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Cancer is a major cause of death worldwide, with an increasing number of cases being

reported annually. The elevated rate of mortality necessitates a global challenge to

explore newer sources of anticancer drugs. Recent advancements in cancer treatment

involve the discovery and development of new and improved chemotherapeutics derived

from natural or synthetic sources. Natural sources offer the potential of finding new

structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent

a rich source of bioactive metabolites that can be manipulated to produce desirable

novel analogs for chemotherapy. This review offers a current and integrative account

of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and

vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and

their characterization, yield obtained, and fungal strain improvement strategies. It also

covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and

marine sources as potential anticancer agents and emphasizes the findings for cytotoxic

bioactive compounds tested against specific cancer cell lines.

Keywords: bioactive metabolites, anticancer agents, natural compounds, fungal alkaloids, taxol, podophyllotoxin,

camptothecin, vinca alkaloids

INTRODUCTION

Human health is at constant risk due to the occurrence of different types of cancers. Cancer
cells are characterized by the enormous replicative potential, apoptotic resistance, and invasive
ability. The dislodging of cancer cells from the primary site may lead to the formation of
cancer at the secondary site by a process of metastasis which eventually results in the death of
an individual. Cancer is a major cause of death globally. An estimated 1,688,780 new cancer
cases and 600,920 cancer-related deaths projected to occur in the US in 2017 (Siegel et al.,
2017). In 2013, 14.9 million cancer incidences, 8.2 million cancer-related deaths were reported
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(Global Burden of Disease Cancer, 2015). The frequency of
cancer-related mortality is increasing in developing countries at
an alarming rate. Therefore, several research groups have been
actively involved in the development of novel anticancer drugs
throughout the globe. It is estimated that the total cost for the
development of a new drug is ∼$2.6 billion. The global annual
expenditure on anticancer drugs is∼$100 billion and is estimated
to increase to $150 billion by 2020 (Prasad et al., 2017). Many
available anticancer drugs exhibit toxicity to proliferating normal
cells, possess adverse effects, and are less effective against several
types of cancer, which results in a need for bioactive compounds
from natural products (Remesh, 2017).

Scientists have begun to comprehend that plants may be
reservoirs for an infinite number of microorganisms, commonly
referred as endophytes (Schulz et al., 2002; Strobel et al., 2004).
Endophytes inhabit at internal plant tissue in a symbiotic
association and can spend most of their life cycle within host
plants. Approximately onemillion endophytic species are present
in the plant kingdom (Fouda et al., 2015). It is noteworthy
to mention that, a small number of endophytic fungi were
reported to produce plant growth stimulating hormones such
as gibberellic acid and indole acetic acid (Rai et al., 2014).
Metabolites produced by endophytes can be influenced by the
chemistry of their host plants (Kusari et al., 2012). During the
period of co-evolution, some of the endophytes have developed
the ability to produce biologically active compounds that are
similar or identical to their host plants (Zhao et al., 2011;
Jia et al., 2016). Several studies have indicated the possible
likelihood of medicinal plants that host endophytic fungi capable
of producing pharmacologically important natural products.
It is reasonable to postulate that the medicinal properties
of these plants could be due to the endophytes residing
within them. This has led to an investigation of beneficial
compounds related to plant-endophyte interactions (Hardoim
et al., 2008). The interaction between plants and endophytes
is regulated by genes of both the organisms and controlled
by the environmental factors (Moricca and Ragazzi, 2008).
In other words, the endophyte may encounter metabolically
unfavorable condition due to host defense chemicals (Schulz
et al., 1999; Easton et al., 2009). The plant and endophyte
association may also modulate the production of secondary
metabolites in the host plant. The secondary metabolites isolated
from endophytes displayed a broad spectrum of pharmacological
properties including anticancer, antiviral, antibacterial, and
antifungal activity (Jalgaonwala et al., 2017). In the subsequent
sections, we discuss about the anticancer compounds extracted
from endophytic fungus from diverse habitats.

NATURAL PRODUCTS AS SOURCES OF
NOVEL ANTICANCER COMPOUNDS

Natural products obtained from endophytic fungi have been
identified as continuing and prolific sources of anticancer agents
that could have a profound impact on modern medicine for the
advancement of anticancer drugs (Schulz et al., 2002; Newman
and Cragg, 2007). In the modern era, the discovery of potent

medicines with minimal side effects acts as an alternative to
conventionally used methods of disease control and treatment
(Kusari et al., 2009b; Kusari and Spiteller, 2012). In 2000, it was
estimated that ∼57% of compounds in clinical trials for cancer
therapy are natural products and their derivatives (Demain and
Vaishnav, 2011). Early reports suggest that natural bioactive
compounds isolated from endophytes may serve as alternate
sources for the discovery of new anticancer drugs (Joseph and
Priya, 2011; Alvin et al., 2014; Xie and Zhou, 2017).

Most of the reports dealing with the cytotoxicity ofmetabolites
from endophytic fungi utilize antiproliferative assays in the
cancer cell lines and high-throughput screening that essentially
allows the evaluation of several compounds together for their
potential anticancer activity (Aly et al., 2008; Lei et al., 2013).
Isolation of natural bioactive compounds and screening them for
the pharmacological properties offer a route for the discovery
of drug candidates (Salvador-Reyes and Luesch, 2015). Several
endophytic fungal strains have been identified and reported
to produce new compounds that are effective in anticancer
assays (Stierle and Stierle, 2015). Taxol, vincristine, etoposide,
irinotecan, topotecan, and vinblastine are some of that plant-
derived anticancer drugs that are in clinical use for the treatment
of several human cancers (Balunas and Kinghorn, 2005). The
review describes the isolation of some of these compounds from
endophytes and reports their cytotoxic effect in various cell lines.

CLINICALLY USED ANTICANCER DRUGS
AND THEIR PRECURSORS FROM
ENDOPHYTIC FUNGI

Although several natural compounds have been shown to
possess good pharmacological and anticancer activities, they
often face many challenges. The major challenges in developing
natural compounds as drug candidates are identification of
the right source; difficulty in extraction due to the excessive
degradation by metabolic enzymes; low abundance of active
principles; hindrance in large-scale production because of steric
complexity high chiral centers, hydrogen bond donors/acceptors,
bulky compounds, and diverse aromaticity (Singh et al., 2016).
Identification of the good source of natural compounds can
be achieved by random selection, folklore, codified systems
of medicine, ethnopharmacology, ayurvedic classical texts, or
zoopharmacognosy (Singh et al., 2016). Often, plant-derived
bioactive natural compounds are of low abundance. For an
instance, the total taxol content of the bark of Taxus baccata
tree ranges between 0.064 to 8.032 g/tree, and it was also
reported that a tree aged about 100 years can produce the
dry bark yield of 5.74 kg (Nadeem et al., 2002). Therefore, it
is essential to develop alternative strategies for the production
of bioactive compounds using tissue culture, synthetic/semi-
synthetic approaches, biotransformation, and use of microbes
that can produce desired products in large scale. This review
presents bioactive compounds isolated from plant-associated
fungal strains obtained from terrestrial, mangrove, and marine
habitats, which are capable of inducing cytotoxicity/apoptosis in
cancer cells and thereby possess efficient anticancer activity.
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Taxol
Taxol (1) is the world’s first billion-dollar anticancer drug
and it is a highly functionalized polycyclic diterpenoid that
belongs to a class of taxanes. In 1962, researchers from National
Cancer Institute supported project, collected inner bark (phloem-
cambial tissue) of the Pacific yew tree (Taxus brevifolia) and
analyzed for the presence of natural bioactive compounds. Initial
screening of crude extract on cancer cells revealed good cytotoxic
activity. It took several years to identify and isolate paclitaxel
(trade name is taxol) in its pure form from the extract. Thereafter,
paclitaxel was identified as a potent antitumor agent and made
its way into clinical trials. One of the biggest hurdles faced
during the initial days of taxol production is the requirement
of six yew trees of 100 years old to treat one cancer patient
(Demain and Vaishnav, 2011). In other words, 0.01 to 0.03%
is the taxol content in dry weight of phloem of the yew tree.
The constraints in the availability, isolation, and synthesis of
taxol made the researchers to think of alternate sources for its
production. The efforts resulted in the isolation of 10-deacetyl-
baccatin III (2) (a precursor for the synthesis of taxol) from
T. baccata (European yew). The tree is abundant and bears high
amount of 10-deacetyl-baccatin III in its needles and nowadays it
is used as a precursor for the synthesis of taxol by semi-synthetic
approach (Tulp and Bohlin, 2002). Eventually, FDA approved
taxol for the treatment of several types of tumors including
breast, ovary, and Kaposi’s sarcoma. It is also claimed that taxol
is the best-selling cancer drug ever manufactured (Gordon, 2011)
with a market size of $1.6 billion in 2005 and its structural analog,
docetaxel presented the sales of $3 billion in 2009 (Demain and
Vaishnav, 2011). The efficacy and increased demand for taxol
resulted in developing biotechnological approaches to prepare
the drug (Kusari et al., 2014). In the present day, taxol is produced
by semisynthetic approaches using 10-deacetyl-baccatin III, plant
cell culture, and endophytic fungi. In a breakthrough, the
T. brevifolia associated endophytic fungus Taxomyces andreanae
was reported to produce taxol and related compounds (Stierle
et al., 1993). This extraordinary feat led to the discovery of
several new taxol-producing endophytic fungi from different
host plants (Strobel et al., 1996; Strobel, 2003; Zaiyou et al.,
2015). The production of paclitaxel was also identified in an
angiosperm named Corylus avellena L which belongs to the
family Betulaceae (Qaderi et al., 2012). In the next section, we
have comprehensively discussed the mode of action of taxol
in cancer cells, its endophytic fungal sources and cytotoxic
ability.

Mode of Action
Paclitaxel represents a new class of antineoplastic agents and
has a unique mode of action. It promotes and stabilizes
the polymerization of microtubules and resists their
depolymerization. In the presence of taxol, polymerized
microtubule is resistant to depolymerization by cold (4◦C) and
calcium chloride (4mM) (Manfredi et al., 1982). This unusual
stability of microtubules interfere with the mitotic spindle
assembly, chromosome segregation which leads to mitotic arrest
and eventually cell death (Schiff et al., 1979; Horwitz et al., 1986;
Weaver, 2014).

Endophytic Fungi as Producers of Taxol
Several research groups have been focusing on the search for
new sources of paclitaxel. Several Taxus species, such as Taxus
baccata, Taxus chinensis, Taxus cuspidata, Taxus x media, Taxus
floridana, Taxus canadensis, Taxus yunnanensis, Taxus mairei,
Taxus sumatrana, and Taxus wallichiana, have been reported
to produce taxol, albeit with significant variation in the taxane
content within and among the different species (Tabata, 2006).
Non-Taxus species, such as Cardiospermum halicacabum, Citrus
medica, Cupressus sp., Ginkgo biloba, Hibiscus rosa-sinensis,
Taxodium distichum, Podocarpus sp., Torreya grandifolia,
Terminalia arjuna, and Wollemia nobilis, are also taxol
producers (Flores-Bustamante et al., 2010). As discussed earlier,
low taxol yields in the plants prompted researchers to discover
alternate ways of taxol production which led to the identification
of endophytic fungi as sources of taxol (Heinig and Jennewein,
2009). The discovery of taxol-producing endophytes from both
Taxus and non-Taxus plants led to screening of array of plants for
the identification of endophytes with taxol-producing abilities.
Endophytic fungi belonging to the genera Alternaria, Aspergillus,
Botryodiplodia, Botrytis, Cladosporium, Ectostroma, Fusarium,
Metarhizium, Monochaetia, Mucor, Ozonium, Papulaspora,
Periconia, Pestalotia, Pestalotiopsis, Phyllosticta, Pithomyces, and
Taxomyces have been tested and reported for the production of
paclitaxel and its analogs (Table 1).

Paclitaxel production from endophytes is reported often
in submerged culture (Wang et al., 2001; Zaiyou et al., 2017).
Paclitaxel in the fungal extract can be detected by various
analytical (Thin layer chromatography, High-performance
liquid chromatography), spectroscopic (Matrix-assisted laser
desorption/ionization—Time of flight [MALDI-TOF], Nuclear
magnetic resonance [NMR], Fast atom bombardment [FAB],
Electron spray ionization [ESI]), and immunological techniques
(using monoclonal antibodies specific for paclitaxel) (Flores-
Bustamante et al., 2010). Polymerase chain reaction-based
methods can be used for the screening and identification of
taxol-producing fungi. Previous studies have revealed that
presence of genes encoding for the enzymes taxadiene synthase,
10-deacetylbaccatin III-10-O-acetyltransferase, and baccatin
III 13-O-(3-amino-3-phenylpropanoyl) transferase could serve
as molecular markers for the identification of fungi with
taxol-producing abilities (Zhang et al., 2008; Vasundhara et al.,
2016). Most taxol production has been reported using a liquid
media such as potato dextrose broth (PDB), modified liquid
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TABLE 1 | List of taxol-producing endophytic fungi and their host plants.

