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Ischemia is a multifactorial pathology characterized by different events evolving in time.
Immediately after the ischemic insult, primary brain damage is due to the massive
increase of extracellular glutamate. Adenosine in the brain increases dramatically during
ischemia in concentrations able to stimulate all its receptors, A1, Aoa, Aog, and As.
Although adenosine exerts clear neuroprotective effects through A4 receptors during
ischemia, the use of selective A1 receptor agonists is hampered by their undesirable
peripheral side effects. So far, no evidence is available on the involvement of adenosine
Aog receptors in cerebral ischemia. This study explored the role of adenosine Aog
receptors on synaptic and cellular responses during oxygen and glucose deprivation
(OGD) in the CA1 region of rat hippocampus in vitro. We conducted extracellular
recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of
damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD
induced anoxic depolarization (AD) in all hippocampal slices tested and completely
abolished fEPSPs that did not recover after return to normoxic condition. Seven
minutes OGD was applied in the presence of the selective adenosine Aog receptor
antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min
before, during and 5 min after OGD. Both antagonists were able to prevent or delay
the appearance of AD and to modify synaptic responses after OGD, allowing significant
recovery of neurotransmission. Adenosine Aog receptor antagonism also counteracted
the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at
least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to
those of controls, thus sparing neurons from the degenerative effects caused by the
simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum
already 3 h after the end of OGD, possibly due to increased glutamate release.
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Aosgreceptor antagonism significantly prevented astrocyte modifications. Both Aog
receptor antagonists did not protect CA1 neurons from the neurodegeneration induced
by glutamate application, indicating that the antagonistic effect is upstream of glutamate
release. The selective antagonists of the adenosine Aog receptor subtype may thus
represent a new class of neuroprotective drugs in ischemia.

Keywords: apoptosis,
neurodegeneration

INTRODUCTION

Cerebral ischemic stroke represents a life threatening
neurological disorder that leads to mortality and long-term
disability in surviving patients. Ischemic stroke remains one of
the main causes of death and disability in the western countries
with only very limited therapeutic options (Dirnagl, 2012).

Acute brain injury after stroke is caused primarily by the lack
of oxygen and glucose. In such conditions, mammalian neurons
rapidly depolarize, and excessive release of glutamate occurs,
causing excitotoxic cell death, largely due to over-activation of
glutamatergic N-methyl-D-aspartate (NMDA) receptors. NMDA
receptors are highly permeable to Ca?* and are responsible
for intracellular Ca>* increase that reaches neurotoxic levels
which, by activating cell lipases, endonucleases, proteases, and
phosphatases, ultimately bring to acute excitotoxic cell death
(Choi, 1992). Also, one of the early events occurring by
an ischemic episode in vivo and during oxygen and glucose
deprivation (OGD) in vitro, is the release of substantial amounts
of adenosine (Latini et al., 1998; Melani et al., 1999; Frenguelli
et al., 2007).

Adenosine exerts its biological functions via four receptors
subtypes, A1, Aza, Azp, and Az (Latini and Pedata, 2001). Many
studies indicate that A; receptors play a prominent inhibitory
tone on synaptic transmission and that adenosine selective
antagonists, acting on this receptor subtype, has a protective
role under ischemia (Pedata et al, 2016). Unfortunately, the
development of A; receptor selective agonists as possible
anti-ischemic drugs has been stalled by their sedative
and cardiovascular side effects, including bradycardia and
hypotension. Therefore, in order to identify putative targets for
therapeutic intervention, the research on possible anti-ischemic
drugs has focussed on the contribution of the other adenosine
receptors. The role of the adenosine Ayx receptor under ischemia
has been largely investigated (Chen et al., 2007; Pedata et al.,
2014). Among adenosine receptors, the A,p receptor subtype is
the least studied and still remains the most enigmatic, because
of the relatively low potency of adenosine for this receptor
(Fredholm et al.,, 2011) and the very few selective ligands that
have been described so far. Most of the present knowledge
on A,p receptors originates from their peripheral role on the
control of cardiac myocyte contractility, intestinal tone, asthma,
inflammation, cancer and diabetes (Feoktistov et al., 1998;
Kolachala et al., 2008; Chandrasekera et al., 2010; Merighi et al,,
2015; Allard et al., 2017). Ap receptors play proinflammatory
roles in human asthma, in chronic obstructive pulmonary disease
and murine colitis (Feoktistov et al., 1998; Csdka et al., 2007;

