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Estrogen-stimulating principles have been demonstrated to relieve postmenopausal

syndrome effectively. Gardenia jasminoides Ellis (GJE) is an herbal medicine possessing

multiple pharmacological effects on human health with low toxicity. However, the

therapeutic effects of GJE on the management of postmenopausal syndrome and

its mechanism of action have not been fully elucidated. In this study, network

pharmacology-based approaches were employed to examine steroidogenesis under the

influence of GJE. In addition, the possibility of toxicity of GJE was ruled out and four

probable active compounds were predicted. In parallel, a chromatographic fraction of

GJE with estrogen-stimulating effect was identified and nine major compounds were

isolated from this active fraction. Among the nine compounds, four of them were

identified by network pharmacology, validating the use of network pharmacology to

predict active compounds. Then the phenotypic approaches were utilized to verify that

rutin, chlorogenic acid (CGA) and geniposidic acid (GA) exerted an estrogen-stimulating

effect on ovarian granulosa cells. Furthermore, the results of target-based approaches

indicated that rutin, CGA, and GA could up-regulate the FSHR-aromatase pathway in

ovarian granulosa cells. The stimulation of estrogen production by rat ovarian granulosa

cells under the influence of the three compounds underwent a decline when the

follicle-stimulating hormone receptor (FSHR) was blocked by antibodies against the

receptor, indicating the involvement of FSHR in the estradiol-stimulating activity of the

three compounds. The effects of the three compounds on estrogen biosynthesis- related

gene expression level were further confirmed byWestern blot assay. Importantly, the MTT

results showed that exposure of breast cancer cells to the three compounds resulted

in reduction of cell viability, demonstrating the cytotoxicity of the three compounds.

Collectively, rutin, chlorogenic acid and geniposidic acidmay contribute to the therapeutic

potential of GJE for the treatment of postmenopausal syndrome.
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INTRODUCTION

Natural menopause is classified as permanent cessation of
menstruation, induced by ovarian follicular failure and ovarian
hormone instability (Burger et al., 2007). Due to a global
population aging, there will be one billion women over the
age of 60 years by the year 2050 (Hoga et al., 2015).
Currently, more than 50% of women in the world are afflicted
with postmenopausal syndrome at the climacteric stage (Su
et al., 2013; Dalal and Agarwal, 2015). It is widely accepted
that estrogen deprivation plays an important role in the
postmenopausal syndrome (World Health Organization, 1996;
Greendale et al., 1998; Constantine and Pickar, 2003). In the
climacteric period, the decline of estrogenmay induce depression
(Kaufert et al., 1992; Avis et al., 1994; Al-Safi and Santoro, 2014;
Citraro et al., 2015), memory loss (Devi et al., 2005; Weber
and Mapstone, 2009), bone resorption (Hernandez et al., 2003;
Society, 2006), metabolic syndrome (Carr, 2003; Janssen et al.,
2008), and colorectal cancer (Al-Azzawi and Wahab, 2002; Barzi
et al., 2013). The physiological problems caused by estrogen
deficiency adversely influence the quality of life of modern
people and have become a substantial public health burden. To
relieve the reduced level of estrogen, women in climacterium
usually opt to undergo hormone replacement therapy (HRT)
(Barnabei et al., 2002). However, a WHO study has established
that HRT can significantly heighten the risk of endometrial
cancer, breast cancer and gallbladder diseases in climacteric
women (Nelson et al., 2002; Davey, 2013; Chuffa et al., 2016). In
addition, HRT is usually accompanied by considerable untoward
side effects, including vaginal bleeding, genital irritation and
headache (Clarke et al., 2002). Therefore, a safe and effective
treatment of postmenopausal syndrome is necessitated.

As an alternative therapy for postmenopausal syndrome,
herbal medicine has a long history of a thousand years and
a wide range of applications for improving women’s health
(Johnston, 1997; Feng and Cao, 2010). In the US, over 80% of the
physicians suggest that their patients alleviate postmenopausal
syndrome with herbal medicine (Meisler, 2003). In China and
other Asian countries, herbal medicine has been extensively
and chronically deployed to alleviate postmenopausal syndrome,
due to its well-known safety and efficacy (Scheid, 2007; Liu
et al., 2008; Chen et al., 2010; Scheid et al., 2010). Among the
selected herbal medicine, Gardenia jasminoides Ellis (GJE) is a
potential candidate for the treatment of gynecological disorders
(Yang et al., 2016). GJE has a wide range of pharmacological
effects, including anti-allergy (Sung et al., 2014), anti-oxidative,
anti-atherosclerotic, anti-platelet aggregating, anti-hypertensive
activities, and so on (Liu et al., 2013). Nevertheless, the effects
of GJE on the management of climacterium have rarely been
reported. Recently, several studies reported that the fractions
of GJE and the major compounds in GJE could display
antidepressant activities in rodent models (Cai et al., 2015; Zhang
et al., 2015; Ren et al., 2016; Wang et al., 2016). Additionally,
previous studies indicated that GJE and its active components
could improve memory and learning ability, and protect the
neurons in animals with brain injury (Sheng et al., 2006; Chen
et al., 2015; Zhang et al., 2016). Genipin, amajor phytoconstituent

of GJE, is a candidate for the treatment of osteoporosis (Hoon
Lee et al., 2014). GJE was also able to attenuate metabolic
syndrome with a combination of other herbal drugs in estrogen-
deficient rats (Yang et al., 2016). Moreover, the components of
GJE exerted suppressive effects on colon cancer cells and breast
cancer cells (Kim et al., 2012; Oliveira et al., 2017). Gardenia
oil also augmented plasma estradiol levels (Li et al., 2013).
Collectively, GJE can be regarded as a promising candidate for the
treatment of estrogen deprivation. However, neither systematic
mechanistic studies of GJE related to estrogen deprivation nor the
estrogen-stimulating effects of GJE have been reported. Hence,
it was hypothesized that there are several active compounds
derived fromGJE that are endowed with the ability of stimulating
estrogen biosynthesis in ovarian granulosa cells.