Sl No Endophytic fungus Host plant Taxol yield (µg/L) References

1 Taxomyces andreanae Taxus brevifolia 0.024–0.05 Stierle et al., 1993

2 Pestalotiopsis microspora Taxus walachiana 60–70 Strobel et al., 1996

3 Pestalotiopsis microspora Taxodium distichurn 0.014–1.487 Li, 1996

4 Pestalotiopsis sp. Wollemia nobilis 0.127–0.485 Strobel et al., 1997

5 Periconia sp. Torreya grandifolia 0.030–0.831 Li, 1998

6 Tubercularia sp. Taxus mairei – Wang et al., 2000

7 Nodulisporium sylviforme Taxus cuspidata 51.06–125.7 Zhou et al., 2001

8 Papulaspora sp. Taxus chinensis var. mairei 10.25 Hu et al., 2006

9 Botrytis sp. Taxus chinensis var. mairei 161.24 Hu et al., 2006

10 Fusarium maire Taxus mairei 225.2 Xu et al., 2006

11 Ozonium sp. Taxus chinensis var. mairei 4–18 Guo et al., 2006

12 Botryodiplodia theobromae Taxus baccata 280.5 Venkatachalam et al., 2008

13 Pestalotiopsis pauciseta Cardiospermum helicacabum 113.3 Gangadevi et al., 2008

14 Colletotrichum gleospoiroides Justicia gendarussa 163.4 Gangadevi and Muthumary, 2008a

15 Bartalinia robillardoides Tassi Aegle marmelos Correa ex Roxb 187.6 Gangadevi and Muthumary, 2008b

16 Phyllosticta citricarpa Citrus medica 137–265 Kumaran et al., 2008b

17 Phyllosticta spinarum Cupressus sp. 125–235 Senthil Kumaran et al., 2008

18 Phyllosticta melochiae Yates Melochia Corchorifolia L. 274 Kumaran et al., 2008a

19 Fusarium solani Taxus celebica 1.6 Chakravarthi et al., 2008

20 Fusarium arthrosporioides Taxus cuspidata 131 Li et al., 2008

21 Fusarium solani Taxus chinensis 163.35 Deng et al., 2008

22 Aspergillus fumigatus Podocarpus sp. 560 Sun et al., 2008

23 Aspergillus niger var. taxi Taxus cuspidata 273.46 Zhao et al., 2009

24 Phomopsis sp. BKH 27 Taxus cuspidata 418 Kumaran and Hur, 2009

25 Phomopsis sp. BKH 30 Gingko biloba 372 Kumaran and Hur, 2009

26

27

Phomopsis sp. BKH 35 Larix leptolepis 334 Kumaran and Hur, 2009

28 Phyllosticta dioscoreae Hibiscus rosa-sinensis 298 Kumaran et al., 2009

30 Chaetomella raphigera Terminalia arjuna 79.6 Gangadevi and Muthumary, 2009a

31 Pestalotiopsis terminaliae Terminalia arjuna 211.1 Gangadevi and Muthumary, 2009b

32 Cladosporium cladosporioides MD2 Taxus media 800 Zhang P. et al., 2009

33 Metarhizium anisopliae Taxus chinensis 846.1 Liu K. et al., 2009

34 Colletotrichum gloeosporioides Plumeria acutifolia 57.54 Nithya and Muthumary, 2009

35 Paraconiothyrium sp. Taxus media 40 Soliman et al., 2011

36 Lasiodiplodia theobromae Morinda citrifolia 245 Pandi et al., 2011

37 Fusarium oxysporum Rhizophora annamalayana 172.3 Elavarasi et al., 2012

38 Phoma betae Ginkgo biloba 795 Kumaran et al., 2012

39 Fusarium solani Tylophora indica 157.38 Merlin et al., 2012

40 Chaetomium sp. Michelia champaca L. 77.23 Rebecca et al., 2012

41 Fusarium redolens Taxus baccata L. subsp. wallichiana 66 Garyali et al., 2013

42 Penicillium aurantiogriseum NRRL 62431 Corylus avellana 70–350 Yang et al., 2014

43 Cladosporium oxysporum Moringa oleifera 550 Elavarasi et al., 2012; Gokul Raj et al., 2015

44 Phoma sp. Calotropis gigantea 152.26 Hemamalini et al., 2015

45 Paraconiothyrium variabile Taxus baccata 14.7 Somjaipeng et al., 2016

46 Phoma medicaginis Taxus wallichiana var. mairei 1215 Zaiyou et al., 2017

47 Aspergillus aculeatinus Tax-6 Taxus chinensis var. mairei 334.92–1337.56 Qiao et al., 2017

48 Cladosporium sp Taxus baccata 152.5 mg/Kg dry weight Kasaei et al., 2017

medium (MlD), and S7. However, the highest taxol yield of 846.1
µg/L was reported from the endophytic fungus, Metarhizium
anisopliae of T. chinensis (Liu K. et al., 2009). The endophyte

Cladosporium cladosporioides from Taxus media was also shown
to produce 800 µg/L of taxol (Zhang P. et al., 2009). Sun et al.
isolated 155 endophytic fungi from the tissue of Podocarpus and

Frontiers in Pharmacology | www.frontiersin.org 4 April 2018 | Volume 9 | Article 309

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Uzma et al. Anticancer Compounds From Endophytic Fungi

identified strain A2 as a taxol producer. Subsequently, A2 was
classified as Aspergillus fumigates and the taxol yield obtained
was 0.56 mg/L when grown in liquid potato dextrose medium.
The isolated taxol inhibited the growth of Vero cells as similar
to commercially available taxol (Sun et al., 2008). In another
report, 34 endophytic fungi were isolated from the medicinal
plant Salacia oblonga at Kigga village, Karnataka, India, and
screened for their potential to produce taxol or taxanes. The
authors used genomic mining approach to identify the taxol-
producing fungus. Among the isolates, seven fungi were found
to possess 10-deacetylbaccatin III-10-O-acetyltransferase gene
and one revealed the presence of C-13 phenylpropanoid side
chain-CoA acyltransferase gene (Roopa et al., 2015). Recently,
18 fungal isolates were screened for their ability to produce
taxol. Cladosporium oxysporum isolated from Moringa oleifera
was identified as taxol producing fungus and the taxol yield
was found to be 550 µg/L. The fungal taxol suppressed the
growth of HCT15 with an IC50 value of 3.5µM. The presence
of gene encoding 10-deacetylbaccatin III-10-O-acetyltransferase
confirmed the ability of an endophyte to produce taxol (Gokul
Raj et al., 2015). Zaiyou et al. isolated 528 fungal strains from the
bark of T. wallichiana var. mairei and only one strain was found
to produce paclitaxel. The fungal strain was identified as Phoma
medicaginis. The amount of paclitaxel produced when grown in
whole potato dextrose broth culture, spent culture medium and
dry mycelium was found to be 1.215, 0.936 mg/L, and 20 mg/kg,
respectively (Zaiyou et al., 2017).

Cytotoxic Ability of Taxol and Its Precursors
Several cytotoxicity tests have been performed to determine
the anticancer abilities of taxol and its precursors. One
such interesting investigation highlighted that baccatin III
(biosynthetic precursor of taxol) functions via a similar
mechanism to taxol. Taxol and baccatin III were extracted from
Fusarium solani and tested against HeLa, HepG2, Jurkat-JR4,
OVCAR-3, T47D, Jurkat-JR16, and caspase-8-deficient Jurkat
cells. Both compounds were able to inhibit cell proliferation of
the above-mentioned tumor-derived cell lines with IC50 values
between 0.005 to 0.2µM for taxol and 2 to 5µM for baccatin
III. These results indicate that although taxol induces apoptosis
in the tested cells, there were difference in sensitivity between
the tumor cells toward fungal taxol and baccatin III treatment.
Among these two compounds, the potent inducer of apoptosis is
debatable; because baccatin III is the more active molecule inside
the cells during the growth period and is less active than taxol
in vitro studies. Conversely, taxol has benefit over baccatin III
in cellular uptake, microtubule binding kinetics and interaction
with other proteins (Chakravarthi et al., 2013). The endophyte
Diaporthe phaseolorum isolated from T. wallichiana var. mairei
synthesizes baccatin III. The baccatin III content in PDB and
spent culture medium was found to be 0.219 and 0.193 mg/L,
respectively (Zaiyou et al., 2013). A detailed description of the
taxoid biosynthesis pathway is the solution to improve the supply
of taxol and other important taxoids. Several genes and enzymes
of the Taxus pathway for the taxoid biosynthesis have now
been established (Heinig and Jennewein, 2009). Future studies
should focus on the isolation and identification of endophytes

that are capable of producing a high amount of taxol, as well as
optimization of the production conditions.

Podophyllotoxin
Podophyllotoxin (3), an aryl tetralin lignan derived from both
gymnosperms and angiosperms, has also been investigated
as an anticancer drug (Majumder and Jha, 2009); It is
widely distributed in the genera Diphylleia, Dysosma, Juniperus,
and Sinopodophyllum (also called Podophyllum) (Li et al.,
2013). Podophyllotoxin and its analogs are pharmacologically
important due to their cytotoxic and antiviral activities
(Gordaliza et al., 1994, 2000; Abd-Elsalam and Hashim, 2013).
At present, one of the major natural sources of podophyllotoxin
is Sinopodophyllum plants. Etoposide (4) and teniposide (5) are
the semisynthetic derivatives of podophyllotoxin approved for
the treatment of cancer of lungs and testicles, other solid tumors
and a variety of leukemias (Kusari et al., 2009a). Etoposide
was developed as an alternative to podophyllotoxin in 1966
and received FDA approval in 1983. Subsequently, enzyme-
assisted asymmetric synthesis of (–)-podophyllotoxin and its C2-
epimer, (–)-picropodophyllin was described (Berkowitz et al.,
2000). However, they are not economically feasible due to
the low yield (Chandra, 2012). The supply of podophyllotoxin
derivatives from traditional sources is limited due to their low
abundance in the plants. A large amount of effort in the past
several years has focused on improving production from different
podophyllotoxin-producing plant species. Various alternative
strategies have been implemented to enhance the production of
podophyllotoxin-related compounds. Plant tissue culture is one
of the alternate, reliable, and sustainable strategies to produce
natural compounds of the plant origin (Ochoa-Villarreal et al.,
2016).

Mode of Action
Etoposide and teniposide were reported to induce excellent
antitumor activity in various cancer models. Their antitumor
potential is due to their interaction with the enzyme
topoisomerase II (Botta et al., 2001; Cortés and Pastor,
2003). Topoisomerase inhibitors impart their action by two
mechanisms—either by eliminating the catalytic activity of
topoisomerase II or by increasing the levels of topoisomerase
II:DNA covalent complexes (often designated as topoisomerase
II poisons) (Nitiss, 2009). Etoposide does not induce cytotoxicity
by blocking the catalytic activity of topoisomerase II, but they
poison mammalian topoisomerase II by dramatically increasing
the covalent DNA cleavage complexes leading to the permanent
double-stranded breaks. The increase in enzyme-associated
DNA breaks serve as targets for genetic alterations such
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as recombination, exchange of sister chromatid, insertions,
deletions, and translocation (Froelich-Ammon and Osheroff,
1995). The accumulation of permanent DNA breaks induces a
series of events and drive the cell to death. During this process,
topoisomerases serve as a physiological toxins (Van Maanen
et al., 1988; Kaufmann, 1989; Hande, 1998; Pendleton et al.,
2014).

Podophyllotoxins From Endophytic Fungi
The two strains of Phialocephala fortinii were isolated from
the rhizomes of Podophyllum peltatum which produced
podophyllotoxin and the yield ranged between 0.5 and 189
µg/L. The fungal extract was evaluated for cytotoxicity using
brine shrimp lethality assay and the LD50 values were in the
range of 2–3µg/mL (Eyberger et al., 2006). Similarly, Fusarium
oxysporum, an endophytic fungus isolated from Juniperus
recurva in Gulmarg region of South Kashmir, India. The
fungus was found to produce podophyllotoxin and the yield
was found to be 28µg/g of dry mass (Kour et al., 2008). In
another study, the endophytic fungus Trametes hirsute was
isolated from the dried rhizomes of Podophyllum hexandrum
which produced podophyllotoxin, podophyllotoxin glycoside
and demethoxypodophyllotoxin. The isolated metabolites
exhibited cytotoxicity in U-87 cell line (Puri et al., 2006). In
another study, Aspergillus fumigatus Fresenius was isolated from
Juniperus communis L. Horstmann collected from botanical
gardens of Rombergpark, Dortmund, Germany. The fungus
was found to produce deoxypodophyllotoxin and maximum
yield of 100µg/g of dry weight of mycelia was observed (Kusari
et al., 2009a). In the next study, six fungi were collected from
the rhizomes of Sinopodophyllum hexandrum (Royle) Ying
plants at Taibai Mountains of China. Among the fungi, Mucor
fragilis Fresen. produced podophyllotoxin and kaempferol. The
podophyllotoxin yield was found to be 49.3µg/g of mycelial dry
weight (Huang et al., 2014). Recently, first report was published
on production of podophyllotoxin from endophyte Alternaria
tenuissima. The fungal endophyte was isolated from fresh roots
of Sinopodophyllum emodi (Wall.) Ying at Xinglong Mountains,
Gansu Province, China. The secondary metabolite analysis
revealed the presence of podophyllotoxin in the fungal biomass
(Liang et al., 2016). The list of podophyllotoxin producing
endophytic fungi and their host plants has been tabulated and
presented as Table 2.

Camptothecin
Camptothecin (6), an anticancer drug that was first isolated
from the bark of the Camptotheca acuminata. It is a
pentacyclic pyrroloquinoline alkaloid and a parent compound
for clinically used anticancer drugs such as irinotecan and
topotecan. It is present in nature in 20-S-camptothecin form and

20-R-camptothecin enantiomer form is biologically inactive.
Camptothecin is produced mainly by C. acuminata and
Nothapodytes foetida. In National Cancer Institute screening
studies, anticancer activity of wood extract of the C. acuminata
was identified in 1958. In 1968, Wani and Wall isolated the
cytotoxic agent from the extract of C. acuminata and identified
the alkaloid as camptothecin (Takimoto, 2002). The purified
compound exhibited good cytotoxic activity against several types
of tumors. Conversely, clinical development of camptothecin was
hampered in clinical trials due to poor water solubility and severe
gastrointestinal toxicities (Takimoto, 2002). Eventually, water
soluble and biologically active novel camptothecin derivatives
were synthesized (Miyasaka et al., 1986). After four decades
from the identification of antitumor activity of C. acuminata
extract, two camptothecins, topotecan (7) and irinotecan (8)

were approved by FDA for the treatment of colorectal cancer,
small-cell lung cancer, and ovarian cancer (Blagosklonny, 2004).
Meanwhile, camptothecin was identified to target topoisomerase-
I in cells to impart its anticancer activity. Several camptothecin
derivatives such as IDEC-132 (9-aminocamptothecin), rubitecan
(9-nitrocamptothecin), and 10,11-methylenedioxy camptothecin
have been identified as good anticancer agents (Ulukan and
Swaan, 2002). In the next subsequent sections, we have discussed
about the mechanism of action of camptothecin and endophytic
fungi as its source.