MRS1754, PSB603, OGD, anoxic depolarization,

mTOR, confocal microscopy,

Kolachala et al., 2008). In the central nervous system (CNS),
adenosine Ajp receptors, although scarcely, are uniformly
expressed (Dixon et al.,, 1996) including in the hippocampus
(Perez-Buira et al., 2007), but their role or function and in
particular under ischemic/hypoxic conditions is still to be
clarified. Understanding the processes by which the applications
of these compounds confer neuroprotection should shed light on
mechanisms to delay or mitigate the pathophysiological effects
of ischemic injury.

In this paper we investigated the role of adenosine Ajp
receptors during OGD in the CA1 region of rat hippocampus,
the most susceptible hippocampal area to an ischemic insult. For
this purpose two selective adenosine Ajp receptor antagonists
were used. In order to characterize the OGD-induced cell
injury and putative pharmacological protection, we conducted
extracellular recordings of CAl field excitatory post-synaptic
potentials (fEPSPs) after a severe (7 min or 30 min) simil-
ischemic insult. The response to ischemia consists of complex,
concerted actions of the CNS and the peripheral immune system,
that is very difficult to reproduce in in vitro model. However,
these OGD episodes bring about irreversible depression of
neurotransmission and the appearance of anoxic depolarization
(AD) (Frenguelli et al., 2007; Pugliese et al., 2007). AD is a severe
neuronal depolarization, which is an early and critical event that
has been demonstrated both in vivo (Somjen, 2001) and in vitro
(Tanaka et al., 1997; Pugliese et al., 2006). AD triggers a variety
of molecular events, contributes to cell death and represents an
unequivocal sign of neuronal injury (Somjen, 2001). The amount
of time spent by neurons in AD is an important determinant
of neuron fate. Propagation of AD from the ischemic core is
one major factor contributing to neuronal death in the area
surrounding the ischemic core (the penumbra) (Koroleva and
Bures, 1996). The penumbra constitutes potentially salvageable
tissue and hence a pharmacological treatment that delays the
onset of AD would help to protect brain tissue from ischemia
(Jarvis et al., 2001; Somjen, 2001).

Cell viability, extent of neuronal damage, astrocytes
immunoreactivity and activation of apoptosis markers were
also assessed by immunohistochemical analysis. Preliminary data
were presented at the Society for Neuroscience Meeting (Ugolini
etal., 2017).

MATERIALS AND METHODS

All animal experiments were performed according to the
Italian Law on Animal Welfare (DL 26/2014), approved by the
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Institutional Animal Care and Use Committee of the University
of Florence and by the Italian Ministry of Health. All efforts were
made to minimize animal sufferings and to use only the number
of animals necessary to produce reliable scientific data. Male
Wistar rats (Envigo, Italy, 150-200 g body weight) were used.
Experiments were carried out on acute rat hippocampal slices,
prepared as previously described (Pugliese et al., 2006, 2009).

Preparation of Slices

Animals were killed with a guillotine under anesthesia with
isoflurane (Baxter, Rome, Italy) and hippocampi were rapidly
removed and placed in ice-cold oxygenated (95% O,-5% CO3)
artificial cerebrospinal fluid (aCSF) of the following composition
(mM): NaCl 124, KCI 3.33, KH,PO4 1.25, MgSO4 14, CaCl,
2.5, NaHCOs3 25, and D-glucose 10. Slices (400 pm nominal
thickness) were cut using a Mcllwain Tissue Chopper (Mickle
Laboratory Engineering Co. Ltd., Gomshall, United Kingdom)
and kept in oxygenated aCSF for at least 1 h at room temperature.
A single slice was then placed on a nylon mesh, completely
submerged in a small chamber (0.8 ml) and superfused with
oxygenated aCSF (31-32°C) at a constant flow rate of 1.5 ml/min.
The treated solutions reached the preparation in 60 s and this
delay was taken into account in our calculations.