In this study, network and systemic pharmacological analysis
was used to identify the therapeutic role of GJE in the treatment
of postmenopausal syndrome and in the prevention of the risks
of HRT. Firstly, the possible bioactive compounds of GJE were
predicted by network pharmacology. Afterwards, the fractions of
GJE were isolated by HPLC and the bioactive fraction of GJE
that could be adopted to treat postmenopausal syndrome was
explored by using the estradiol assay. The major components
were then extracted from the bioactive fraction and converged
with the probable active ingredients predicted by network
pharmacology. Among these components, phenotypic (based on
the estradiol assay) and target-based (based on the molecular
docking analysis, Western blot assay and FSHR inhibition
assay) drug-screening principles were applied to screen bioactive
compounds with estrogen-stimulating effects (Hughes et al.,
2011; Lu et al., 2016). Breast cancer cells were also used to
pre-evaluate the cancer risk of GJE active ingredients. The
workflow to explore the bioactive compounds is illustrated in
Figure 1. Results obtained from this study disclose the estrogen-
stimulating action of GJE, which further supports the clinical use
of GJE to attenuate postmenopausal syndrome.

METHODS

Network Pharmacology
For the identification of chemicals, the constituent components
of GJE can be found in TCMSP (Traditional Chinese Medicine
Systems Pharmacology) database (http://lsp.nwu.edu.cn/
tcmsp.php), TCM Database@Taiwan (http://tcm.cmu.edu.
tw/) and TCMID (Traditional Chinese Medicines Integrated
Database, http://www.megabionet.org/tcmid/) (Wang et al.,
2015). Subsequently, TCMSP database was used to screen
the compounds based on DL (drug-likeness) values. Only
ingredients with a DL value higher than 0.18 can be retained
as candidate compounds (Xiang et al., 2016; Mao et al., 2017).
For the identification of GJE associated proteins and genes,
STITCH (“search tool for interactions of chemicals”) database
4.0 (http://stitch.embl.de/) was used to explore the compound-
protein interactions of GJE. In addition, CTD (comparative
toxicogenomics database, http://ctd.mdibl.org/) was searched
to ascertain the compound-gene interactions of GJE (Mattingly
et al., 2003; Kuhn et al., 2008). In STITCH and CTD database,
confidence score and gene frequency indicate the strength of
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FIGURE 1 | Process overview.

the chemical-target interaction. Therefore, only proteins with
a chemical–protein interaction confidence score ≥0.9 (highest
confidence) and genes with gene frequency ≥1.84 (average
of gene frequency) were chosen (Wang et al., 2015). TCMSP
database was also used to investigate the targets related to
the compounds of GJE. For the therapeutic compound target
network, the targets related to menopause can be found with the
key word “menopause” or “climacteric” at TTD (Therapeutic
Target Database, http://bidd.nus.edu.sg/group/cjttd/), DrugBank
database (https://www.drugbank.ca/) and GeneCards database
(http://www.genecards.org/). ThenOKdb (Ovarian Kaleidoscope
Database, http://okdb.appliedbioinfo.net/) was used to identify
gene expression in the human ovary. The ingredients of GJE that
can target genes associated with both menopause and the ovary
could be selected. For the enrichment analysis, in order to search
the significant pathway and tissue specificity, JEPETTO (http://
apps.cytoscape.org/apps/jepetto) with the KEGG database and

Funrich (http://www.funrich.org/) with COSMIC database were
utilized to identify and analyze the significant pathway and tissue
specificity of GJE components, respectively (Winterhalter et al.,
2014; Wang et al., 2015). Among the numerous compounds
of GJE that can target genes related to both menopause and
the ovaries, several bioactive molecules were selected for the
validation of the basic experiment. To search for three or four
potent pharmaceutical ingredients of GJE, the screening of
blood-brain barrier (BBB) and the AlogP value was proposed.
It demonstrated that BBB is critical for measuring the capacity
of compounds entering the CNS (central nervous system)
(Tattersall et al., 1975) and AlogP indicates hydrophobicity of the
molecule (Ghose et al., 1988). Therefore, only GJE compounds
with BBB < −0.3 (non-penetrating) and AlogP ≤ 5 can be
chosen as the potential drug candidates (Ru et al., 2014; Kotapalli
et al., 2015). Several compounds with a relatively higher DL value
were then selected. A high DL value indicates a high drug-like
property of bioactive compounds as therapeutic agents (Ru et al.,
2014). The workflow of the network pharmacology study of GJE
is presented in Figure 2 and Table S1.

Extraction and Isolation of GJE Bioactive
Fraction
Sample Preparation
GJE was dried and ground into a powder form, followed by
extraction using 80% ethanol. After that, GJE was concentrated
and extracted with different solvents, including ethanol,
petroleum ether, ethyl acetate, n-butanol and water (Figure S1).
The yields of several fractions were as follows: (1) Ethanol
fraction: 12.2 (g/100 g); (2) Petroleum fraction: 4.4 (g/100 g); (3)
Ethyl acetate fraction: 10 (g/100 g); (4) N-butanol fraction: 3.01
(g/100 g); and (5) Water fraction: 12.02 (g/100 g).

HPLC Analysis
HPLC analysis was performed with an HPLC equipment (Water
996 Photodiode Array Detector, Water 717 Plus AutoSampler,
Water 600s Controller, Water 626 Pump, Millennium system).
A C18 column (4.6 × 250mm, 5µm) was employed with
the mobile phase of 0.2% phosphoric acid: acetonitrile (15:85)
and a flow velocity at 1.0 mL/min at room temperature.
Chromatograms were detected at 240 nm using a DAD detector.
A standard solution of geniposide (2.1mg) dissolved in 2mL
methanol was prepared and serially diluted to form different
concentrations (0.5, 0.25, 0.125, and 0.0625 mg/mL). The sample
solution was diluted 1:10 in methanol.

Isolation and Structure Elucidation of
Major Compounds From EA-Fraction of
GJE
Experimental Materials and Procedures
NMR spectra were scanned using a Bruker AV-500 spectrometer
with TMS as the internal standard. HRESIMS data were
determined using an Agilent 6210 ESI/TOF mass spectrometer.
For column chromatography (CC), ODS (50µm, YMC,
Kyoto, Japan), silica gel (200–300 mesh, Qingdao Marine
Chemical Plant, Qingdao, P. R. China), and Sephadex LH-20
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FIGURE 2 | The workflow of network pharmacology study of GJE.

(Pharmacia Biotech, Uppsala, Sweden) were used. Thin-layer
chromatography (TLC) was carried out by using silica gel GF254
plates (Yantai Chemical Industry Research Institute, Yantai,
China). Analytical HPLC was performed with A Waters system
(e2695 Separations Module, 2998 Photodiode Array Detector)
and a Cosmosil C18 analytical column (5µm, 4.6 × 250mm).
An Agilent 1100 LC series with a diode array detector (DAD)
using a preparative Cosmosil C18 column (20 × 250mm, 5µm)
was applied for preparative HPLC. HPLC separations were
performed using a COSMOSIL C18 preparative column (5µm,
20 × 250mm). All chemical reagents were purchased from
Tianjin Damao Chemical Company (Tianjin, P. R. China).