Mode of Action
At the initial days, it was believed that camptothecins induce
cytotoxicity in cancer cells by inhibitingDNA and RNA synthesis.
In the late 1980s, topoisomerase I was identified as the cellular
target of camptothecin. Topoisomerase-I is involved in the
relaxation of DNA supercoiling that is generated as a result of
replication. Topoisomerase-I creates a nick in the single strand of
DNA to release supercoiling. In parallel, topoisomerase-I forms
an ester linkage with the 3’ end of nicked DNA through its
catalytic tyrosine to form topoisomerase-I cleavage complexes.
Immediately 5’hydroxyl group of the nicked DNA strand
nucleophilically attacks the tyrosyl-DNA-phosphodiester bond to
bring the DNA to normal topology. In general, topoisomerase-
I cleavage complexes are short-lived intermediates and hard
to detect in the cellular environment (Pommier, 2006).
Camptothecin and its derivatives interact with topoisomerase-
I cleavage complexes and stabilize them. This results in the
initiation of series of apoptotic events, finally leading to cell
death. Studies using mutant yeasts (Saccharomyces cerevisiae
and Schizosaccharomyces pombe) that lacks topoisomerase I
activity were completely resistant to camptothecin indicating
the absence of off-targets (Eng et al., 1988). It is now clearly
demonstrated that the antitumor activity of camptothecin is due
to its ability to inhibit DNA topoisomerase- I, which is involved
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TABLE 2 | List of podophyllotoxin producing endophytic fungi and their host plants.

Sl No Endophytic fungus Host plant Podophyllotoxin yield (µg/L) References

1 Alternaria sp. Podophyllum hexandrum – Chandra, 2012

2 Phialocephala fortinii Podophyllum peltatum 0.5–189 Eyberger et al., 2006

3 Trametes hirsute Podophyllum hexandrum 30µg/g dry weight of mycelia Puri et al., 2006

4 Alternaria neesex Ty Sinopodophyllum hexandrum 2.418 Cao et al., 2007

5 Fusarium oxysporum Juniperus recurva 28µg/g dry weight of mycelia Kour et al., 2008

6 Alternaria sp. Sabina vulgaris – Zhao et al., 2010b

7 Alternaria sp. Podophyllum hexandrum – Zhao et al., 2010b

8 Monilia sp. Dysosma veitchii – Zhao et al., 2010b

9 Penicillium sp. Podophyllum hexandrum – Zhao et al., 2010b

10 Penicillium sp. Diphylleia sinensis – Zhao et al., 2010b

11 Fusarium solani Podophyllum hexandrum 29µg/g dry weight of mycelia Nadeem et al., 2012

12 Alternaria tenuissima Sinopodophyllum emodi (Wall.) Ying Chloroform extract: 50.5mg; Butanol

extract: 348mg; Methanol extract of the

mycelia: 1139.9mg

Liang et al., 2016

13 Chaetomium globosum Sinopodophyllum hexandrum – Wang et al., 2017

Pseudallescheria sp.

in the swiveling and relaxation of DNA during replication and
transcription.

Camptothecin From Endophytic Fungi
Camptothecin obtained from plant sources does not meet the
requirement from the global market and consistent attempts
have been underway to identify novel sources of camptothecin.
Entrophospora infrequens is the endophytic fungus isolated from
the inner bark of N. foetida in Konkan ghats, West coast of
India. The yield of camptothecin was found to be 18 µg/mg of
the chloroform extract. The isolated fungal camptothecin showed
good cytotoxicity against A549, HEp2, and OVCAR-5 (Puri et al.,
2005). In another study, the same fungus produced 4.96mg
of camptothecin per 100 g of dry mass in 48 h in a bioreactor
(Amna et al., 2006). The two endophytic fungal strains of F.
solani were isolated from Apodytes dimidiate in the Western
Ghats, India. In broth culture after 4 days of incubation, the yield
of camptothecin produced by two strains was found to be 37
and 53 µg/100 g (Shweta et al., 2010). In another study, Shweta
et al. isolated three endophytic fungi (A. alternate, Fomitopsis
sp., Phomopsis sp.) from fruit and seeds of Miquelia dentata and
found to produce camptothecin, 9-methoxycamptothecin, and
10-hydroxycamptothecin. The yield of camptothecin obtained
from A. alternata, Fomitopsis sp., and Phomopsis sp. was 73.9,
55.49, and 42.06µg/g dry weight (Shweta et al., 2013). Three
camptothecin-producing fungi, Aspergillus sp. LY341, Aspergillus
sp. LY355, and Trichoderma atroviride LY357 were isolated
from C. acuminata. The corresponding camptothecin yields
were 7.93, 42.92, and 197.82 µg/L, respectively. Unfortunately,
LY341 and LY355 strains lost the camptothecin-producing
capability with repetitive subculturing. On the other hand,
consistent production of camptothecin was seen in LY357
from second to eighth generation (Pu et al., 2013; Kai et al.,
2015).

In the next study, 161 fungi were isolated from C. acuminata.
Among the isolates, Botryosphaeria dothidea X-4 fungus was
reported to produce 9-methoxycamptothecin (Ding et al., 2013).
The endophytic fungi Neurospora sp. was isolated from the
seed of N. foetida and found to produce camptothecin. The
isolated fungal camptothecin was tested against the A549 and
OVCAR-5 cells and it showed good cytotoxicity in both the
cell lines (Rehman et al., 2008). In another study, the fungus
(XZ-01) that belongs to Phomopsis sp. was isolated from
twigs of C. acuminata collected from the Jiangshi Natural
Reserve, Fujian, China. Details of the camptothecin-producing
fungi and their corresponding host plants are provided in
Table 3.

Vinca Alkaloids
The success story of isolation of vinca alkaloids fromMadagascar
periwinkle (botanical name is Catharanthus roseus G. Don and
commonly called Vinca rosea) marks back to late 1950s. In
Jamaican folklore, the extracts of periwinkle were used as an
oral hypoglycemic agent in the absence of insulin treatment
(Noble, 1990). Eventually, two groups (Noble, Beer, and Cutts at
the Collip Laboratories; Svoboda, Johnson, Neuss, and Gonman
at the Lilly Research Laboratories) investigated the antidiabetic
property of periwinkle extracts but did not find substantial
hypoglycemic activity. The intense research on the extracts of
periwinkle led to the isolation of an alkaloid, which reduced
the WBCs and depleted bone marrow in rats. The new alkaloid
was named as vincaleukoblastine because of its origin and
effect on WBCs; subsequently named as vinblastine. Thorough
phytochemical investigation of the extract over a period of a
decade led to the discovery of anticancer alkaloids including
vinblastine (9), vincristine (10), vinleunosine, and vinrosidine
(Johnson et al., 1963; Noble, 1990, 2016). The vinca alkaloids are
terpenoid indoles obtained from the coupling of catharanthine
monomer and vindoline and are mainly used in chemotherapy
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regimens due to their ability to reduce the number of white blood
cells in acute lymphoblastic leukemia and nephroblastoma. Vinca
alkaloids represent the secondmost used class of anticancer drugs
in the treatment of various malignancies (Moudi et al., 2013).

Mode of Action
Vinca alkaloids target cell cycle progression by interfering with
activities of the microtubule cytoskeleton. Microtubules are the
cytoskeletal elements made up of tubulin heterodimers which are
associated with transportation of cargo within the cell, motility of
the cell itself, and progression of the cell cycle (Downing, 2000).
In the structural organization of microtubules, α and β tubulins
arrange themselves alternatively to form a protofilament and α

subunits are projected toward minus end and β subunits toward
plus end (confers polarity). Further, protofilaments arrange in
a parallel fashion to form a hollow cylindrical structure called
microtubule (Kirschner, 1980; Dumontet and Jordan, 2010). The
microtubules grow and shrink rapidly by addition and removal
of tubulin subunits by a phenomenon referred as dynamic
instability of microtubules. The free subunits are added up at plus
end with the subsequent release of subunits at minus end which
results in the steady-state maintenance of microtubule length
(Alberts, 2017). The shortening and lengthening of a microtubule
are essential to pull sister chromosomes during mitosis and push
out membranes respectively (Wilson et al., 1999). Impeding the
dynamics and stability of microtubules can block cell division
in multiple ways. Vinca alkaloids are found to interact with the
vinca domain of β tubulin in order to destabilize the microtubule
structure. The binding site is present toward the plus end of
microtubule and vinblastine suppresses dynamic instability at
plus ends (Wilson et al., 1999). Previous findings suggested that
vinca derivatives inhibit cell cycle at metaphase of mitosis (Jordan
et al., 1991). They bind to tubulin intracellularly, resulting in
the subsequent dissolution of microtubules, and prevent cells
from assembling the spindles needed for the division, thus
arresting cells in mitosis, which is necessary to mediate their
cytotoxic effects (Jordan et al., 1991; Newman and Cragg,
2007). Primarily vinca alkaloids interfere with the formation
of microtubule and mitotic spindle dynamics coupled with the
disruption of intracellular transport. Overall, vinca alkaloids
impart their antineoplastic effect by serving as microtubule-
destabilizing agents. Vincristine and vinblastine are approved
for the treatment of Hodgkin lymphoma and structural analogs
of vinca alkaloids (Vinflunine, Vinorelbine, Anhydrovinblastine)
targeting tubulin polymerization are in phase-II/III trials for the
treatment of breast cancer and carcinoma (Kaur et al., 2014).

Vinca Alkaloids From Endophytic Fungi
An endophytic fungus, Alternaria sp., isolated from the phloem
of Catharanthus roseus was reported to produce vinblastine (Guo

et al., 1998). Later, the endophyte, F. oxysporum isolated from
the phloem of C. roseus was found to produce vincristine (Zhang
et al., 2000). An endophytic fungus from the leaves of C. roseus
was also reported to produce vincristine (Yang et al., 2004). The
endophytic fungus, F. solani from C. roseus was screened for
vinca alkaloids using thin layer chromatography and electron
spray ionization-mass spectroscopic analysis. The fungus was
identified to produce vincristine and vinblastine (Kumar et al.,
2013). The amount of vinblastine and vincristine in the culture
filtrate was found to be 76 and 67 µg/L, respectively. The
endophytic fungus Talaromyces radicus from C. roseus produced
670 µg/L of vincristine in modified M2 medium and 70 µg/L
of vinblastine in PDB medium. Vincristine was partially purified
and evaluated for cytotoxicity in HeLa, MCF7, A549, U251,
and A431 cells. The treatment of vincristine resulted in the
dose-dependent growth inhibition in HeLa, MCF7, A549, U251,
and A431 with IC50 values of 4.2, 4.5, 5.5, 5.5, and 5.8µg/mL,
respectively. However, the normal cells (HEK293) were not
significantly affected (Palem et al., 2015).

CYTOTOXIC COMPOUNDS FROM
ENDOPHYTIC FUNGI ASSOCIATED WITH
TERRESTRIAL PLANTS

The secondary metabolites from endophytic fungi have
been widely recognized as potent antitumor agents. The
secondary metabolite and bioactive compounds from
endophytic fungi are screened for their antiproliferative
activity against different cancer cell lines (Please refer Tables 4–6
for examples). Preliminary screening of extracts or compounds
using cytotoxicity assays allows the rapid identification of
compounds with anticancer activity. It is also essential to
identify compounds that discriminate between cancer and
normal cells, and specifically induce cytotoxicity in cancer cells.
Specific cytotoxicity is imperative in cancer therapy, as the
standard chemotherapy often affects actively dividing normal
cells. However, few anticancer agents may be carcinogenic
(Blagosklonny, 2005). Hence, toxicity screening is one
of the major steps employed to identify anticancer agents
(Parasuraman, 2011). In the next section, compounds isolated
from endophytic fungi associated with terrestrial plants and their
anticancer potential have been discussed.

Two new xanthone dimers, phomoxanthone A (11) and
B (12) were isolated from the endophytic fungus Phomopsis
sp., BCC 1323 from Tectona grandis at Mee Rim district,
Chiang Mai Province, Northern Thailand. The compounds
exhibited remarkable cytotoxicity towards KB, BC-1 cells, and
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TABLE 3 | List of camptothecin, 9-methoxycamptothecin, 10-hydroxycamptothecin producing endophytic fungi, and their host plants.

Sl No Endophytic fungus Host plant Camptothecin yield (µg/g) References

1 Entrophospora infrequens Nothapodytes foetida 18 µg/mg of the chloroform extract Puri et al., 2005

2 Entrophospora infrequens Nothapodytes foetida 49.6 Amna et al., 2006

3 Neurospora crassa Nothapodytes foetida – Rehman et al., 2008

4 Fusarium solani Camptotheca acuminata – Kusari et al., 2009b

5 Fusarium solani Apodytes dimidiate 0.37 Shweta et al., 2010

6 Fusarium solani Apodytes dimidiate 0.53

7 Trichoderma atroviridae Camptotheca acuminata 197.82 µg/L Pu et al., 2013

8 Botryosphaeriadothidea Camptotheca acuminata – Ding et al., 2013

9 Fusarium nematophilum Camptotheca acuminata 37 Su et al., 2014

Alternaria alternata 29

Phomopsis vaccinii 24

Colletotrichum gloeosporioides 17

10 Fusarium solani Camptotheca acuminata 40µg/g Ran et al., 2017

150 µg/L

non-malignant Vero cells. Phomoxanthone Awas relativelymore
potent than phomoxanthone B with IC50 values of 0.99, 0.51,
and 1.4µg/mL against KB, BC-1, and Vero cells, respectively.
Moreover, phomoxanthone A and B displayed selectively potent
cytotoxicity in BC-1 cells with IC50 values 0.51 and 0.70µg/mL,
respectively (Isaka et al., 2001).

