-based model
from the respective algorithm produced the best performance
among the different compositions, we applied a feature
selection protocol on dipeptide composition and selected more
important features that further improved the performance.
RF produced the best performance among the various
ML algorithms and named it AIPpred. Interestingly, our
systematic feature selection protocol excluded most of Trp,
Cys and Met containing dipeptides and selected the remaining
354 dipeptides as optimal candidates, thus indicating the
arrangement of particular local ordering dipeptides plays an
important role in AIPs/non-AIPs classification. Furthermore,
we demonstrated that AIPpred outperformed a state-of-the-
art method (AntiInflam) and 3 other methods (ERT, k-NN,
and SVM) developed in this study when it was objectively
evaluated on an independent dataset. Interestingly, AIPpred
performed consistently better in benchmarking and independent
datasets, suggesting its ability to predict AIPs of unseen
peptides.

The improved performance of AIPpred is mainly due
to the following reasons: (i) larger benchmarking dataset
utilized for the model development (ii) systematic evaluation
of individual composition and the selection of an appropriate
composition (i.e., DPC); and applying the feature selection
protocol on DPC to select the optimal feature set, which
further improves prediction performance; (iii) ML parameters
were obtained by a rigorous 5-fold cross-validation procedure.
Here, the 5-fold cross-validation procedure was repeated 10
times, with the random portioning of the benchmarking
dataset, whose median ML parameters were considered as the
final one; and (iv) the choice of ML method. Interestingly,
the current approach is a general one, which is applicable
to numerous other peptide-based classification problems.
Although AIPpred displayed a superior performance over other
methods, a pressing need exists for further improvements,
incorporating novel features, and exploring different feature
selection techniques, including ANOVA (Zhao et al., 2017),
F-score (Lin et al., 2017), and binomial distribution (Lai et al.,
2017).

CONCLUSION

The proposed predictor is quite promising in AIP prediction
and available as web server at www.thegleelab.org/AIPpred. Even
though AIPred represents the second publicly available method
for predicting AIPs, the delivery of higher accuracy is noteworthy.
Compared to experimental approaches, bioinformatics tools,
such as AIPpred represent a powerful and cost-effective approach
for proteome-wide prediction of AIPs. Therefore, AIPpred
might be useful for large-scale AIP prediction and facilitating
hypothesis-driven experimental design.
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