Plant Material
The dried fruits of Gardenia jasminoides Ellis were collected in
Guangdong Province of China in August 2015 and authenticated
by Professor Guang-Xiong Zhou (Jinan University, Guangzhou,
China). A voucher specimen (20150810) was deposited in the
Institute of Traditional Chinese Medicine & Natural Products,
Jinan University.

Extraction and Isolation
The air-dried fruits of GJE (1 kg) were crushed into powder and
extracted three times with 80% ethanol at room temperature. The
solvent was removed with a rotary evaporator under reduced
pressure to get a residue, which was suspended in water and
then partitioned by using petroleum ether, ethyl acetate and
n-butanol, successively. The ethyl acetate extract (49 g) was
chromatographed on a silica gel column which was eluted with

chloroform/methanol (100:0–0:1, v/v) to yield six fractions (Fr.
1–6). Fr. 3 (7.1 g) was fractionated on Sephadex LH-20 (MeOH)
and further purified by preparative HPLC (MeOH/H2O, 50:50,
v/v) to yield compounds 1 (35.7mg), 2 (20.9mg), 4 (18.6mg)
and 6 (20.2mg). Fr. 5 (5.5 g) was subjected to chromatography on
an ODS column using the methanol/water (40:60, to 100:0, v/v)
solvent system to give five subfractions (Fr. 5.1–5.5). Fr. 5.2 (0.5 g)
was purified by preparative HPLC (MeOH/H2O, 35:65, v/v) to
yield compounds 7 (12.3mg), 8 (18.2mg), and 9 (23.1mg). Fr.
5.3 (1.1 g) was separated by preparative HPLC (MeOH/H2O,
35:65, v/v) to yield compound 5 (9.8mg). Compound 3 (19.0mg)
was obtained by chromatography of Fr. 1 (2.5 g) on Sephadex
LH-20 (MeOH/CHCl3, 1:1, v/v). The extracted compounds were
dissolved in dimethyl sulfoxide (DMSO) and stored at−20◦C for
further study.

Primary Ovarian Granulosa Cell Culture
and Estradiol Assay
Female Sprague Dawley rats (21–22 days old) purchased from
the Laboratory Animal Unit, the University of Hong Kong,
received 15 IU pregnant mare serum gonadotropin (PMSG) by
intraperitoneal injection. After 48 h, the animals were sacrificed
and the ovaries were excised. The experiment had been approved
by the Committee on the Use of Live Animals in Teaching
and Research (CULATR Ref. 2100-10, 3203-14) of Li Ka Shing
Faculty of Medicine, the University of Hong Kong. Granulosa
cells were obtained by using a 25G needle to puncture the ovarian
granulosa layer and collected by centrifugation at 201 force-G for
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5min. The granulosa cells in serum-free DME/F12 1:1 medium
(Thermo Scientific, USA) supplemented with 0.1% bovine serum
albumin (Sigma-Aldrich, USA), 1% penicillin-streptomycin
(Sigma-Aldrich, USA), and 1µg/mL insulin (Sigma-Aldrich,
USA) were seeded at a density of 2 × 104 cells/well in a 48-well
plate and were incubated at 37◦C in 5% CO2 in an atmosphere
for 2 h. Afterwards, the vehicle or different concentrations of
GJE fractions (0.001%, 0.01%, 0.1%, 1%) or GJE components
(10, 100µM) were added to granulosa cells for 12 h. After that,
the 17β-estradiol concentration in the cell culture medium was
measured using an electro-chemiluminescence immunoassay
(Elecsys, 2010, Roche Diagnostics, Basel, Switzerland) with a 17β-
estradiol II kit (Roche Diagnostics, Switzerland) in a single batch.
In order to explore whether GJE active components could bind
to FSHR on FSHR-attenuated ovarian granulosa cells, ovarian
granulosa cells were pretreated with FSHR (2µg/mL, #sc13935;
Santa Cruz, CA) for 0.5 h. After incubation with FSHR, granulosa
cells were treated with GJE active compounds (100µM) for 12 h
(Wong et al., 2015).

Western Blot
Proteins were extracted from rat ovarian granulosa cells, washed
with HBSS and then lysed with RIPA buffer (Sigma-Aldrich,
USA) containing protease inhibitors (Roche, Germany) for
30min. The Bradford assay was used to determine the protein
concentration. Equal amounts of total protein (15 µg) were
loaded, separated on SDS-PAGE, transferred to a nitrocellulose
membrane, and then immunoblotted with the appropriate
antibody: ERα (#04-820, Millipore), ERβ (#92731, Millipore),
FSHR (#sc13935; Santa Cruz, CA) StAR (#sc25806, Santa Cruz,
CA), aromatase (#14245, Santa Cruz, CA), β-actin (13E5, Cell
Signaling Technology), GADPH (#sc48116, cell signaling). ECL
detection kit (GE, health care) was used to visualize the protein
and Quality One software (Bio-Rad) was applied to quantify the
intensities.

Cell Viability Assay
The cytotoxic effects of the active compounds of GJE on the
cell viability of estrogen-responsive MCF-7 breast cancer cells
were determined by employing the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay.MCF-7 cells were
serum-starved at a density of 5,000 cells/well in 96-well culture
plates for 12 h. MCF-7 cells were then treated with either vehicle
or various concentrations of the active compounds of GJE and
with or without co-treatment with 17β-estradiol (Sigma-Aldrich,
USA) for 48 h. At the end of the incubation, 100 µL MTT
solution (0.5 mg/mL) (Sigma-Aldrich, USA) was added to each
well followed by incubation for an additional 4 h. Afterwards,
the formazan crystals formed were dissolved in 100 µL DMSO.
Absorbance of the content of each well was detected with a
microplate reader (Bio-rad, USA) at 595 nm.