Extracellular Recordings

Test pulses (80 s, 0.066 Hz) were delivered through a bipolar
nichrome electrode positioned in the stratum radiatum of the
CA1 region of the hippocampus to stimulate the Schaffer
collateral-commissural pathway (Figure 1A). Evoked potentials
were extracellularly recorded with glass microelectrodes (2-10
MQ, Harvard Apparatus LTD, United Kingdom) filled with
150 mM NaCl. The recording electrode was placed at the
dendritic level of the CAIl region to record field excitatory
postsynaptic potentials (fEPSPs) (Figure 1A). Responses were
amplified (200x, BM 622, Mangoni, Pisa, Italy), digitized
(sample rate, 33.33 kHz), and stored for later analysis with LTP
(version 2.30D) program (Anderson and Collingridge, 2001). The
amplitude of fEPSP was measured as the difference between the
negative peak following the afferent fiber volley and the baseline
value preceding the stimulus artifact. In some experiments both
the amplitude and the initial slope of fEPSP were quantified, but
since no appreciable difference between these two parameters
was observed under control conditions, in the presence of
drugs or during in vitro ischemia, only the measure of the
amplitude was expressed in the figures. When a stable baseline of
evoked responses was reached, fEPSP amplitudes were routinely
measured and expressed as the percentage of the mean value
recorded 5 min before the application of any treatment (in
particular pre-OGD). Stimulus-response curves were obtained
by gradual increase in stimulus strength at the beginning of
each experiment. The test stimulus strength was then adjusted
to produce a response whose amplitude was 40% of the
maximum and was kept constant throughout the experiment.
Simultaneously, with fEPSP amplitude, AD was recorded as
negative extracellular direct current (d.c.) shifts induced by OGD.
The d.c. potential is an extracellular recording considered to
provide an index of the polarization of cells surrounding the
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FIGURE 1 | Experimental methods. (A) Microphotography of an hippocampal
slice showing the three subregions, the localization of the stimulating and
recording electrodes and the region of interest (ROI, framed area) for the
immunohistochemical analyses. SP, stratum pyramidale; SR, stratum
radiatum. Scale bar: 200 pm. (B) Schematic representation of the
experimental method.

4% paraformadehyde
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tip of the glass electrode (Farkas et al., 2008). AD latency,
expressed in min, was calculated from the beginning of OGD;
AD amplitude, expressed in mV, was calculated at the maximal
negativity peak. In the text and bar graphs, AD amplitude values
were expressed as positive values. The terms “irreversible synaptic
failure” or “irreversible loss of synaptic transmission” used in the
present work refer to the maximal time window of cell viability
in our experimental model (acutely isolated hippocampal slice
preparation) which, according to our previous results is 24 h
(Pugliese et al., 2009).

Paired-Pulse Facilitation

To elicit paired-pulse facilitation (PPF) of fEPSP, we stimulated
the Schaffer collateral-commissural fibers twice with a 40-ms
interpulse interval. Double stimulation was evoked once every
15 s. The synaptic facilitation was quantified as the ratio (P2/P1)
between the slope of the fEPSP elicited by the second (P2) and the
first (P1) stimuli. PPF was monitored in control conditions for at
least 5 min before the application of BAY606583. The effect of
BAY606583 on PPF was evaluated by measuring the P2/P1 ratio
during at least 5 min after 15 min of agonist application.

Drugs

Two selective adenosine Ajp receptors antagonists, N-(4-
Cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dip-ropyl-
1H-purin-8-yl)phenoxy]-acetamide) (MRS1754) and 8-[4-[4-
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(4-Chlorophenzyl) piperazide-1-sulfonyl) phenyl]]-1-propyl
xanthine (PSB603) were used. D-2-amino-5-phosphonovalerate,
a selective  NMDA receptor antagonist was used. All
these compounds were purchased from Tocris (Bristol,
United Kingdom). The A; receptor antagonist DPCPX (8-
cyclopentyl-1,3-dipropylxanthine) was purchased from SIGMA
Aldrich (https://www.sigmaaldrich.com).

All drugs were dissolved in dimethyl sulphoxide (DMSO).
Stock solutions, of 1000-10,000 times the desired final
concentration, were stored at —20°C. The final concentration of
DMSO (0.05% and 0.1% in aCSF) used in our experiments did
not affect either fEPSP amplitude or the depression of synaptic
potentials induced by OGD (data not shown).