A new species of Acremonium was isolated from the twig
of Knema laurina (Thai medicinal plant) in the forest areas
of Nakhon Ratchasima Province, Thailand. The endophytic
fungus was found to produce brefeldin A (13) 8-deoxy-
trichothecin, trichothecolone, 7-hydroxytrichodermol, and
7-hydroxyscirpene. Brefeldin A exhibited potent cytotoxic
activity against KB, BC-1, and NCI-H187 with IC50 values
of 0.18, 0.04, and 0.11µM, respectively (Chinworrungsee
et al., 2008). Altersolanol (14), a hydroxylated tetrahydro
anthraquinone, macrosporin (15), and 1,2,4,5-tetrahydroxy-
7-methoxy-2-methyl-1,2,3,4-tetrahydroanthracene-9,10-dione
(16) were isolated from an Alternaria endophytic fungus. The
fungus is collected from a healthy leaf of Erythrina variegata
in Samutsakorn Province, Thailand. Altersolanol showed
potent antiangiogenic activity by inhibiting endothelial cell
proliferation, tube formation, and migration. Altersolanol also
suppressed the formation of blood vessels in ex vivo and in vivo
models. Taken together, altersolanol was found to be a good
antiangiogenic agent and a promising candidate in development
of therapeutics against cancer and other pro-angiogenesis-related
diseases (Pompeng et al., 2013).

The endophytic fungus Preussia sp., was obtained from a
mature stem of Aquilaria sinensis (Thymelaeaceae) collected
from Guangxi Medicinal Arboretum. The endophyte produced
three spirobisnaphthalenes (spiropreussione A, spiropreussione
B, and spiropreussomerin A) possessing two naphthalene-
derived C-10 units’ bridges through a spiroketal linkage. Among
the novel spirobisnaphthalenes, spiropreussione A (17) exhibited
in vitro cytotoxic activity against the A2780 and the BEL-7404 cell
lines with IC50 values of 2.4 and 3.0µM, respectively. However,
spiropreussione A was less active against the HCT-8, BGC-823,
and A549 cell lines with IC50 values more than 10µM (Chen
et al., 2009). The endophytic fungus Eutypella sp. from Etlingera
littoralis produced two new γ-lactones (eutypellins A and B), two
ent-eudesmane sesquiterpenes (ent-4(15)-eudesmen11-ol-1-one
and ent-4(15)-eudesmen-1R,11-diol), and three known pimarane
diterpenes (diaporthein B, scopararane A, and libertellenone C).
Among the isolated compounds, ent-4(15)-eudesmen-11-ol-1-
one (18) showed weak cytotoxicity against NCI-H187, MCF7,
KB, and Vero cell lines with IC50 values of 11, 20, 32, and 32µM,
respectively (Isaka et al., 2009). In another study, seven novel
eremophilane-type sesquiterpenes and the known mairetolide
F were isolated from the endophyte Xylaria sp. The fungus
was isolated from Licula spinose at Trang Province, Thailand.
The compounds eremophilanolide 1, 2 and 3 (19-21) exhibited
moderate cytotoxicity with IC50 values ranging between 3.8 and
21µM against the KB, MCF7, and NCI-H187 cell lines (Isaka
et al., 2010).
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TABLE 4 | List of cytotoxic compounds isolated from endophytic fungi of terrestrial habitats.

Sl

No

Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

1 Tectona grandis Phomopsis sp. Phomoxanthone A KB

BC-1

Vero

0.99

0.51

1.4

Isaka et al., 2001

IC50 (µg/mL)

Phomoxanthone B KB

BC-1

Vero

4.1

0.7

1.8

2 Knema laurina Acremonium sp. Brefeldin A KB

BC-1

NCI-H187

0.18

0.04

0.11

Chinworrungsee

et al., 2008

IC50 (µM)

8-Deoxy-trichothecin KB

BC-1

NCI-H187

>62.81

0.88

1.48

Trichothecolone KB

BC-1

NCI-H187

12.90

10.06

11.31

7α-Hydroxytrichodermol KB

BC-1

NCI-H187

>75.10

2.37

1.73

7α-Hydroxyscirpene KB

BC-1

NCI-H187

8.47

21.53

27.76

3 Polygonum senegalense Alternaria sp. Alternariol

Alternariol 5-O-sulfate

Alternariol 5-O-methyl ether

Altenusin

Desmethylaltenusin

L5178Y 1.7

4.5

7.8

6.8

6.2

Aly et al., 2008

EC50 (µg/mL)

4 Platycladus orientalis Phyllosticta spinarum Tauranin NCI-H460

MCF7

SF-268

PC-3M

MIA Pa Ca-2

4.3

1.5

1.8

3.5

2.8

Wijeratne et al.,

2008

IC50 (µM)

5 Glochidion ferdinandi Eupenicillium

sp.

Trichodermamide C HCT116

A549

0.68

4.28

Davis et al., 2008

IC50 (µM)

6 Hopea hainanensis Penicillium sp. Monomethylsulochrin KB

HepG2

30.0

30.0

Wang et al., 2008

IC50 (µg/mL)

Rhizoctonic acid KB

HepG2

20.0

25.0

Asperfumoid 3 KB

HepG2

20.0

15.0

3,5-Dichloro-p-anisic acid 6 KB

HepG2

5.0

10.0

7 Aquilaria sinensis Preussia sp. Spiropreussione A A2780

BEL-7404

2.4

3.0

Chen et al., 2009

IC50 (µM)

8 Etlingera littoralis Eutypella sp. Ent-4(15)-eudesmen-11-ol-

1-one

NCI- H187

MCF7

KB

Vero

11

20

32

32

Isaka et al., 2009

IC50 (µM)

9 Mimosops elengi Ascomycetes Ergoflavin ACHN

NCI-H460

Panc1

HCT116

Calu1

1.2

4.0

2.4

8.0

1.5

Deshmukh et al.,

2009

IC50 (µM)

(Continued)
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TABLE 4 | Continued

Sl

No

Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

10 Salvia officinalis Chaetomium sp. Cochliodinol

Isocochliodinol

L5178Y 7.0

71.5

Debbab et al.,

2009b

EC50 (µg/mL)

11 Camellia sinensis Pestalotiopsis fici Pestaloficiol L HeLa

MCF7

8.7

17.4

(Liu L. et al., 2009)

IC50 (µM)

12 Roystonea regia Pestalotiopsis

photiniae

Photinides A

Photinides B

Photinides C

Photinides D

Photinides E

Photinides F

MDA-MB-231 24.4

24.2

23.1

24.4

24.6

Ding et al., 2009

(% inhibitory rate at

10µg/mL)

13 Mentha pulegium Stemphylium

globuliferum

6-O-Methylalteranin

Alterporriol G/H

L5178Y 4.2

2.27

Debbab et al.,

2009a

EC50 (µg/mL)

14 Ginkgo biloba Chaetomium globosum Chaetomugilin A

Chaetomugilin D

Chaetoglobosin A

Chaetoglobosin C

Brine shrimp 78.3

75.2

83.4

75.3

Qin et al., 2009

(% mortality rate at

10µg/mL)

15 Liculaspinosa Xylaria sp. Eremophilanolide 1

Eremophilanolide 2

Eremophilanolide 3

KB

MCF7

NCI-H187

3.8–21 Isaka et al., 2010

IC50 (µM)

16 Musa acuminata Phomopsis sp. Oblongolides Z KB

BC

NCI-H187

Vero

37

26

32

60

Bunyapaiboonsri

et al., 2010

IC50 (µM)

17 Tree from Gassan stock

farm

Allantophomopsis

lycopodina

Allantopyrone A

Islandic acid-II methyl ester

HL60 0.32

6.55

Shiono et al., 2010

IC50 (µM)

18 Artemisia annua Chaetomium globosum Chaetoglobosins V KB

K562

MCF7

HepG2

23.53

>30

27.86

>30

Zhang J. et al., 2010

IC50 (µg/mL)

Chaetoglobosins W KB

K562

MCF7

HepG2

21.17

>30

>30

27.87

19 Rehmannia glutinosa Massrison sp. Massarigenin D LO2

HepG2

MCF7

A549

19.6

20.8

11.2

14.4

Sun et al., 2011

IC50 (µg/mL)

Spiromassaritone LO2

HepG2

MCF7

A549

7.2

5.6

6.8

9.8

Paecilospirone LO2

HepG2

MCF7

A549

12.4

10.4

7.6

6.8

20 Cinnamomum kanehirae Fusarium oxysporum Beauvericin PC-3

Panc-1

A549

49.5

47.2

10.4

Wang et al., 2011

IC50 (µM)

(Continued)
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TABLE 4 | Continued

Sl

No

Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

21 Dysoxylumbi

nectariferum Hook.f

Fusarium proliferatum Rohitukine HCT-116 MCF7 10

10

Mohana Kumara

et al., 2012

IC50 (µg/mL)

22 Cinnamomum sp. Annulohypoxylon

squamulosum

Annulosquamulin MCF7

NCI-H460

SF-268

3.19

3.38

2.46

Cheng et al., 2012

IC50 (µg/mL)

(3S)-7-hydroxymellein MCF7

NCI-H460

SF-268

2.78

3.17

2.38

23 Erythrophleum fordii

Oliver

Alternaria tenuissima Tenuissimasatin HCT-8 >1 Fang et al., 2012

IC50 (µmol/L)

(6aR, 6bS, 7S)-3, 6a, 7,

10-tetrahydroxy-4,

9-dioxo-4, 6a, 6b, 7, 8,

9-hexahydroperylene

HCT-8 1.78

24 Curcuma wenyujin Chaetomium globosum

Kunze

Chaetoglobosin X H22

MFC

3.125

6.25

Wang et al., 2012

IC50 (µg/mL)

25 Erythrina variegata Alternaria sp. Altersolanol

Macrosporin

1,2,4,5-tetrahydroxy-7-

methoxy-2-methyl-1,2,3,4-

tetrahydroanthracene-9,10-

dione

Angiogenesis assays – Pompeng et al.,

2013

26 Tamarix chinensis Penicillium sp. SXH-65 Arisugacin B

Arisugacin F

HeLa

HL-60

K562

24–60 Sun et al., 2014

IC50 (µM)

27 Taxus chinensis var.

mairei

Perenniporia

tephropora Z41

Perenniporin A HeLa

SMMC-7721

Panc-1

30.44

45.49

44.22

Wu et al., 2013

IC50 (µg/mL)

28 Capsicum annum Alternaria alternata Alternariol-10-methyl ether HL-60

A549

PC-3

85

>100

>100

Devari et al., 2014

IC50 (µM)

HeLa

A431

MIA PaCa-2

T47D

>100

95

>100

>100

29 Ipomoea batatas Aspergillus glaucus 2,

14-dihydrox-7-drimen-12,

11-olide

HepG2

MCF7

61

41.7

Mohamed et al.,

2013

IC50 (µg/mL)

30 Gloriosa superba Aspergillus sp. Colchatetralene THP-1

MCF7

30

50

Budhiraja et al.,

2013

IC50 (µg/mL)

31 Panax ginseng Penicillium melinii Ginsenocin MKN45

LOVO

A549

MDA-MB-435

HepG2

HL-60

1.91

2.20

5.03

1.39

2.34

0.49

Zheng et al., 2013

IC50 (µg/mL)

(Continued)
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TABLE 4 | Continued

Sl

No

Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

Penicillic acid MKN45

LOVO

A549

MDA-MB-435

HepG2

HL-60

2.85

2.21

7.46

6.28

3.67

0.80

Penicillium janthinellum Brefeldin A MKN45

LOVO

A549

MDA-MB-435

HepG2

HL-60

<0.001

0.12

0.04

<0.001

<0.001

<0.001

32 Clidemia hirta Cryptosporiopsis sp. (R)-5-hydroxy-2-

methylchroman-4-one

HL-60 4 Zilla et al., 2013

IC50 (µg/mL)

33 Nerium oleander L. Cochliobolus kusanoi Oosporein A549 21 Alurappa et al., 2014

IC50 (µM)

34 Tripterygium wilfordii Penicillium sp. HSZ-43 Penifupyrone

Funicone

Deoxyfunicone

3-O- Methylfunicone

KB 4.7

13.2

22.6

35.3

Chen et al., 2014

IC50 (µM)

35 Salicornia bigelovii Torr Fusarium equiseti Diglucotol MCF7

MDA-MB-231

Caco-2

97.56

92.35

99.39

Wang et al., 2014

EC50 (µM)

Cerevisterol MCF7

MDA-MB-231

Caco-2

32.4

41.5

37.56

Ergosterol peroxide MCF7

MDA-MB-231

Caco-2

64.5

52.4

77.56

36 Corylus avellana Phomopsis amygdale Pestalotin HT-29

PC-3

MDA-MB-231

HEK293

16.69

20.54

41.7

11.83

Akay et al., 2014

IC50 (µg/mL)

(S)-4-butoxy-6-((S)-1-

hydroxypentyl)-5,6-dihydro-

2H-pyran-2-one

HT-29

PC-3

MDA-MB-231

HEK293

82.18

132.23

24.26

13.84

37 Ajuga decumbens Thunb Botryotinia

fuckeliana A-S-3

Phenochalasin B SMMC-7721

A549

HepG2

MCF7

7.43

0.83

2.2

0.1

Lin et al., 2015

IC50 (µM)

[12]-cytochalasin SMMC-7721

A549

HepG2

MCF7

0.88

0.66

0.62

0.59

38 Moringa oleifera Cladosporium oxysporum Taxol HCT15 3.5 Gokul Raj et al.,

2015

IC50 (µM)

39 Xanthium sibiricum Eupenicillium sp. LG41 Eupenicinicol C

Eupenicinicol D

THP-1 –

8

Li and Kusari, 2017

IC50 (µM)

40 Pinellia ternata Penicillium brefeldianum 6,7- dehydropaxilline MDA-MB-231

U2-OS

HepG2

>50

>50

>50

Gao et al., 2017

IC50 (µmol/L)

(Continued)
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TABLE 4 | Continued

Sl

No

Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

Spirotryprostatin F MDA-MB-231

U2-OS

HepG2

35.5

>50

14.1

N-demethyl melearoride A MDA-MB-231

U2-OS

HepG2

>50

>50

36.6

Among the isolated compounds, only potent compounds are included in the column “isolated compound/s”.