Molecular Docking Analysis
As an increasingly important tool for structural molecular
biology, molecular docking can identify binding modes and
predict binding affinity of molecules that fit together. In our
study, molecular docking (semi-flexible) was performed using

AutoDock Vina 1.1.2 software to investigate intermolecular
interactions between the ligands and target proteins. The 3D
structural information on FSHR and aromatase was retrieved
from the Protein Data Bank (PDB; PDB id of FSHR: 4AY9; PDB
id of aromatase: 3EQM). The structure visualization used for
molecular docking was done with PyMol. The CIDs of rutin,
CGA and GA were 5280805, 1794427 and 443354, respectively.
The ligand binding energy with target protein was predicted by
the free binding energy implemented in AutoDockVina software.

Statistical Analysis
Statistical analysis was performed using the GraphPad Prism
version 5.0. All data are shown as mean ± standard error of
mean (SEM) from at least three independent experiments. The
intensities of bands detected inWestern blotting were normalized
with the internal control β-actin. Differences in the mean values
of two groups were tested with unpaired t-test. A p-value below
0.05 was regarded as statistically significant.

RESULTS

Bioactive Constituents in GJE Were
Predicted by the Network Pharmacology
There were 196 phytochemicals reported in GJE by TCMSP
database, 49 phytochemicals reported in GJE by TCM database
@ Taiwan and 166 phytochemicals reported in GJE by
TCMID database. After the removal of duplicates, totally 250
compounds were identified in GJE. Among the 250 compounds,
there were 57 compounds with aDL value higher than 0.18. There
were 16 compounds with 1,302 compound-protein interactions,
and 68 compound-protein interactions with confidence score
exceeding 0.9 were selected. In addition, there were 16
compounds explored to have 4,350 compound-gene interactions,
and 653 genes with frequency exceeding 1.84 were chosen.
Simultaneously, there were 26 compounds with 505 compound-
target interactions reported from the TCMSP database. After the
deletion of duplicate interactions, there were 31 compounds with
totally 1,383 compound-target interactions declared. Afterwards,
proteins that were potential therapeutic targets of menopause
and the ovary were elucidated. There were 4 targets in
menopause reported by TTD database, 37 targets in menopause
reported by DrugBank database, and 932 genes in menopause
reported by GeneCards database. Following the removal of
duplicates, totally 952 targets were identified in menopause.
Moreover, there were 3,983 genes in the ovary reported by Okdb
database. Collectively, the integrated compound-target network
was established (Figure 4), based on the association between
molecules of GJE and targets shared by menopause and the ovary
(Figure 3A). Collectively, there were 23 ingredients of GJE that
can possess interactions of 200 targets shared by menopause and
the ovary (Table S1). In JEPETTO, pathways with an XD-score
higher than 0.36 were considered as significant pathways. With
the enrichment analysis completed, there were 25 significant
pathways (Table S2), especially including the steroid hormone
biosynthesis pathway reported (Figure 3C), which indicated a
strong association between GJE and steroidogenesis. As shown
in Figure 3B, the ovary was the major tissue that bioactive
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FIGURE 3 | Steroidogenesis under influence of GJE was predicted by network pharmacology. (A) The Venn diagram of targets from the ovaries, menopause and GJE

regulated. (B) The pie chart of tissue specificity of bioactive compounds in GJE. (C) Chemical-protein interactions related to steroid hormone biosynthesis pathways.

“gray dots” represent genes in the target set, “green dots” represent genes associated with steroid biosynthesis pathway, “blue dots” represent the overlap between

the related pathway and the input protein set.

compounds of GJE would target on, indicating tissue specificity
of the GJE components. Druggability assay was conducted to
evaluate several bioactive compounds with regard to BBB, AlogP,
and DL value. Firstly, the potential candidate is described as an
ingredient with BBB < −0.3 and AlogP ≤ 5 (Ru et al., 2014;
Kotapalli et al., 2015). Table 1 ranks in the order of DL, and the
top five compounds with relative high DL values are considered
to be more effective candidates with a relatively more desirable
drug-like property for regulating the disorder. Among these five
ingredients, possible estrogenic effects have been declaimed in
chlorogenic acid (CGA), geniposide, and geniposidic acid (GA)
(An et al., 2016). Additionally, like 17β-estradiol, rutin can slow
down the rate of bone resorption (Horcajada-Molteni et al., 2000;
Rassi et al., 2005). However, there are no reports on estrogen-
related activities in hirsutrin. Therefore, hirsutrin was excluded
and the remaining four compounds (rutin, geniposide, CGA, and
GA) were chosen as potential therapeutic agents of menopause
for further investigation.

HPLC-DAD System
The Calibration Curves and Linearity
As shown in Figure 5 and Figure S2, the regression equation of
standard constituents is Area = 85.36C-164.88. The standard
constituents showed a good linearity (R2 = 0.999643) with the
linear range being 62.5∼1,000µg/mL.

Precision
For the precision test, 10 µL sample solution was injected into
the HPLC system 3 times. The chromatogram was recorded and

the peak area of geniposide was measured. The relative standard
deviations (RSD) value was found to be 3.02% (Table S3).

Stability, Recovery, and Content of Geniposide

Measurement
For the stability test, 10 µL sample solution was injected into
the HPLC system at 0, 1, and 4 h. The chromatogram was
recorded and the peak area of geniposide was measured. As
shown in Table S4, the RSD of peak area of sample solution
was 3.25% (n = 3), which indicates that the contents of analytes
were stable within 4 h. Then the sample solution at various
concentrations was added, and the range of average recovery
was between 96.2 and 101% (Table S5). For the measurement of
geniposide content, 10 µL sample solution was injected into the
HPLC system 3 times. The chromatogramwas recorded (Table 2,
Figure 6, and Figure S3).

Identification of Bioactive Fraction in GJE
To identify the bioactive fraction of GJE that can stimulate
estradiol, the estradiol levels in cell culture medium of rat
granulosa cells treated with various GJE fractions were measured.
Among the various GJE fractions, the estrogen level of ethyl
acetate fraction (1%) group was the highest (Figure 7), which
indicated that the ethyl acetate fraction of GJE (GJE-EA)
significantly stimulated estrogen synthesis in vitro. The effect
of GJE-EA on CYP19 and FSHR expression in vitro was then
examined byWestern blot assays. Rat granulosa cells were treated
with either vehicle or different GJE fractions for 12 h. The GJE-
EA (1%) significantly increased the expression levels of CYP19
and FSHR compared with the vehicle control group (Figure S4),
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FIGURE 4 | Therapeutic compound-target network of menopause and GJE. The size of nodes and edges is proportional to its value. The color brightness of the

nodes is inversely related with its value. In other words, the value of the node is the highest when the color is blue, and the value of the node is the lowest when the

color is red.

which suggested that the ethyl acetate fraction of GJE afforded
stimulation of estradiol biosynthesis probably by up-regulation
of the FSHR-aromatase pathway.