Application of OGD and Adenosine Asg

Receptor Antagonists

The experimental method is shown in Figure 1B. Conditions of
OGD were obtained by superfusing the slice with aCSF without
glucose and gassed with nitrogen (95% N,-5% CO;) (Pedata
et al., 1993). This causes a drop in pO; in the recording chamber
from ~500 mmHg (normoxia) to a range of 35-75 mmHg
(after 7 min OGD) (Pugliese et al., 2003). At the end of the
ischemic period, the slice was again superfused with normal,
glucose-containing, oxygenated aCSF. The terms ‘OGD slices” or
‘treated OGD slices’ refer to hippocampal slices in which OGD
was applied in the absence or in the presence of Ajp receptor
antagonists, respectively. Control slices were not subjected to
OGD or treatment with Ajp receptor antagonists but were
incubated in oxygenated aCSF for identical time intervals. All
the selective adenosine Ajp receptors antagonists were applied
15 min before, during and 5 min after OGD. In a typical
experimental day, first a control slice was subjected to 7 min
of OGD. If the recovery of fEPSP amplitude after 60 min of
reperfusion with glucose containing and normally oxygenated
aCSF was <15% of the pre-OGD value, and AD developed into
7 min OGD, a second slice from the same rat was subjected to an
OGD insult in the presence of the A,p receptor antagonist under
investigation. To confirm the result obtained in the treated group,
a third slice was taken from the same rat and another 7 min
OGD was performed under control conditions to verify that no
difference between slices was caused by the time gap between the
experiments. In some slices the OGD period was prolonged to
30 min and the A,p receptor antagonists were applied 15 min
before and during OGD application. After the extracellular
recordings, slices were maintained in separate chambers for 1
or 3 h from the end of OGD in oxygenated aCSF at room
temperature (RT). At the end, slices were harvested and fixed
overnight at 4°C in 4% paraformaldehyde in PBS, cryopreserved
in 18% sucrose for 48 h, and resliced as written below.

Treatment of Hippocampal Slices With
Glutamate in Vitro

Experiments were carried out on acute hippocampal slices,
prepared from male Wistar rats as described above. The Ajp
receptor antagonists were dissolved in DMSO to obtain a
stock solution suitable for a 1:2000 dilution. Slices, maintained

oxygenated throughout the procedure, were incubated according
to the following scheme:

e Control slices were incubated for 1 h in aCSF and then for
25 min in aCSF with DMSO (1:2000; 0.05%);

e Glutamate (GLU) treated slices were incubated 1 h in
aCSF and then for 10 min with 100 uM glutamate in
aCSF;

¢ MRS-+GLU treated slices were incubated for 1 h in aCSF,
then for 15 min with 500 nM MRS1754 and for further
10 min with 500 nM MRS1754 plus 100 pM glutamate, in
aCSF;

e PSB+GLU treated slices were incubated for 1 h in aCSE,
then for 15 min with 50 nM PSB603, and for further
15 min with 50 nM PSB603 plus 100 pM glutamate in
aCSF;

After the incubation with glutamate and Ajp receptor
antagonists, slices were further incubated for 3 h in aCSE
and then harvested and fixed overnight at 4°C in 4%
paraformaldehyde in PBS, cryopreserved in 18% sucrose for 48 h,
and resliced as written below.

Immunohistochemistry

One hour or 3 h after OGD, or after the incubation with
glutamate and A,p receptor antagonists, the 400 pm thick slices
fixed in paraformaldehyde were placed on an agar support
(6% agar in normal saline), included in an embedding matrix
and re-sliced with a cryostat to obtain 40 pum thick slices.
The more superficial sections were eliminated, while those
obtained from the inner part of the slice were collected and
stored in vials with 1 ml of antifreeze solution at —20°C until
immunohistochemical analyses. From the 400 pm thick slices on
average only a maximum of 2-3 complete 40 pum thick slices were
obtained, which were then randomly allocated to the fluorescent
immunohistochemical staining groups.