Cell lines: OVCAR-3 (Ovarian cancer), Jurkat (Human T cell leukemia), Jurkat-JR16 (Jurkat cells overexpressing Bcl2), LOVO (Colon cancer), A549 (Lung cancer), MDA-MB-435 (Breast

cancer), HepG2 (Liver cancer), HL-60 (Promyelocytic leukemia), KB (Oral cancer), KBv200 (Multidrug resistant cells), MCF7 (Breast cancer), Caco-2 (Colon cancer), PC-3 (Prostate

cancer), HeLa (Cervical cancer), A431 (Skin cancer), MDA-MB-231 (Breast cancer), MIA PaCa-2 (Pancreatic cancer), T47D (Breast cancer), HT 29 (Colon cancer), HEK293 (Kidney),

SMMC-7721 (Liver cancer), HCT 15 (Colon cancer), THP-1 (Acute monocytic leukemia), U2-OS (Bone cancer), L5178Y (Mouse lymphoma), HEp2 (Cervical cancer), PC-12 (Rat adrenal

gland cancer), KV/MDR (Multi-drug resistant oral cancer), SW620 (Colon cancer), 95-D (Lung cancer), Kato-3 (Gastric cancer), CaSki (Cervical cancer), NCI-H460 (Lung cancer),

SW1990 (Pancreatic cancer), DU145 (Prostate cancer), BC-1 (Lymphoma), Vero (African green monkey kidney fibroblasts), NCI-H187 (Lung cancer), SF-268 (Brain cancer), HCT 116

(Colon cancer), A2780 (Ovarian cancer), BEL-7404 (Liver cancer), ACHN (Kidney cancer), Panc-1 (Pancreatic cancer), Calu1 (Lung cancer), K562 (Chronic myelogenous leukemia), LO2

(Liver), HCT-8 (Colon cancer), H22 (Mouse liver cancer), U-87 (Brain cancer), BGC-823 (Gastric cancer), U251 (Brain cancer), A-2 (Lung cancer), PC-3M (Metastatic prostate cancer),

MDCK (Dog kidney), OVCAR-5 (Ovarian cancer), CV1 (Kidney), MFC (Mouse gastric cancer), SK-OV-3 (Ovarian cancer), SK-MEL-2 (Skin cancer), XF-498 (Brain cancer), P388 (Mouse

lymphoma), MKN45 (Gastric cancer), and U937 (Histiocytic lymphoma).

The endophyte Phomopsis sp. was isolated from the leaf
of Musa acuminata collected at Doi Suthep Pui National
Park, Chiang Mai Province, Thailand. The fungus produced
six new oblongolides and seven known compounds. Among
the new compounds, oblongolides Y (22) and Z (23) were
cytotoxic against the tested cells. The compound 22 was
superior over its counterpart with the IC50 values of 37,
26, 32, and 60µM against KB, BC and NCI-H187, and
Vero cell lines, respectively. The positive control, doxorubicin
had the IC50 values of 0.24µM for KB, 0.30µM for BC,
and 0.08µM for NCI-H187 (Bunyapaiboonsri et al., 2010).
In the next study, the fungus was found to produce four
new compounds named oblongolides C1, P1, X1, and 6-
hydroxyphomodiol together with eight known compounds
including oblongolides B, C, D, O, P, U, (3R,4aR,5S,6R)-
6-hydroxy-5-methylramulosin, and (3R)-5-methylmellein. The
new compounds exhibited weak selective cytotoxicity against
HepG2 cells with an inhibitory rate ranging between 16.89 and
28.59% (Lin et al., 2011). An endophyticAlternaria sp., associated
with the Egyptian medicinal plant Polygonum senegalense was

isolated. When the endophyte was cultured on the solid rice
medium, four new compounds (3′-hydroxyalternariol 5-O-
methyl ether, desmethylaltenusin, alterlactone, and alternaric
acid) and five known compounds [alternariol (24), alternariol
5-O-methyl ether, altenusin, talaroflavone, and altenuene)
were obtained. And when the fungus was grown on liquid
Wickerham medium, two new compounds (alternariol 5-O-
sulfate (25) and alternariol 5-O-methyl ether (26)] and six
known compounds (alternariol, alternariol 5-O-methyl ether,
altenusin, 2,5-dimethyl-7-hydroxychromone, tenuazonic acid,
and altertoxin I) were isolated. Overall, fungal extract analysis
revealed the presence of 15 natural compounds, out of which
seven were new compounds. Compounds 24, 25, and 26 showed
cytotoxicity against L5178Y cells with EC50 values ranging
between 1.7 and 7.8µg/mL, compared with the positive control
(kahalalide F), which had the EC50 value of 6.3µg/mL. The two
bicyclic acid derivatives, Alutenusin (27) and desmethylaltenusin
(28) exhibited moderate cytotoxic activity against L5178Y cells,
with EC50 values of 6.8 and 6.2µg/mL, respectively (Aly et al.,
2008).
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TABLE 5 | List of anticancer compounds isolated from endophytic fungi from mangrove habitats.

Sl No Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References & Units

of cytotoxicity

1 Excoecaria agallocha Phomopsis sp.

ZSU-H76

2-(7′-hydroxyoxooctyl)-

3-hydroxy-5-

methoxybenzeneacetic

acid ethyl ester

HEp2

HepG2

25

30

Huang et al., 2009

IC50 (µg/mL)

2 Rhizophora mucronata Pestalotiopsis sp. Cytosporones J-N

Pestalasins A-E

Pestalotiopsoid A

L5178Y

HeLa

PC12

Not Active up to

10µg/mL

Xu et al., 2009a

3 Rhizophora mucronata Pestalotiopsis sp. Pestalotiopsone A

Pestalotiopsone B

Pestalotiopsone C

Pestalotiopsone D

Pestalotiopsone E

Pestalotiopsone F

L5178Y NA

NA

NA

NA

NA

26.89

Xu et al., 2009a

IC50 (µM)

4 Not mentioned Mangrove endophytic

fungus No. ZSU44

Secalonic acid D HL60

K562

0.38

0.43

Zhang J. Y. et al., 2009

IC50 (µM)

5 Excoecaria agallocha Phomopsis sp. Phomopsis-H76A

Phomopsis-H76 B

Phomopsis-H76C

KB

KBv200

MCF7

All the compounds are

inactive against all the

tested cell lines

Yang et al., 2010

6 Kandelia woody tissue Halorosellinia sp.

Guignardia sp.

1-hydroxy-3-methyl

anthracene-9,10-dione

KB

KBv200

3.17

3.21

Zhang J. Y. et al., 2010

IC50 (µM)

7 Sonneratia apetala Zh6-B1 (unidentified) 3R,5R-Sonnerlactone

3R,5S-Sonnerlactone

KV/MDR 42.4

41.6

Li et al., 2010

% inhibition at 100µM

8 Xylocarpus granatum XG8D (unidentified) Merulin A BT474

SW620

4.98

4.84

Chokpaiboon et al.,

2010

IC50 (µg/mL)

Merulin B BT474

SW620

>10

>10

Merulin C BT474

SW620

1.57

4.11

9 Acanthus ilicifolius Penicillium sp. Penicinoline 95-D

HepG2

HeLa

KB

KBv200

HEp2

0.57

6.5

>100

>100

>100

>100

Shao et al., 2010

IC50 (µg/mL)

10 Unidentified mangrove

(Taiwan Strait)

Paecilomyces sp. Paeciloxocins A

Paeciloxocins B

HepG2 1

65

Wen et al., 2010

IC50 (µg/mL)

11 Excoecaria agallocha Penicillium expansum Expansols A A549

HL-60

NR

15.7

Lu et al., 2010

IC50 (µM)

Expansols B A549

HL-60

1.9

5.4

12 Kandelia candel Fusarium sp. 5-O-methyl-2′-

methoxy-3′-

methylalpinumisoflavone

HEp2

HepG2

4

11

Huang et al., 2010

(µmol/mL)

13 Aegiceras corniculatum Alternaria sp. ZJ9-6B Alterporriol K MDA-MB-435

MCF-7

26.97

29.11

Huang et al., 2011

IC50 (µM)

(Continued)
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TABLE 5 | Continued

Sl No Host plant Fungal endophyte Isolated cytotoxic

compound/s

Tested cell line/s Cytotoxicity References & Units

of cytotoxicity

Alterporriol L MDA-MB-435

MCF7

13.11

20.04

Alterporriol M MDA-MB-435

MCF-7

NT

NT

14 Rhizophora mucronata Irpex hynoides Ethyl acetate extract

was used for cytotoxic

studies. Tetradecane

was isolated from the

extract.

HEp2 125 Bhimba et al., 2011

IC50 (µg/mL)

15 Rhizophora

annamalayan

Fusarium oxysporum Taxol NT NT Elavarasi et al., 2012

16 Bruguiera gymnorrhiza Rhytidhysteron rufulum Rhytidchromones A MCF7

HepG2

Kato-3

CaSki

19.3

>25

23.3

>25

Chokpaiboon et al.,

2016

IC50 (µM)

Rhytidchromones B MCF7

HepG2

Kato-3

CaSki

>25

>25

21.4

>25

Rhytidchromones C MCF7

HepG2

Kato-3

CaSki

>25

>25

>25

>25

Rhytidchromones D MCF7

HepG2

Kato-3

CaSki

>25

>25

16.8

>25

Rhytidchromones E MCF7

HepG2

Kato-3

CaSki

17.7

>25

16

>25

Among the isolated compounds, only potent compounds are included in the column “isolated compound/s”.

NA, Not active; NR, Not reported; NT, Not tested.

Ergoflavin (29) belongs to the class of compounds called
ergochromes, and it was first isolated from the ergot fungus
(Claviceps purpurea) followed by identification in Phoma
terrestris, Pyrenochaeta terrestris, Penicillium oxalicum, and
Aspergillus sp. The ergoflavin was isolated from endophyte
collected from the leaf ofMimusops elengi. The isolated ergoflavin
inhibited human TNF-α and IL-6 with IC50 values of 1.9
and 1.2µM, respectively. Further investigation revealed that
ergoflavin induces cytotoxicity in ACHN, NCI-H460, Panc-1,
HCT116, and Calu1 cell lines with IC50 values of 1.2, 4.0, 2.4, 8.0,
and 1.5µM, respectively (Deshmukh et al., 2009).

The endophytic fungus Massrison sp. was isolated from the
roots of wild Rehmannia glutinosa collected fromWushe County,
Henan Province, China. Extract from the culture broth revealed
the presence of massarigenin D (30), spiromassaritone (31), and
paecilospirone (32). These compounds contain a rare spiro-
5,6-lactone ring skeleton. The cytotoxic effects of these three
compounds were tested against LO2, HepG2, MCF7, and A-2
cells. The compounds showed good cytotoxicity against the tested
cells. Spiromassaritone displayed potent cytotoxicity against all
the tested cells with an IC50 value ranging between 5.6 and
9.8µg/mL (Sun et al., 2011).
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TABLE 6 | List of marine cytotoxic endophytic fungal metabolites.

Sl No Host plant Fungal endophyte Isolated cytotoxic compound/s Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

1 Seaweed Talaromyces sp Kasanosin A

Kasanosin B

NT – Kimura et al., 2008

2 Acanthophora

spicifera

Curvularia sp. Apralactone A

(+)-(10E,15R)-10,11-dehydrocurvularin

(+)-(15R)-12-hydroxy-10,11-E-

dehydrocurvularin

(+)-(15R)-13-hydroxy-10,11-E-

dehydrocurvularin

(+)-(11S,15R)-11-hydroxycurvularin

(+)-(11R,15R)-11-hydroxycurvularin

(+)-(15R)-12-oxocurvularin

Compound 8

36 cancer cell lines 0.28–>32.64 Greve et al., 2008

IC50 (µM)

3 Ectyplasia

perox

Phoma sp. Epoxyphomalin A

Epoxyphomalin B

36 Human cancer

cell lines

0.017–11.42 Mohamed et al.,

2009

IC50 (µg/mL)

4 Petrosia sp Aspergillus Versicolor Sterigmatocystin A549

SK-OV-3

SK-MEL-2

XF-498

HCT-15

1.86

2.53

1.22

2.75

4.61

Lee et al., 2010

IC50 (µg/mL)

Averantin A549

SK-OV-3

SK-MEL-2

XF-498

HCT-15

3.15

3.88

3.57

3.04

3.13

Methylaverantin A549

SK-OV-3

SK-MEL-2

XF-498

HCT-15

0.64

1.17

1.10

0.41

0.49

Nidurufin A549

SK-OV-3

SK-MEL-2

XF-498

HCT-15

1.83

3.39

3.16

1.78

2.20

5 Sargassum

kjellmanianum

Aspergillus

ochraceus

7-nor-ergosterolide NCI-H460

SMMC-7721

SW1990

5

7

28

Cui et al., 2010a

IC50 (µg/mL)

3β,11α-dihydroxyergosta-8,24(28)-dien-7-one NCI-H460

SMMC-7721

SW1990

NR

28

NR

6 Ulva pertusa Chaetomium

globosum

Cytoglobosins A

Cytoglobosins B

Cytoglobosins C

Cytoglobosins D

Cytoglobosins E

Cytoglobosins G

A549 >10

>10

2.26

2.25

>10

>10

Cui et al., 2010b

IC50 (µM)

7 Limonium

tubiflorum

Penicillium sp. 11β-methoxycurvularin K562

Jurkat

U937

12.4

3.9

1.8

Aly et al., 2011

11a-methoxycurvularin 4 K562

Jurkat

U937

41.1

2.3

4.6

(Continued)
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TABLE 6 | Continued

Sl No Host plant Fungal endophyte Isolated cytotoxic compound/s Tested cell line/s Cytotoxicity References &

Units of

cytotoxicity

Dehydrocurvularin 6 K562

Jurkat

U937

37.0

5.5

2.5

1-chloro-2,4-dihydroxy-5-methoxy-7-

methylanthraquinone

K562

Jurkat

U937

24.8

13.3

7.6

Among the isolated compounds, only potent compounds are included in the column “isolated compound/s”.