Identification of the Major Components of
GJE-EA Fraction
Nine compounds (1–9) (Figure 8) were isolated from the GJE-
EA fraction. Their structures were identified as geniposide (Tsai
et al., 2002), (1) rutin (2) (Su et al., 2014), ursolic acid (3) (Pieroni
et al., 2011), liquiritoside (4) (Liu et al., 2005), CGA (5) (Peng
et al., 2000), GA (6) (El Bitar et al., 2004), 3,5-O-dicaffeoylquinic
acid (7) (Peng et al., 2000), 3,5-O-dicaffeoylquinic acid methyl
ester (8) (Peng et al., 2000), and 3,4-O-dicaffeoylquinic acid (9)
(Chen et al., 2014) by comparison of their spectral data with those
reported in the literature.

Determination of Bioactive Components in
GJE With Estradiol Biosynthesis
Stimulating Effect
The 9 compounds from GJE-EA were identified with 4 of
them predicted using network pharmacology. To identify

the active compounds from the 9 compounds with estradiol-
stimulating ability, the estradiol levels in ovarian granulosa
cells were determined. After 12 h of treatment with the
compounds isolated from GJE-EA, production of estradiol
in rat ovarian granulosa cells was determined. As shown
in Figure 9, rutin, CGA, GA, and 3,5-O-dicaffeoylquinic
acid also enhanced steroidogenesis in vitro. However, the
estrogen stimulating effect of 3,5-O-dicaffeoylquinic acid
was not predicted by network pharmacology. Thus, rutin,
CGA, and GA probably contributed to the stimulatory effect
of GJE on estradiol biosynthesis in rat ovarian granulosa
cells.

Molecular Docking of Rutin, CGA, and GA
With FSHR and Aromatase
Estrogen can be produced by the target of classical FSHR-
aromatase pathway (Simpson et al., 1994; Hunzicker-Dunn
and Maizels, 2006; Luo and Wiltbank, 2006).To determine
whether rutin, CGA, and GA could activate FSHR and
aromatase, molecular docking studies were performed
to predict the binding energies between 3D structure of
ligands and FSHR; ligand and aromatase, respectively.
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TABLE 1 | Twenty-three compounds derived from GJE that can target genes

associated with both menopause and the ovary.

Rank Ingredient name DL BBB BBB

C1 Hirsutrin 0.77 −2.31 −0.59

C2 Rutin 0.68 −2.75 −1.45

C3 Geniposide 0.44 −2.61 −2.25

C4 Genioisidic acid 0.41 −2.63 −2.5

C5 Chlorogenic acid 0.33 −1.71 −0.42

C6 Quercetin 0.28 −0.77 1.5

C7 3-Methylkempferol 0.26 −0.49 1.84

C8 Crocetin 0.26 −0.83 4.58

C9 Kaempferol 0.24 −0.55 1.77

C10 Genistein 0.21 −0.4 2.07

C11 Oleanolic acid 0.76 0.07 6.42

C12 Stigmasterol 0.76 1 7.64

C13 Ursolic acid 0.75 0.07 6.47

C14 Beta-sitosterol 0.75 0.99 8.08

C15 Syringaresinol 0.72 −0.03 2.1

C16 Sudan III 0.59 0.1 7.21

C17 Lutein 0.55 −0.99 9.47

C18 Artemisetin 0.48 −0.09 2.31

C19 5-hydroxy-7-methoxy-2-(3,4,5-

trimethoxyphenyl)chromone

0.41 −0.21 2.8

C20 Isoimperatorin 0.23 0.66 3.65

C21 Ammidin 0.22 0.92 3.65

C22 Mandenol 0.19 1.14 6.99

C23 Chrysin 0.18 0.01 2.6

Compounds are listed in the order of DL. C1 to C10 which satisfied the conditions of BBB

< −0.3 and AlogP < 5.

The estimated free energy of binding with FSHR for
rutin was −8.7 kcal/mol, for CGA was −7.8 kcal/mol,
for GA was −7.1 kcal/mol (Figure 10A); aromatase for rutin
was −0.8 kcal/mol, for CGA was −8.5 kcal/mol and for GA was
−7.3 kcal/mol (Figure 10A), which revealed that all compounds
can bind with FSHR and aromatase. The results of in silico
docking analysis revealed the optimal binding conformation of
the FSHR-rutin complexes (Figure 10B), FSHR-CGA complexes
(Figure 10C), FSHR-GA complexes (Figure 10D), respectively;
aromatase-rutin complexes (Figure 10E), aromatase-CGA
complexes (Figure 10F) and aromatase-GA complexes,
respectively (Figure 10G).

Effects of Rutin, CGA, and GA on
FSHR-Attenuated Ovarian Granulosa Cells
and StAR-FSHR-aromatase Pathway
To investigate the mechanism of action of the estrogen-
stimulating effect of rutin, CGA, and GA, Western blotting
assay was performed to detect the changes in expression level
of steroidogenic acute regulatory protein (StAR), CYP19 and
FSHR in ovarian granulosa cells treated with either vehicle or
different concentrations of rutin, CGA, and GA, respectively.
To clarify whether the estradiol-stimulating effects of rutin,
CGA, and GA are mediated by FSHR in ovarian granulosa

cells, the FSHR antibody was used. In the FSHR-attenuated
ovarian granulosa cell model, the estrogen-stimulating effects of
rutin, CGA, and GA were abolished, indicating the involvement
of FSHR in the effects of ruin, CGA, and GA on estradiol
biosynthesis (Figure 11B). StAR mediates the progressive uptake
of cholesterol, which works as a raw material for estrogen
synthesis (Papadopoulos and Miller, 2012). Western blot results
showed that rutin and CGA significantly up-regulated FSHR
expression (Figure 11A); all ligands markedly increased the
expression levels of both StAR and CYP19 (Figures 11C,D).

The Effects of Rutin, CGA, and GA on Level
of Expression of Estrogen Receptors α

and β
To investigate the role of ER status on the estrogen-stimulating
action of rutin, CGA, and GA, western blot analysis was used
to confirm the expression of estrogen receptor α (ERα) and
estrogen receptor β (ERβ). Rutin had no discernible effect on
ERα expression level but significantly increased the protein
expression levels of ERβ in granulosa cells after 12 h of treatment;
CGA significantly activated ERβ expression and inhibited ERα

expression; while GAmarkedly suppressed the expression of ERα

(Figures 12A,B).