Antibodies Used - Primary Antibodies

Neurons were immunostained with a mouse monoclonal
anti-NeuN antibody (1:200, MilliporeSigma, Carlsbad, CA,
United States), astrocytes were detected by means of a polyclonal
rabbit antibody anti-Glial Fibrillary Acidic Protein (GFAP,
1:500, DakoCytomation, Glostrup, Denmark), Cytochrome C
with a mouse monoclonal antibody (1:200, Abcam, Cambridge,
United Kingdom). Activated mTOR was detected using a
polyclonal rabbit primary antibody raised against phospho-
(Ser2448)-mTOR (1:100, Abcam, Cambridge, United Kingdom).
Fluorescent secondary antibodies: Alexa Fluor 488 donkey anti
rabbit (fluorescence in green, 1:400), Alexa Fluor 555 donkey
anti mouse (fluorescence in red, 1:400), Alexa Fluor 635
goat anti-rabbit (fluorescence in far red, 1:400) (all from Life
Technologies, Carlsbad, CA, United States). All primary and
secondary antibodies were dissolved in Blocking Bufter (BB, 10%
Normal Goat Serum, 0.05% NaN3 in PBS-TX). All procedures
were carried out with the free-floating method in wells of a
24-well plate (Cerbai et al., 2012; Lana et al., 2013).
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Day 1

The sections were washed (3 times, 5 min each) in PBS-0.3%
Triton X-100 (PBS-TX), blocked with 500 1 BB for 1 h, at RT
under slight agitation and then incubated overnight at 4°C with
the primary antibody under slight agitation.

Day 2

After washing in PBS-TX (3 times, 5 min each), sections were
incubated for 2 h at room temperature in the dark with a solution
containing one or two (for double immunostaining) fluorescent
secondary antibodies, as appropriate. Sections were washed (3
times, 5 min each) with BB and then with 1 ml of distilled H,O at
RT in the dark, mounted on gelatinized microscopy slides, dried
and coverslipped with a mounting medium containing DAPI to
counterstain nuclei (Vectashield, Hard set mounting medium
with DAPI, Vector Laboratories, Burlingame, CA, United States).
Sections were kept refrigerated in the dark until microscopy
analyses.

Day 3

Qualitative and quantitative analyses of NeuN positive neurons,
CytC and phospho-mTOR positive cell bodies were performed
in CAl stratum pyramidale (SP), while astrocytes, phospho-
mTOR positive dendrites and microglia were performed in CA1
stratum radiatum (SR) as shown in Figure 1A. Epifluorescence
microscopy: sections were observed under an Olympus BX63
microscope equipped with an Olympus DP 50 digital camera
(Olympus, Milan, Italy). For quantitative analysis images were
acquired at 20x magnification with the digital camera.

Confocal Microscopy

Scans were taken at 0.3 pum z-step, keeping constant all
the parameters (pinhole, contrast, and brightness), using a
LEICA TCS SP5 confocal laser scanning microscope (Leica
Microsystems CMS GmbH, Mannheim, Germany). Images were
converted to green, or red using ImageJ (freeware provided by
National Institute of Health'). The region of interest (ROI) in
CA1, containing stratum pyramidalis and stratum radiatum was
consistently analyzed in all slices, as shown in Figure 1A (Lana
et al,, 2014). Quantitative analyses of NeuN™ neurons, HDN
neurons, LDN neurons, GFAPT astrocytes, CytC™ apoptotic
neurons and phospho-mTOR positive cell bodies and dendrites
were performed blind by two experimenters and results were
averaged. Areas were expresses as mm?. Digitized images were
transformed into TIFF files and thresholded using Image].
Care was taken to maintain the same threshold in all sections
within the same experiment. In CAl pyramidal layer, the
area labeled above the set threshold with NeuN or phospho-
mTOR was calculated in pixels and expressed as NeuN™
pixels/mm? or phospho-mTORY pixels/mm?. HDN neurons,
LDN neurons, Cytochrome C-positive (CytC*) apoptotic
neurons in CA1 stratum pyramidale and GFAP™ astrocytes in
CA1l stratum radiatum were counted and were expressed as
number of cells/mm?. In order to evaluate mTOR activation in
basal dendrites the length of phospho-mTOR™ dendrites was

Thttp://rsb.info.nih.gov/ij

measured at three fixed locations, equal in all slices and evenly
distributed throughout the CAl stratum radiatum ROI, and
results were averaged.