NA, Not active; NR, Not reported; NT, Not tested.

The endophytic fungus was collected from stems of Salvia
officinalis from the mountain of Beni-Mellal, Morocco. Chemical
analysis of secondary metabolites revealed the presence
of two known compounds namely, cochliodinol (33) and
isocochliodinol (34). The bioactive compounds were tested for
cytotoxicity against L5178Y cells. Cochliodinol was potent than
isocochliodinol, with an EC50 of 7.0µg/mL compared with
71.5µg/mL for isocochliodinol. The authors interpreted that,
the difference in cytotoxicity of structurally related compounds
was due to the position of prenyl substituents at the indole rings
(Debbab et al., 2009b).

The fungal endophyte Pestalotiopsis fici was isolated from
branches of Camellia sinensis in the suburb of Hangzhou,
Zhejiang province, China. Seven new isoprenylated chromone
derivatives namely pestaloficiols F-L were obtained. Among the
newly isolated compounds, pestaloficiol J (35), K (36), L (37)

exhibited cytotoxicity with IC50 values ranging between 8.7 and
99.3µM for HeLa cell line. The IC50 values of other compounds
ranged between 8.7µM and >136.1µM for HeLa cells and
17.4µM and >153.8µM for MCF7 cells. 5-fluorouracil was used
as a positive control with IC50 values of 10 and 15µM against
HeLa and MCF7 respectively (Liu L. et al., 2009).

Six novel benzofuranone-derived γ-lactones called photinides
A–F (38-43), were isolated from the endophyte Pestalotiopsis
photiniae. The endophyte was isolated from Roystonea regia
collected from Jianfeng mountain, Hainan province, China.
Photinides A-F exhibited modest and selective cytotoxicity
against MDA-MB-231 cells with an inhibitory rate of 24.4,
24.2, 23.1, 24.4, and 24.6%, respectively, at a concentration of
10µg/mL. No cytotoxicity was observed at 10µg/mL against
HeLa cells (Ding et al., 2009).

Frontiers in Pharmacology | www.frontiersin.org 18 April 2018 | Volume 9 | Article 309

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Uzma et al. Anticancer Compounds From Endophytic Fungi

The endophyte Stemphylium globuliferum was isolated
from the stem tissues of Egyptian medicinal plant Mentha
pulegium collected in Morocco. Chemical investigation of extract
revealed the presence of five novel compounds (alterporriol
G, atropisomer alterporriol H, altersolanol K, altersolanol
L, and stemphypyrone) and eight known compounds (6-O-
methylalaternin, macrosporin, altersolanol A, alterporriol E,
alterporriol D, alterporriol A, alterporriol B, and altersolanol
J). The isolated compounds were tested for cytotoxic activity
against L5178Y cells. An unresolved mixture of alterporriol
G (44) and its atropisomer alterporriol H (45) exhibited the
most potent cytotoxicity with an EC50 value of 2.7µg/mL. The
known compound 6-O-methylalaternin (46) also exhibited good
cytotoxicity with an EC50 value of 4.2µg/mL. The positive
control (kahalalide F) exhibited an EC50 value of 6.3µg/mL
(Debbab et al., 2009a).

The endophyte Phyllosticta spinarum isolated from
Platycladus orientalis from the Sonoran desert produced five new
compounds [(+)-(5S,10S)-4′-hydroxymethylcyclozonarone,
3-ketotauranin, 3R-hydroxytauranin, 12-hydroxytauranin, and
phyllospinarone] along with a known compound tauranin
(47). Tauranin exhibited cytotoxicity against NCI-H460, MCF7,
SF-268, PC-3M, and MIA PaCa-2 cells with IC50 values of
4.3, 1.5, 1.8, 3.5, and 2.8µM, respectively (Wijeratne et al.,
2008). A newly modified dipeptide trichodermamide C (48) was
isolated from the endophytic fungus Eupenicillium sp., from
the rainforest tree Glochidion ferdinandi (Euphorbiaceae) in
Australia. Trichodermamide C displayed cytotoxicity toward
HCT116 and A549 cell lines with IC50 values of 0.68 and
4.28µg/mL, respectively (Davis et al., 2008).

In another study, a new dihydrobenzofuran-2,4-dione
derivative named as annulosquamulin (49) along with 10

known compounds were obtained from the endophytic fungus
Annulohypoxylon squamulosum. The endophyte was isolated
from the stem bark of the medicinal plant Cinnamomum
sp. at Fu-Shan Botanical Garden, I-lan County, Taiwan.
Annulosquamulin was evaluated for its cytotoxicity against
MCF7, NCI-H460, and SF-268 cell lines. The IC50 values of
annulosquamulin were 3.19, 3.38, and 2.46µg/mL, respectively
(Cheng et al., 2012).

The endophytic fungal strain Allantophomopsis lycopodina
was isolated from a tree branch on the Gassan stock farm,
Yamagata, Japan, yielding a new natural product, allantopyrone
A (50), and a previously reported islandic acid-II methyl ester
(51). Both compounds exhibited good cytotoxic activity against
HL60 cells with IC50 values of 0.32 and 6.55µM, respectively.
Cleavage of the genomic DNA is a hallmark event in the
cells committed to apoptosis (Sebastian et al., 2016) which
leads to the formation of cells with lesser DNA content called
hypodiploid cells (Mohan et al., 2014, 2016; Roopashree et al.,
2015). Treatment of HL60 cells with these compounds resulted
in fragmentation of genomic DNA and N-acetyl-L-cysteine
prevented this effect. Allantopyrone A demonstrated stronger
cytotoxicity and apoptosis-inducing activity than the islandic
acid-II methyl ester (Shiono et al., 2010).

An endophytic fungus, Cochliobolus kusanoi, isolated from
the stem of Nerium oleander L. produced the known compound
oosporein (52). The cytotoxicity of oosporein was evaluated
toward A549 and presented the IC50 value of 21µM (Alurappa
et al., 2014). The cytotoxic potential of oosporein in the MDCK
cell line and its role in oxidative stress in vivo and in vitro have
been previously reported by our research group (Ramesha et al.,
2015).

The endophytic fungus Penicillium sp., HSZ-43 was
isolated from the leaves of Chinese traditional medicinal
plant Tripterygium wilfordii. The endophyte was found to
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produce a novel compound, penifupyrone (53), along with three
known analogs: funicone (54), deoxyfunicone (55), and 3-O-
methylfunicone (56). The isolated compounds were tested for
cytotoxicity against KB cells. Penifupyrone exhibited moderate
cytotoxicity with an IC50 value of 4.7µM. The IC50 values of
funicone, deoxyfunicone and 3-O-methylfunicone were 13.2,
22.6, and 35.3µM, respectively (Chen et al., 2014).

Meroterpenoids namely arisugacin I (57) arisugacin J (58),
arisugacin F (59), arisugacin G (60), arisugacin B (61), territrem
C (62), and territrem B (63) were obtained from the endophytic
fungus Penicillium sp. SXH-65. The fungus was isolated from the
saline-alkaline soil along the coast of Laizhou Bay in Dongying,
China. The isolated compounds were evaluated against a panel

of cancer cell lines. Arisugacin B and Arisugacin F exhibited
weak cytotoxicity against HeLa, HL-60, and K562 cell lines with
IC50 values ranging from 24 to 60µM (Sun et al., 2014). A
new sesquiterpenoid, Perenniporin A (64), from the endophytic
fungus Perenniporia tephropora Z41 from T. chinensis var.mairei
exhibited moderate cytotoxic activity with IC50 values ranging
from 6 to 58µg/mL against three human cancer cell lines (HeLa,
SMMC-7721, and Panc-1). On the other hand, ergosterol (65)
from the same source showed significant cytotoxicity against the
HeLa, SMMC-7721, and Panc-1 cell lines with IC50 values of 1.16,
11.63, and 11.80µg/mL (Wu et al., 2013).

A novel diglucotol (66), together with five known
compounds, cerebroside C (67), N-acetyltryptamine (68),
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3β ,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (69),
cerevisterol (70), and ergosterol peroxide (71), were isolated
from Fusarium equiseti from the salt-tolerant plant Salicornia
bigeloviiTorr. Diglucotol exhibited weak antiproliferative activity
toward MCF7, MDA-MB-231, and Caco-2 cells with EC50 values
of 97.56, 92.35, and 99.39µM, respectively. Cerevisterol showed
potent growth inhibitory activities against MCF7, MDA-MB-
231, and Caco-2 cancer cells with EC50 values of 32.4, 41.5, and
37.56µM, respectively. Ergosterol peroxide exhibited relatively
less potency compared with cerevisterol and the EC50 values
ranged between 52.4 and 77.56µM (Wang et al., 2014). In
another study, 2,14-dihydrox-7-drimen-12,11-olide (72) was
isolated from Aspergillus glaucus from the leaves of Ipomoea
batatas. Anticancer property of the isolated compound was
evaluated in HepG2 and MCF7 cells. The isolated compound
displayed moderate cytotoxic effect against HepG2 cells with an
IC50 value of 61µg/mL and possessed good cytotoxicity against
MCF7 cells with IC50 values of 41.7µg/mL (Mohamed et al.,
2013).

Capsaicin (73) along with 2,4-di-tert-butyl phenol (74) and
a novel compound alternariol-10-methyl ether (75) was isolated
from Alternaria alternata of Capsicum annuum. Alternariol-
10-methyl ether displayed considerable antiproliferative activity
against a panel of human cancer cell lines (HL-60, A431,
A549, PC-3, HeLa, MIA PaCa-2, and T47D). Formation of

apoptotic bodies, loss of mitochondrial membrane potential and
fragmentation of genomic DNA are some of the morphological
and electrochemical changes that occur in the cell undergoing
to apoptosis (Rakesh et al., 2014; Roopashree et al., 2015). On
treatment of HL-60 with alternariol-10-methyl ether, change in
the nuclear morphology and loss of mitochondrial membrane
potential was observed (Devari et al., 2014).

In another study, endophytes were isolated from different
parts of hazelnut (Corylus avellana L.) and the isolate was
identified as Phomopsis amygdali. Further analysis revealed
the presence of two metabolites namely (S)-4-butoxy-6-
((S)-1-hydroxypentyl)-5,6-dihydro-2H-pyran-2-one (76) and
pestalotin (77). Both compounds were tested for cytotoxicity
against MDA-MB-231, PC-3, HT-29, and HEK293 cell lines.
Compound 76 presented good activity against MDA-MB-231
(IC50: 24.26µg/mL) and moderate activity against PC-3 and
HT-29 (132.23 and 82.18µg/mL, respectively). On the other
hand, pestalotin showed good cytotoxic activity against the
PC-3, HT-29, and MDA-MB-231 cell lines with IC50 of 20.54,
16.69, and 41.70µg/mL respectively (Akay et al., 2014). In the
same study, authors investigated the presence of gene region of
taxadiene synthase (a key enzyme in taxol biosynthesis) in the
Phomopsis amygdali isolate using PCR. The results demonstrated
the absence of Ts gene region indicating that isolate may not
produce taxol.
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The Aspergillus sp. fungus was isolated from medicinal plant
Gloriosa superba. The bioassay-guided fractionation resulted in
an isolation of a novel compound colchatetralene (78) along with
the three known compounds namely 5-(hydroxymethyl)furan-2
carbaldehyde (79), 4-hydroxy-phthalic acid-dimethyl ester (80),
and ergosterol (65). All four compounds were subjected to
their cytotoxic effect against A549, HEp2, MCF7, OVCAR5,
THP1, and CV1 cell lines. Colchatetralene was found to be
effective against THP-1 and MCF7 with an IC50 value of
30 and 50µg/mL, respectively (Budhiraja et al., 2013). In
another report, two strains of the endophytic fungi Penicillium
melinii Yuan-25 and Penicillium janthinellum Yuan-27 were
isolated from the roots of Panax ginseng at Changchun, Jilin
Province, China. Bioactivity oriented isolation from the Yuan-25
culture yielded a new benzaldehyde derivative, ginsenocin (81),
along with five known compounds, methyl 2,4-dihydroxy 3,5,6-
trimethylbenzoate (82), 3,4,5-trimethyl-1,2-benzenediol (83),
penicillic acid (84), mannitol (85), and ergosterol peroxide (71).
On the other hand, brefeldin A (11) was isolated as a major
constituent from the Yuan-27 culture. The isolated compounds
were tested for their cytotoxic potential against six human cancer
cell lines (MKN45, LOVO, A549, MDA-MB-435, HepG2, and
HL-60). Brefeldin A exhibited the maximum cytotoxicity against
the all tested cell lines with IC50 values less than 0.12µg/mL.

Ginsenocin and penicillic acid also showed effective cytotoxicity
with IC50 values ranging from 0.49 to 7.46µg/mL against tested
cancer cells (Zheng et al., 2013).