The Cytotoxic Effects of Rutin, CGA, and
GA on MCF-7 Breast Cancer Cells
The effects of GJE bioactive compounds (rutin, CGA, and GA)
on cell proliferation of MCF-7 breast cancer cells, whose growth
is positively associated with estrogen level, were investigated with
MTT assay. The cell viability curves indicated that the viability of
MCF-7 breast cancer cells decreased, both in the presence and in
the absence of 1 × 10−7M 17β-estradiol after treatment for 48 h
with rutin, CGA, and GA, respectively (Figure 13).

DISCUSSION

As a hallmark of menopause, estrogen depletion can be
effectively regulated by targeting 17β-estradiol level via estrogen
biosynthesis (Pollow et al., 2015). GJE was traditionally adopted
to improve women’s health in Asia (Yang et al., 2016). Recent
evidence also suggests that GJE or its active constituents have
diverse functions such as anti-depressant (Cai et al., 2015; Zhang
et al., 2015; Ren et al., 2016; Wang et al., 2016), anti-cancer, anti-
oxidant, and neuroprotective activities (Phatak, 2015). However,
whether or not GJE can relieve estrogen depletion, the identities
of its active compounds as well as its mechanism of action remain
poorly understood. Here, network pharmacology was conducted
to elucidate the association between GJE and steroid biosynthesis
pathway and predict the most likely active ingredients in
GJE (Figure 2, Table 1). Then the HPLC-DAD system was
used to isolate several fractions from GJE (Figure S1). The
active fraction of GJE and its major compounds were also
investigated. With the combination of the major compounds
from the active fraction and possible active ingredients from
network pharmacology, phenotypic (estrogen-stimulating effect)
and target-based (aromatase/FSHR/StAR/ERα/ERβ) methods
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FIGURE 5 | HPLC chromatogram of geniposide in standard solution with different geniposide concentrations. Time (min) as unit of Y-axis and chromatographic

profiles are reported at 240 nm. The concentration of standard solution was 0.0625 mg/mL (A), 0.125 mg/mL (B), 0.25 mg/mL (C), 0.5 mg/mL (D), 1 mg/mL (E).

were used to find the active components of GJE (Lu et al., 2016).
Phenotypic approaches play a crucial role in drug discovery
because data from the large-scale drug screening and target-
based approaches suggest the relationships between a potential
new drug and its molecular targets (Gilbert, 2013; Swamidass
et al., 2014). Finally, the bioactive compounds of GJE that could

stimulate the biosynthesis of ovarian estradiol was reported
(Figure 1).

Network pharmacology works as a proximal tool for the
investigation of ingredients in Traditional Chinese Medicine
(TCM) nowadays (Hopkins, 2008; Huang et al., 2013;Wang et al.,
2013; Zhang et al., 2013). In the current study, TCM network
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TABLE 2 | The concentrations of geniposide in different fractions derived from

GJE.

Concentration of

geniposide (µg/mL)

Average (µg/mL)

Petroleum fraction 83.256 86.486

89.184

87.020

Ethyl acetate fraction 407.739 411.792

425.260

402.376

N-butanol fraction 473.618 482.050

489.030

483.501

Water fraction 46.203 45.613

45.061

45.574

Ethanol fraction 298.965 309.732

312.941

317.288

pharmacology approaches were used to establish the therapeutic
compound-target interaction network (Shao and Zhang, 2013).
It was shown that the combination of GJE and other
herbal medicine can attenuate menopausal symptoms (Chen
et al., 2003). In accordance with previous studies, there
were 200 targets shared by menopause, the ovary and 23
compounds of GJE, which signifies a therapeutic role of GJE
for treating postmenopausal syndrome (Table 1, Table S1, and
Figures 3A, 4). Moreover, steroid hormone biosynthetic pathway
was the pathway most significantly related to GJE (Table S2,
Figure 3B). The pathway was used to present the effects of GJE on
estrogen production. The tissue specificity assay has confirmed
that the ovary worked as the main organ targeted by GJE
compounds (Figure 3C). Importantly, four possible bioactive
compounds of GJE, including rutin, geniposide, GA, and CGA
were identified with the druggability assay.

There were five fractions of GJE isolated by the HPLC-
DAD system. Our results showed that the RSD value was
smaller than 5% and the recovery value was not less than 95%,
which demonstrated that the conditions used in the quantitative
analysis met the standard (Tables S3–S5). Additionally, the
HPLC chromatograms of geniposide from the different extracts
of GJE showed that the concentration of geniposide in the N-
butanol fraction was the highest, followed successively by the
ethyl acetate fraction, ethanol fraction, petroleum fraction and
water fraction (Table 2, Figures 5, 6, and Figure S3). Among
the five fractions of GJE, GJE-EA was identified to be the
fraction that most significantly increased estradiol production
in ovarian granulosa cells (Figure 7). Aromatase, encoded by
gene CYP19, catalyzes the process of estrogen biosynthesis in
ovarian granulosa cells (Luo and Wiltbank, 2006). When women
experience menopause, the activity of aromatase decreases
abruptly (Sze et al., 2009). It was demonstrated that CYP19

can be activated by upregulation of follicle-stimulating hormone
receptor (FSHR) (Simpson et al., 1994). Importantly, it has
been reported that the activation of FSHR can mediate estrogen
production in ovarian granulosa cells (Hunzicker-Dunn and
Maizels, 2006). Therefore, estrogen production can be promoted
by activation of the FSHR-aromatase pathway. The results of
Western blot showed that the protein levels of both FSHR and
aromatase were increased significantly in ovarian granulosa cells
treated with 0.1% GJE-EA (Figure S4).

Nine major compounds from GJE-EA were then isolated
(Figure 8) and four of the nine compounds were predicted
by network pharmacology. The phenotypic approach was then
utilized to screen the steroidogenic ability of the probable
active compounds. It was found that rutin, CGA, and GA
displayed estrogen-stimulating activities (Figure 9). Importantly,
treatment with GJE-derived compounds resulted in higher
estrogen levels in ovarian granulosa cells than that induced by
the three bioactive compounds alone and that the combination
treatment may, at least partly, explain the principle of estrogen
stimulating effect of GJE extract alone. Numerous in vivo and in
vitro studies suggest that rutin, CGA, and GA possess multiple
biological functions and various pharmacological activities, such
as anti-cancer, anti-osteoporotic and neuroprotective properties.
For the suppression of breast cancer, rutin reduced proliferation
and induced apoptosis in MCF-7 breast cancer cells (Kamaludin
et al., 2013; Kamaludin, 2015). CGA reduced viability of estrogen-
independent DA-MB-435 breast cancer cells but not normal
MCF-10A cells (Noratto et al., 2009). Although there is little
information about the anti-cancer activity of GA, GA had a
potential inhibitory effect on tumor growth (Hsu et al., 1997).
For the inhibition of bone loss, rutin inhibited osteopenia
through suppressing bone resorption and enhancing osteoblastic
activity in ovariectomized (Ovx) rats (Horcajada-Molteni et al.,
2000); CGA prevented the decrease of mineralization and
promoted the increase the mechanical properties and thus
inhibited bone loss in Ovx animals (Folwarczna et al., 2015;
Zhou et al., 2016); GA promoted osteogenesis by increasing
the proliferation of osteoblasts and inhibited osteolysis by
decreasing the proliferation of osteoclasts (Ha et al., 2003). For
the promotion of neuron regeneration, rutin was reported to
prevent spatial and emotional memory impairment (Qu et al.,
2014; Ramalingayya et al., 2016); CGA supplementation could
interfere in neurological degeneration (Heitman and Ingram,
2017); Though less evidence indicates a direct connection of GA
with cognitive improving activities, GA is themain component of
Tong Luo Jiu Nao, which was shown to prevent neuronal damage
and improve learning and memory (Liu et al., 2011, 2013). It
is accepted that long-term use of HT can elevate the risk of
breast cancer in menopausal women (Colditz, 1998). In addition,
osteoporosis and cognitive decline are the major menopausal
symptoms caused by estrogen deprivation in postmenopausal
women (Lufkin et al., 1992; Prelevic and Jacobs, 1997;Miller et al.,
2013; Lobo et al., 2014). Therefore, the abovementioned evidence
may contribute to the therapeutic role and safety of rutin, CGA,
and GA in the management of postmenopausal syndrome.

In this study, in order to gain an insight into the likely
molecular basis of the estrogen stimulating effect of rutin, CGA,
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FIGURE 6 | HPLC chromatogram of geniposide from different fractions derived from GJE. Time (min) as unit of Y-axis and chromatographic profiles are reported at

240 nm. The contents of geniposide are shown in petroleum fraction (A), Ethyl acetate fraction (B), N-butanol fraction (C), Water fraction (D), Ethanol fraction (E).

and GA, molecular docking analysis was used to predict the
binding mode of rutin, CGA, and GA with FSHR and aromatase,
respectively (Figure 10). Western blotting assay was used to
validate the effects of rutin, CGA, and GA at the protein
expression levels of FSHR and CYP19 in vitro. Results showed
that rutin and CGA were able to increase the expression of
FSHR and all compounds were able to increase the expression
level of CYP19 in ovarian granulosa cells (Figures 11A,C). Then
the FSHR involvement in the estrogen-stimulating effects of
rutin, CGA, and GA was also detected. It was found that the

estrogen-stimulating effects brought about by rutin, CGA, and
GA were attenuated when the FSHR on ovarian granulosa cells
were blocked by antibodies (Figure 11B). Apart from FSHR
and aromatase, steroidogenic acute regulatory protein (StAR)
also plays an essential role in estradiol biosynthesis, due to
the fact that StAR can regulate the uptake of cholesterol into
the mitochondria of theca cells, which is the raw material
for estradiol biosynthesis (Papadopoulos and Miller, 2012). In
this study, the expression level of StAR in ovarian granulosa
cells was further tested. All three compounds were found to
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FIGURE 7 | Identification of the GJE- derived bioactive fraction with estrogen

stimulating effect using phenotypic screening. Effects of GJE fractions on

production of estrogen in granulosa cells after 12 h of treatment were

determined by estradiol assay. Each value represents mean ± SEM (n = 3),

**p < 0.01, One-way ANOVA Dunnett’s Multiple Comparison Task.

FIGURE 8 | Major compounds 1–9 identified in GJE-EA fraction. The GJE-EA

fraction was chromatographed on silica gel column; the fractions were

fractionated on Sephadex LH-20; and the compounds were purified by

preparative HPLC. (1) geniposide; (2) rutin; (3) ursolic acid; (4) liquiritoside; (5)

CGA; (6) GA; (7) 3,5-O-dicaffeoylquinic acid; (8) 3,5-O-dicaffeoylquinic acid

methyl ester; and (9) 3,4-O-dicaffeoylquinic acid.

be able to increase StAR levels in ovarian granulosa cells
(Figure 11D).

Low toxicity and little side effect are the great advantages
of GJE (Liu et al., 2013; Chen et al., 2015; Im et al., 2016).

FIGURE 9 | Identification of the GJE-EA derived bioactive components with

estrogen stimulating effect using phenotypic screening. Effects of GJE

components on production of estrogen in granulosa cells after treatment for

12 h was determined by estradiol assay. Each value represents mean ± SEM

(n = 5) *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. vehicle control

group.

The only hepatotoxic and genetoxic properties of GJE reported
are due to genipin (Liu et al., 2013), which is excluded by
network pharmacology. Importantly, while HT is a conventional
approach for relieving postmenopausal syndrome, the long-
term use of estrogen in HT imparts an increased risk of
breast cancer (Colditz, 1998), and estrogen can be mediated
by estrogen receptor alpha (ERα) and estrogen receptor beta
(ERβ) (Deroo and Korach, 2006; Jia et al., 2015). However,
estrogen interacts with ERα and ERβ downstream pathways
in dissimilar ways (Nilsson et al., 2001). ERβ regulates the
FSH-aromatase pathway and enhances ovarian steroidogenesis
(Deroo et al., 2009; Wang et al., 2017). It has been shown that
selective activation of ERβ transcriptional pathways may not
promote breast cancer (Paruthiyil et al., 2004). Additionally,
ERβ was found to inhibit the proliferation of breast cancer cell
line T47D (Ström et al., 2004). However, ERα has a close and
positive relationship with breast cancer. ERα gene amplification
is frequent in proliferative breast disease, especially breast cancer
(Holst et al., 2007). Besides, the presence of high ERα levels in
benign breast epithelium may explain the elevated possibility of
breast cancer development, which indicates that ERα is crucial
in breast cancer cell progression (Ali and Coombes, 2000). In
this study, it was found that ERβ was upregulated following
treatment with rutin and CGA (Figure 12B); and ERα was
downregulated after treatment of CGA and GA in granulosa
cells (Figure 12A). The effect on the ERs could be directly
induced by the bioactive compounds in GJE or indirectly as
a result of GJE and bioactive compounds increasing estrogen