The endophytic fungus A. tenuissima was obtained from
the bark of Erythrophleum fordii Oliver at Nanning, Guangxi
Province, China. Tenuissimasatin (86), a novel isocoumarin, and
other 11 known metabolites were isolated from A. tenuissima.
Coumarin derivatives are known for their anticancer properties
and their effect on various cancer models is well-documented
(Keerthy et al., 2014; Neelgundmath et al., 2015). Among the
12 compounds (6aR,6bS,7S)-3,6a,7,10-tetra-hydroxy-4,9-dioxo-
4,6a,6b,7,8,9 hexahydroperylene (87) illustrated good cytotoxic
activity toward HCT-8 cells with IC50 value of 1.78 µmol/L.
Other compounds showed relatively less activity with IC50 value
more than 10 µM/L (Fang et al., 2012). A novel metabolite,
chaetoglobosin X (88), together with three known compounds
(erogosterol, ergosterol 5,8-peroside, and 2-methyl-3-hydroxy
indole) were isolated from the endophyte Chaetomium globosum
Kunze. The fungus was isolated from the medicinal plant
Curcuma wenyujin collected from Zhejiang Province, Wenzhou,
China. Chaetoglobosin X exhibited strong cytotoxic activity
against H22 cells with an IC50 value of 3.125µg/mL and
moderate cytotoxicity against MFC with an IC50 value of
6.25µg/mL (Wang et al., 2012).
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The bioactive metabolites of Penicillium sp., isolated from
the leaves of Hopea hainanensis are monomethylsulochrin
(89), rhizoctonic acid (90), asperfumoid (91), physcion, 7,8-
dimethyl-isoalloxazine, and 3,5-dichloro-p-anisic acid (92). All
the six compounds were evaluated for cytotoxicity against
KB and HepG2 cells. The compounds 89, 90, 91, and
92 exhibited good cytotoxicity with IC50 values of 30, 20,
20, and 5µg/mL for KB cells; 30, 25, 15, and 10µg/mL
for HepG2 cells respectively (Wang et al., 2008). A novel
chlorinated azaphilone derivative named chaetomugilin D (93),
together with three known metabolites, chaetomugilin A (94),
chaetoglobosin A (95) and C (96), were acquired from
C. globosum. The endophytic fungus was isolated from the
leaves of G. biloba in Linyi, Shandong province, China. All
the isolated compounds displayed significant growth inhibitory

activity against brine shrimp (Artemia salina) and Mucor miehei
(Qin et al., 2009).

The novel alkaloids chaetoglobosin V (97) and W (98),
together with six known congeners were obtained from
C. globosum isolated from Artemisia annua at Nanjing, Jiangsu
Province, China. Chaetoglobosin V and W displayed moderate
cytotoxic activity against MCF7 and HepG2 cell lines with IC50

values of 52.76 and 51.04µM, respectively. The cytotoxicity of
chaetoglobosin V and W was also assessed against KB, K562,
MCF7, and HepG2 cells. Chaetoglobosin V displayed the IC50

value of 23.53 and 27.86µg/mL in KB and MCF7 cells whereas
chaetoglobosin W showed 21.17 and 27.87µg/mL against the
same cells, respectively. However, both the compounds did not
show cytotoxicity in K562 cells up to 30µg/mL (Zhang J. et al.,
2010).
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An endophytic fungus, Botryotinia fuckeliana isolated from
Ajuga decumbens Thunb, produced two new (1-keto-4a,15-
epoxyeudesm-11-ol and ent-4(15)-eudesmen-5,6-ol-1-one) and
four known (ent-4(15)-eudesmen-11-ol-1-one, phenochalasin
B, [12]-cytochalasin, [1,3] dioxacyclotridecino) metabolites.
Among the isolated compounds, phenochalasin B (99) and [12]-
cytochalasin (100) exhibited significant inhibitory activity with
IC50 values of 7.43 and 0.88µM for SMMC-7721 cells; 0.83 and
0.66µM for A549 cells; 2.22 and 0.062µM for HepG2 cells; and
0.10 and 0.59µM for MCF7 cells respectively. The cytotoxic
effect of phenochalasin B was significant on A549, HepG2, and
MCF7 cancer cells compared with the SMMC-7721 cells (Lin
et al., 2015).

Rohitukine (101) is a chromane alkaloid with anticancer,
anti-inflammatory, and immunomodulatory properties. The
endophytic fungus, Fusarium proliferatum was isolated from the
inner bark of the tree Dysoxylum binectariferum Hook.f growing
in Central Western Ghats of Karnataka, India. The yield of
rohitukine was 186µg/100 g drymycelial weight. Themethanolic
extract of F. proliferatum was found to be cytotoxic against the
HCT-116 and MCF7 cell lines with an IC50 value of 10µg/mL
for both the cell lines and the IC50 value of positive control
(Camptothecin) was found to be 1µg/mL (Mohana Kumara
et al., 2012). The culture of F. oxysporum was isolated from the
bark of Cinnamomum kanehirae from Jiaoban mountain, Taiwan
province. The fungal metabolite analysis revealed the presence
of two new compounds namely oxysporidinone analog (102),
3-hydroxyl-2-piperidinone derivative (103), along with seven
known compounds namely (–)-4,6′-anhydrooxysporidinone
(104), (+)-fusarinolic acid (105), gibepyrone D (106),
beauvercin (107), cerevisterol (70), fusaruside (108), and
(2S,2′R,3R,3′E,4E,8E)-1-O-D-glucopyranosyl-2-N-(2′-hydroxy-
3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine
(109). Subsequently, all the compounds were evaluated for
cytotoxicity against the PC-3, Panc-1, and A549. The results
showed that beauvericin is moderately cytotoxic against
PC-3, Panc-1, and A549 with IC50 values of 49.5, 47.2, and

10.4µM. The other compounds displayed weak cytotoxicity
for all the tested cell lines (Wang et al., 2011). Endophytes
from Clidemia hirta (a perennial shrub) were isolated, and
analyses of the endophytic Cryptosporiopsis sp., led to the
isolation of three bioactive molecules, (R)-5-hydroxy-2-
methylchroman-4-one (110), and two novel compounds
1-(2,6-dihydroxyphenyl)pentan-1-one (111), and (Z)-1-(2-
(2-butyryl-3-hydroxyphenoxy)-6-hydroxyphenyl)-3-hydroxy
but-2-en-1-one (112). Compound 110 was presented as a
lead cytotoxic agent against the HL-60 with IC50 of 4µg/mL.
This compound significantly induced arrest of cell cycle in
G2 phase in HL-60 cells (Zilla et al., 2013). Inflammation
is called as double-edged sword because deregulation in
inflammatory signaling pathways may lead to cancer (Srinivas
et al., 2015). Therefore, inflammation and cancer are closely
entangled. In the next study, the endophytic fungus Cs-c2
(Phomopsis sp.) was isolated from healthy adult leaves of Senna
spectabilis (Fabaceae). Thereafter, secondary metabolites were
extracted and evaluated the anti-inflammatory activities. The
chemical investigation of the fungus revealed the presence of
a new compound (2-hydroxy-alternariol) together with six
known compounds (cytochalasins J and H, 5’-epialtenuene,
alternariol monomethyl ether, alternariol, and cytosporone
C). Cytochalasin J and H, and alternariol exhibited good anti-
inflammatory activity (Chapla et al., 2014). In another study,
hydroxy-2-methoxy-5-methylpyridin-2(1H)-one (α-pyridone
derivative), 3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-
oxohexanamide (a ceramide derivative), and 3-hydroxy-N-(1-
hydroxy-4-methylpentan-2-yl)-5-oxohexanamide (a new natural
compound) along with 15 known compounds were isolated from
an endophytic fungus Botryosphaeria dothidea KJ-1. The fungus
was collected from the symptomless tissue of stem bark of Melia
azedarach L. (white cedar) at Yangling, Shaanxi province, China.
The results presented that the new compounds did not induce
a significant cytotoxic effect on HCT116 cells up to 100µM.
However, the known compounds exhibited cytotoxic effect with
IC50 values ranging between 3.13 and 73.4µM (Xiao et al., 2014).
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CYTOTOXIC METABOLITES OF
ENDOPHYTIC FUNGI FROM MANGROVE
PLANTS

Mangrove endophytic fungi are the second largest ecological
group of marine fungi and are potential sources for isolation
of new bioactive compounds (Kalaiselvam, 2015). They have
attracted researchers due to their importance in ecology (Calcul
et al., 2013). Presently, only a small number of mangrove
fungi have been studied. Fungal endophytic associations with
mangrove allow them to successfully compete with saprobiotic
fungi for decomposition of their senescent parts (Elavarasi
et al., 2012). Mangrove-associated fungi provide a wide array of
bioactive secondary metabolites with unique structures including
alkaloids, benzopyranones, chinones, flavonoids, phenolic acids,
quinones, steroids, terpenoids, tetralones, and xanthones (Huang
et al., 2011). In the following section, natural compounds
isolated from endophytic fungi from mangrove plants have been
discussed.

Seven fungal strains were isolated from the leaves of
Rhizophora mucronata and Avicennia officinalis. One of the
isolated endophytic fungi obtained was identified as Irpex
hynoides. The fungal extract showed potent cytotoxic activity
against HEp2 cell line and the bioactive metabolite in the

extract was predicted to be tetradecane (Bhimba et al., 2011).
The endophytic fungus Zh6-B1 from Sonneratia apetala
produces two new metabolites namely 3R,5R-Sonnerlactone
(113), 3R,5S-Sonnerlactone (114), and two known compounds
namely 3,4-dihydro-4,8-dihydroxy-7-(2-hydroxyethyl)-6-
methoxy-1(2H)-naphthalen-1-one and 10-norparvulenone.
The antiproliferative activity of new compounds was evaluated
against multi-drug resistant human oral floor carcinoma
(KV/MDR) cells. Both the compounds (113 and 114) inhibited
KV/MDR cell growth by 42.4 and 41.6% at 100µM, respectively
(Li et al., 2010). The endophyte F.oxysporum from Rhizophora
annamalayan was identified as taxol-producing fungus. The
amount of taxol produced by the fungus was found to be
172.3 µg/L (Elavarasi et al., 2012). Anthracenedione derivatives
were extracted from the secondary metabolites of mangrove
endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia
sp. (No. 4382) isolated from Kandelia woody tissue from
the South China Sea. Of the 14 compounds investigated,
1-hydroxy-3-methylanthracene-9,10-dione (115) induced
apoptosis in KB and KBv200 cells and displayed cytotoxicity
with IC50 values of 3.17 and 3.21µM respectively (Zhang
J. Y. et al., 2010). The endophyte Phomopsis sp. ZSU-H76
produced a new polyketide, 2-(7′-hydroxyoxooctyl)-3-hydroxy-
5-methoxybenzeneacetic acid ethyl ester (116) and three known

Frontiers in Pharmacology | www.frontiersin.org 25 April 2018 | Volume 9 | Article 309

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Uzma et al. Anticancer Compounds From Endophytic Fungi

compounds (Dothiorelone A, B, and C). This endophyte was
isolated from the stem of Excoecaria agallocha in Dong Zai,
Hainan, China. The polyketide exhibited cytotoxicity toward
HEp2 and HepG2 cell lines with IC50 values of 25 and 30µg/mL,
respectively (Huang et al., 2009). The endophytic fungus
Paecilomyces sp. was isolated from the bark of an unidentified
mangrove from the Taiwan Strait and it was found to produce
two new depsidone-type metabolites named paeciloxocin
A (117) and B (118). Paeciloxocin A exhibited significant
cytotoxicity against HepG2 cell line with the IC50 value of
1µg/mL, whereas paeciloxocin B showed less cytotoxic activity
with an IC50 value of 65µg/mL (Wen et al., 2010).

The culture of Penicillium expansum was isolated from roots
of themangrove plant Excoecaria agallocha (Euphorbiaceae). The
fungus yielded four new polyphenols [expansol A (119), B (120),
(S)-(+)-11-dehydrosydonic acid (121), and (7S,11S)-(+)-12-
acetoxysydonic acid (122)] and two known compounds [(S)-(+)-
sydonic acid and diorcinol]. Expansol A and B contain phenolic
bisabolane sesquiterpenoid as well as diphenyl ether units in
their structure. All the isolated compounds were evaluated for
cytotoxicity against the A549 and HL-60 cell lines. Expansol A
presented moderate antiproliferative activity against the HL-60
cell line with the IC50 value of 15.7µM, whereas expansol B
remarkably suppressed the proliferation of both cell lines with
IC50 values of 1.9 and 5.4µM, respectively (Lu et al., 2010).

Mangrove-derived endophytic fungus Fusarium sp.
was isolated from the fresh stems of Kandelia candel

(Rhizophoraceae) and metabolite analysis revealed the
presence of a new isoflavone [5-O-methyl-2′-methoxy-
3′-methylalpinumisoflavone (123)] together with four
known compounds [6-methoxy-5,7,4′-trihydroxyisoflavone,
6-methoxy-7,4′-dihydroxyisoflavone, (+)-marmesin and 4-
methylbenzoic acid carboxymethyl ester]. Cytotoxic activity
studies against the HEp2 and HepG2 cell lines revealed that
compound 123 inhibit cell proliferation significantly with IC50

values of 4 and 11µM, respectively (Huang et al., 2010).
Three new bianthraquinone derivatives, alterporriol K (124),

L (125), and M (126), together with six known compounds
(physcion, marcrospin, dactylariol, tetrahydroaltersolanol B,
alternariol, and alternariol methyl ether) were isolated from
Alternaria sp. ZJ9-6B from Aegiceras corniculatum collected
from the South China Sea. In preliminary studies, Alterporriol
K and L imparted moderate growth inhibitory activity against
MDA-MB-435 and MCF7 cells with IC50 values ranging from
13.1 to 29.1µM (Huang et al., 2011). An ergochrome class
mycotoxin, secalonic acid D (127) was isolated from the
endophytic fungus No. ZSU44 and evaluated for its anticancer
activity against HL60 and K562 cells. The results showed
strong cytotoxicity towards HL60 and K562 cells with IC50

values of 0.38 and 0.43µM, respectively. Furthermore, apoptosis
inducing effect of secalonic acid D was confirmed by annexin
V-FITC/PI staining. Activation of executioner caspase and
PARP cleavage are the crucial events in the cells undergoing
apoptosis (Ashwini et al., 2015; Baburajeev et al., 2015).
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Secalonic acid D induced the activation of caspase-3 and
cleavage of PARP in HL60 and K562 cells (Zhang J. Y.
et al., 2009). The endophytic fungus Phomopsis sp. was
isolated from Excoecaria agallocha (Euphorbiaceae) in Dong
Zai, Hainan, China. The secondary metabolite analysis revealed
the presence of three unique compounds namely phomopsis-
H76A, B, and C (128-130). These metabolites did not show
considerable cytotoxic activity against KB, KBv200, and MCF7
cell lines and IC50 values were over 50µM (Yang et al.,
2010).