Frontiers in Pharmacology | www.frontiersin.org 12 May 2018 | Volume 9 | Article 390

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. Estrogen Stimulating Compounds of GJE

FIGURE 10 | Modes of binding of rutin, CGA and GA with FSHR and aromatase. (A) The binding energy of each complex. (B–D) The optimal binding conformations

of the FSHR-rutin complexes, FSHR-CGA complexes and FSHR-GA complexes. (E–G) The optimal binding conformations of the aromatase-rutin complexes,

aromatase-CGA complexes and aromatase-GA complexes.
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FIGURE 11 | Effects of rutin, CGA, and GA on levels of FSHR, aromatase and StAR in ovarian granulosa cells after 12 h of treatment. (A,C,D) Effects of rutin, CGA,

and GA on FSHR, aromatase and StAR expression in ovarian granulosa cells. Ovarian granulosa cells of SD rats were treated with various concentrations of rutin,

CGA, and GA respectively for 12 h, respectively, and then total cell lysates were extracted for Western blot analysis by using antibodies specific to FSHR, aromatase

and StAR. The representative image and the relative expression levels of FSHR, aromatase and StAR are shown. (B) Estrogen stimulating effect of rutin, CGA, and GA

on ovarian granulosa cells with antibody-blocked FSHR diminished. The data were normalized with the internal control β-actin, each value is the mean ± SEM (n = 4),

with *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. vehicle control group.

levels in ovarian granulosa cells. Furthermore, risk evaluation
of active compounds in GJE was performed by investigating the
effects of rutin, CGA, and GA on the viability of MCF-7 human
breast cancer cell line in the presence or absence of 1 × 10−7

M 17β-estradiol. It was disclosed that 17β-estradiol treatment
significantly promoted the proliferation ofMCF-7 cells. However,
the proliferative response to 17β-estradiol was counteracted by
treatment with rutin, CGA, and GA. The anti-human breast
cancer activities of rutin, CGA, and GA suggest the safety and
potential of GJE as an effective herbal medicine with estrogen-
stimulating effects (Figure 13). To our knowledge, there is no
evidence that reveals the acute or chronic toxicity of rutin, CGA,
and GA yet. However, further experiments should be conducted

in the future to examine the possibility of GJE and its bioactive
compounds on the development of breast cancer in vivo, based
on the fact that aromatase inhibitors are extensively used by
post-menopausal women with estrogen-dependent breast cancer
(Brueggemeier et al., 2005).

Different from the traditional approach for TCM study,
network pharmacology was exploited to confirm the therapeutic
role of GJE in the management of postmenopausal syndrome
by constructing the compound-target network in this article. In
addition, the possible active compounds were also predicted by
network pharmacology in this article. The estrogen screening
assay was conducted after the combination of the results
from network pharmacology and traditional approach of
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FIGURE 12 | Effects of rutin, CGA, and GA on estrogen receptor expression in ovarian granulosa cells after treatment for 12 h. Ovarian granulosa cells of SD rats were

treated with various concentrations of rutin, CGA, and GA for 12 h, respectively, and then total cell lysates were extracted for Western blot analysis by using antibodies

specific to ERα and ERβ. The representative image and the relative expression levels analyzed of (A) ERα and (B) ERβ are shown. The loading control of ERβ is reused

from that of StAR since they were from the same membrane. The data were normalized with the internal control β-actin, and each value is the mean ± SEM (n = 4),

with *p < 0.05, **p < 0.01, ***p < 0.001, vs. vehicle control group.

FIGURE 13 | Viability of MCF-7 breast cancer cells. (A–C) The proliferation of MCF-7 cells in the presence or absence of 1 × 10−7 M 17β-estradiol was determined

by using MTT assay after 12 h treatment with different dosages of rutin, CGA, and GA. Each value represented mean ± SEM (n = 4), *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, vs. vehicle control group; #p < 0.05, ###p < 0.01, ###p < 0.001, ####p < 0.0001 vs. 17β-estradiol group.

isolation of major compounds, which can avoid omission of
potential active components and guarantee completeness of
the experiment. Importantly, only compounds interacting with
the targets that are shared by both the ovary and menopause

could be considered for further investigation in this article,
indicating the tissue-specificity and disease-specificity of the
compounds selected. We hope the scheme in this work will
bring new insight into the systematic investigation of TCM
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and lead to a wide range of applications for the identification
and development of the potential novel and safe therapeutic
candidates.

CONCLUSION

In summary, we have shown that GJE and its bioactive
compounds (rutin, CGA, and GA) exerted estrogen stimulating
effects in vitro and up-regulated the FSHR-aromatase pathway
without increasing the risk of hormone-dependent breast cancer.
These data reveal that GJE and its bioactive compounds may
be considered as promising candidates for further research
and development into therapeutic agents for the treatment of
postmenopausal syndrome.
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Figure S2 | HPLC standard curve of geniposide. The regression equation of

standard constituents is Area = 85.36C-164.88. The standard constituents

showed a good linearity (R2 = 0.999643) with the linear range 62.5–1000µg/ml.

Figure S3 | 3-D chromatogram of geniposide from sample solution. (A) petroleum

fractions; (B) ethyl acetate fractions; (C) n-butanol fractions; (D) water fractions;

(E) ethanol fractions. X-axis as time (min) as, Y-axis as absorbance, Z-axis as

wavelength.

Figure S4 | The effect of GJE fractions on CYP19 and FSHR level in granulosa

cells was detected by western blot assay. (A) Representative western blot results

of aromatase, FSHR, and GAPDH levels; (B) Densitometric analysis of CYP19

expression levels; (C) Densitometric analysis of FSHR expression levels (∗∗p <

0.01).

Table S1 | Forty nine compounds of GJE identified from TCMSP @ Taiwan

database.

Table S2 | The 25 significant pathways found by JEPETTO (Cytoscape plugin)

with KEGG database.

Table S3 | Precision study of sample solution of geniposide.

Table S4 | Stability study of sample solution of geniposide.

Table S5 | Recovery study of sample solution.
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