Three new sesquiterpenes, merulin A (131), B and C (132)

were produced by the endophytic fungus XG8D (Basidiomycete)
isolated from the mangrove plant Xylocarpus granatum
(Meliaceae). Merulin A and C exhibited good cytotoxic activity
against human breast and colon cancer cell lines with IC50

values of 4.98 and 1.57µg/mL for BT474; 4.84 and 4.11µg/mL
for SW620, respectively. Doxorubicin was used as vehicle
control with IC50 values of 0.09 and 0.53µg/mL against SW-
620 and BT-474 cell lines, respectively. (Chokpaiboon et al.,
2010). A new pyrrolyl 4-quinolinone alkaloid, penicinoline
(133), was isolated from Penicillium sp., from the bark of
the mangrove Acanthus ilicifolius (Acanthaceae) collected
from the South China Sea. Intramolecular dehydration of the
compound yielded an unexpected lactam derivative (134), which
was confirmed by single-crystal X-ray analysis. Penicinoline
showed potent cytotoxicity with IC50 values of 0.57 and
6.5µg/mL toward the 95-D and HepG2 cell lines, respectively.
However, penicinoline was inactive against HeLa, KB, KBv200,
and HEp2 cell lines at the concentration of 100µg/mL
(Shao et al., 2010).

The endophytic Pestalotiopsis sp. was obtained from the leaves
of Rhizophora mucronata from Dong Zhai Gang, Mangrove
Garden on Hainan Island, China. The endophyte produced
five novel cytosporones J-N (135-139), five new pestalasins A-
E (140-144), and a new alkaloid pestalotiopsoid A (145). All
the isolated compounds were investigated for their cytotoxicity

against L5178Y, HeLa, and PC12 cells. All the compounds were
found to be inactive at a concentration of 10µg/mL (Xu et al.,
2009b). The Pestalotiopsis sp. produced six new pestalotiopsones
A–F (chromones) (146-151) and a new compound 7-hydroxy-2-
(2-hydroxypropyl)-5-methylchromone. The fungus was isolated
from the leaves of Rhizophora mucronata. Among the isolates,
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only pestalotiopsone F exhibited moderate cytotoxicity against
the murine cancer cell line (L5178Y) with an EC50 value of
8.93µg/mL (Xu et al., 2009a).

Five highly oxygenated chromones named rhytidchromones
A-E (152-156) were isolated from the endophytic fungus
Rhytidhysteron rufulum BG2-Y. The fungal strain was isolated
from the healthy leaves of Bruguiera gymnorrhiza collected
from Pak Nam Pran, Prachuab Kiri Khan Province, Thailand.

Isolated compounds were tested for their cytotoxicity on
a panel of cancer cell lines (MCF7, HepG2, Kato-3, and
CaSki). All the compounds excluding rhytidchromone D,
displayed cytotoxicity toward Kato-3 cell lines with IC50

values ranging from 16.0 to 23.3µM, while rhytidchromones
A and C were active against MCF7 cells with IC50 values
of 19.3 and 17.7µM, respectively (Chokpaiboon et al.,
2016).
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ENDOPHYTIC FUNGAL METABOLITES
FROM MARINE HABITATS

Marine fungi comprise of obligate and facultative types;
and classically they are defined as a form of ecological,
but not a taxonomic group of fungi (Elsebai et al., 2014).
The growth and sporulation of obligate marine fungi occur
exclusively in marine environment. In case of facultative marine
fungi, the growth, and sporulation in the marine habitat
are dependent on the physiological adaptations (Raghukumar,
2008). All marine habitats such as marine plants (mangrove
plants, algae, seagrasses, and driftwood), marine vertebrates and
invertebrates (corals, bivalves, sponges, and crustaceans), and
abiotic factors (soil) can host fungal strains. Many reviews
have not focused significantly on bioactive natural compounds
from endophytic fungi of marine origin. The fungal diversity
in marine habitats has been underestimated because of their
propensity to form aggregates (Rateb and Ebel, 2011). Sponges
and algae contribute majorly as sources of fungi in marine
habitats. A thorough investigation of algae and sponges is
essential to explore the fungal communities associated with
them. The marine environment has extreme conditions like
high salinity, more amount of metals in hydrothermal vents,
elevated hydrostatic pressure, and low temperatures in the
deep sea (Raghukumar, 2008). The organisms that live and
thrive in the adverse and extreme conditions can be expected
to produce metabolites that are unique and might be of
therapeutic interest. Therefore, it is essential to search for
exotic and unique metabolite-producing organisms in these
unusual environments. Marine-derived fungi are a prolific
source of new bioactive compounds with a high degree of
structural diversity and equally interesting pharmacological
activities, namely, anticancer, antibacterial, antifungal, and
antiviral activities, as well as involvement in specific enzyme
inhibition activities (Bugni et al., 2004). The bioactive natural
compounds from marine fungi have been investigated to
smaller extents relatively with their terrestrial counterparts (Vita-
Marques et al., 2008; Gamal-Eldeen et al., 2009). Several research
groups have been involved in the isolation of marine microbes,
analysis of their secondary metabolites and evaluation of possible
pharmacological properties.

The Talaromyces sp. was isolated from seaweed in Kasai
Rinkai Park, Tokyo, Japan. Two novel azaphilones, kasanosins
A (157) and B (158) were isolated from cultures of Talaromyces
sp. These compounds are evaluated for their ability to inhibit

mammalian DNA polymerases, the enzyme responsible for
DNA replication. The results demonstrated that kasanosin
A and B selectively inhibit eukaryotic DNA polymerases β

and γ. Kasanosin A was more active than kasanosin B, with
IC50 values of 27.3µM (rat DNA polymerase β) and 35µM
(human DNA polymerase λ), respectively (Kimura et al.,
2008). Alterporriol L (52) is a new bianthraquinone derivative
isolated from a marine fungus Alternaria sp. ZJ9-6B. The
fungus was isolated from the plant Aegiceras corniculatum
in the South China Sea. The cytotoxic effect of alterporriol
L was investigated against MCF7 and MDA-MB-435 cells.
The IC50 value was found to be 20.04µM for MCF7 and
13.11µM for MDA-MB-435 (Huang et al., 2012). Penicillium
sp. was isolated from Limonium tubiflorum and the chemical
investigation of fungal extract revealed the presence of four new
compounds namely penilactone (159), 10, 11-epoxycurvularin
(160), neobulgarone G (161), and sulfimarin (162) along
with 12 known metabolites. NF-κB is a proinflammatory
transcription factor that is persistently activated in several
cancers (Neelgundmath et al., 2015; Nirvanappa et al., 2016).
The new compounds (159-162) did not show pronounced
inhibition against TNFα-induced NF-κB activity in K562 cells
(Aly et al., 2011). The fungus Aspergillus versicolor from the
marine sponge Petrosia sp. yielded an aromatic polyketide
derivative (2,4-Dihydroxy-6-((R)-4-hydroxy-2-oxopentyl)-3-
methylbenzaldehyde), two xanthones (sterigmatocystin and
dihydrosterigmatocystin) and five anthraquinones (averantin,
methylaverantin, averufin, nidurufin, and versiconol). Among
the eight isolates, sterigmatocystin (163), averantin (164),
methylaverantin (165), and nidurufin (166) exhibited significant
cytotoxicity against A549, SK-OV-3, SK-MEL-2, XF-498, HCT-
15 with IC50 values ranging between 0.41 and 4.61µg/mL (Lee
et al., 2010).
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The endophytic fungus Chaetomium globosum (QEN-14)
was isolated from the marine green alga Ulva pertusa
(Ulvaceae) collected from Qingdao coastline, China. The fungus
yielded seven new cytochalasan derivatives (cytoglobosins A-
G) together with two known compounds (isochaetoglobosin D
and chaetoglobosin Fex). New isolates were evaluated for their
cytotoxicity against P388, A549, and KB cancer cell lines. The
results indicated that cytoglobosins C (167) andD (168) as potent
anticancer agents towards A549 cells with IC50 values of 2.26 and
2.55µM, respectively (Cui et al., 2010b). The other compounds
did not show significant cytotoxic effect up to 10µM.

Two prenylated polyketides, epoxyphomalin A (169) and B
(170) were obtained from the facultative marine fungus Phoma
sp. The fungus Phoma sp. was collected from the marine
sponge Ectyplasia perox at the Caribbean Sea, Dominica. The
cytotoxic effects of compounds 169 and 170 were evaluated
using a monolayer cell survival and proliferation assay on

a 36 human tumor cell lines. Epoxyphomalin A displayed
considerable in vitro tumor cell selectivity towards 12 of the 36
tested tumor cell lines. The IC50 values were ranged from 0.01
to 0.038µg/mL (Mohamed et al., 2009). The fungus Curvularia
sp. was isolated from the red alga Acanthophora spicifera.
Chemical investigations of the fungal isolate yielded eight
compounds including apralactone A, antipodes of curvularin
macrolides and a dimeric curvularin. A modified propidium
iodide monolayer assay was used to determine the cytotoxic
activity of the isolated compounds against human tumor cell
lines. Apralactone A (171) (14-membered phenylacetic acid
macrolactone) showed considerable dose-dependent cytotoxicity
with a mean IC50 value of 9.87µM. The other compound, (+)-
(10E,15R)-10,11-dehydrocurvularin (172), also showed dose-
dependent cytotoxicity with amean IC50 value of 1.25µM(Greve
et al., 2008, 2010).

Chemical investigation of Aspergillus ochraceus isolated from
the marine brown alga Sargassum kjellmanianum revealed the
production of 7-nor-ergosterolide (173) and two new steroidal
derivatives [3β,11α-dihydroxyergosta-8,24(28)-dien-7-one (174)
and 3β-hydroxyergosta- 8,24(28)-dien-7-one (175)] and nine
known related steroids. Compounds 173, 174, and 175 were
tested for their cytotoxic activities against NCI-H460, SMMC-
7721, SW1990, DU145, HepG2, HeLa, and MCF7 cancer cell
lines. The 7-nor-ergosterolide showed potent, selective cytotoxic
activity against the NCI-H460, SMMC-7721, and SW1990 cells
with IC50 values of 5, 7 and 28µg/mL, respectively. On
the other hand, 3β,11α-dihydroxyergosta-8,24(28)-dien-7-one
weakly inhibited the growth of the SMMC-7721 cell line with the
IC50 value of 28µg/mL (Cui et al., 2010a).

Frontiers in Pharmacology | www.frontiersin.org 30 April 2018 | Volume 9 | Article 309

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Uzma et al. Anticancer Compounds From Endophytic Fungi

FUTURE CHALLENGES WITH
ENDOPHYTES

Endophytic fungi offer new hope and possibilities for the
production of novel bioactive compounds, which is challenged
due to low yield, lack of information on precise fungi-
plant biochemical interaction, scale-up issues, and growth
in the axenic state. There is a constant need to manifest
these natural secondary metabolites in vitro, which despite
being accomplished, has shown limited success in commercial
production. There is a weak understanding of interactions of
endophytic fungal organismswith other associatedmicrobes. The
use of plant tissue culture techniques to obtain higher yields has
not been successful due to genetic instability in culture, slow
growth of fungi, the formation of cell aggregates, and sensitivity
to shearing (Charlwood and Rhodes, 1990). Additionally,
the maintenance of tissue cultures is comparatively more
expensive and time-consuming than fermentation technologies.
Nevertheless, fungal fermentation provides the platform for
the potent and sustainable production of bioactive compounds.
Microbial fermentation offers certain advantages such as a
simple fungal cell medium, low cost, faster growth rate
of fungi with minimal risk of contamination, and in vitro
optimized fermentation conditions that facilitate the production
of secondary metabolites but fails to meet the requirements
for sustained production, as observed in vivo in the host
apoplast region. Studies examining genetic aspects to trigger
specific genes for overproduction of target metabolites could
also be beneficial. Another important hurdle is the difficulties
associated with using a combinatorial chemical synthesis
approach to generate complex metabolites of the bioactive
compounds. These shortcomings may overcome by the use
of inducers/elicitors of the specific biochemical pathway that
can ultimately increase the yield. The complex structure of
endophytic metabolites is a hurdle for use of the combinatorial
chemical synthesis approach. Alternatively, the limitations may
overcome by the use of signaling molecules and inexpensive
precursor feeding in growth medium, which may act as efficient
triggers of the biochemical pathway to achieve an elevated yield.
Moreover, the presence of several unnecessary metabolites can
interfere with the enzymatic activity in the growth medium.
The negative feedback mechanism is a major aspect that
must be critically investigated to achieve increase in yield

with the fungal fermentation strategy (Zhao et al., 2010a).
Endophytic studies employing genetic engineering techniques,
transformation studies, gene cluster amplification for metabolite
overproduction, mutagenesis, medium manipulation, culture
condition optimization, and elicitor addition should help to
increase the yield of the desired secondary metabolites (Kusari
and Spiteller, 2012; Kusari et al., 2012; Venugopalan and
Srivastava, 2015).

CONCLUSION

Endophytes have been emerged as privileged sources of
bioactive compounds, since after the discovery of taxol from
T. andreanae. The secondary metabolites of endophytes have
been used substantially for the sustainable production of
therapeutically important compounds. The limited availability
of bioactive principles in plant sources could be surpassed
by exploiting the chemical entities in the endophytes. With
the unfolding knowledge of the anticancer properties of
endophytes and current technological advancements in “omics”
and fermentation, endophytic fungi may play a lead role in
providing a constant supply of chemotherapeutics with high
target specificity and minimal side effects at an affordable
cost. The attempts in genetic manipulations, overexpressing of
the genes that are essential for the production of the specific
bioactive metabolite, and other optimization strategies may
contribute to the strain improvement and make endophytes
as potential drug sources for the future. Therefore, exploring
and exploiting of metabolites from endophytes in terrestrial,
mangrove, and marine habitats may provide an excellent avenue
for the discovery of drug candidates against deadly human
diseases.
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