Statistical Analysis

Statistical significance was evaluated by Students paired or
unpaired t-tests. Analysis of variance (one-way ANOVA),
followed by Newman-Keuls multiple comparison post hoc test
was used, as appropriate. P-values from both Student’s paired and
unpaired ¢-tests are two-tailed. Data were analyzed using software
package GraphPad Prism (version 7.0; GraphPad Software, San
Diego, CA, United States). All numerical data are expressed as the
mean = standard error of the mean (SEM). A value of P < 0.05
was considered significant.

RESULTS

Electrophysiological Experiments

It has been established that 7 min OGD episodes bring about
irreversible depression of neurotransmission and the appearance
of a severe neuronal depolarization or AD (Pugliese et al., 2006,
2007, 2009), a critical event that has been demonstrated both
in vivo (Somjen, 2001) and in vitro (Fowler, 1992; Pearson et al.,
2006; Pugliese et al., 2006, 2007, 2009; Frenguelli et al., 2007).
Therefore, we studied the effects of two selective adenosine A,p
receptor antagonists, MRS1754 and PSB603, on AD development
in the CA1 region of acute rat hippocampal slices under severe
OGD episodes by extracellular recording of fEPSPs on 133
hippocampal slices taken from 42 rats.

The Selective Adenosine Asg Receptor
Antagonism Prevents or Delays AD
Development and Protects From
Synaptic Failure Induced by Severe OGD
in CA1 Hippocampus

In agreement with our previous results (Pugliese et al., 2006,
2007, 2009), in untreated OGD slices the d.c. shift presented a
mean latency of 6.04 £ 0.2 min (calculated from the beginning
of OGD) and a mean peak amplitude of —6.7 £+ 0.4 mV
(n = 24) (Figure 2A). Seven min OGD exposure induced a
rapid and irreversible depression of fEPSPs amplitude evoked
by Schaffer-collateral stimulation, since synaptic potentials did
not recover their amplitude after return to oxygenated aCSF
(Figure 2D, n = 24, 2.5 + 2.7% of pre-OGD level, calculated
50 min from the end of OGD). Control slices, followed for up to
3 h in oxygenated aCSF, maintained stable fEPSPs for the entire
experimental time recording and never developed the d.c. shift
(data not shown).

Oxygen and glucose deprivation was then applied in the
presence of the selective adenosine Ajp receptor antagonists
MRS1754 or PSB603, administered 15 min before, during and
5 min after OGD.

The two Ap receptor antagonists did not modify basal
synaptic transmission measured before OGD. Indeed, MRS1754
(500 nM, n = 17) did not modify fEPSPs amplitude under
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FIGURE 2 | The selective adenosine Agg receptor antagonists MRS1754 or PSB603 significantly reduced the synaptic failure induced by 7 min oxygen and glucose
deprivation (OGD) in the CA1 region of rat hippocampal slices. (A—C) anoxic depolarization (AD) was recorded as a negative direct current (d.c.) shift in response to
7 min OGD in untreated OGD slices (A), in 500 nM MRS1754-treated slices (B), or 50 nM PSB603-treated slices (C). Note that MRS1754 prevented the
appearance of AD in 13 out of 17 slices, while PSB603 in 11 out of 15 slices. (D) The graph shows the time-course of the effect of 7 min OGD on field excitatory
post-synaptic potential (fEPSP) amplitude, expressed as percentage of pre-OGD baseline in the CA1 hippocampal region in the absence (n = 24) or in the presence
of 500 nM MRS1754 (n = 17). Note that, in untreated slices, the ischemic-like insult caused gradual reduction, up to disappearance, of fEPSPs amplitude that did
not recover after washing in oxygenated artificial cerebrospinal fluid (CSF). On the contrary, after reperfusion in oxygenated standard solution, a recovery of fEPSP in
all MRS1754 treated OGD slices was found, even in those in which AD developed. (E) The graph shows the time course of the effect of 7 min OGD on fEPSP
amplitude in 50 nM PSB603 treated OGD slices. Note that, after reperfusion in normal oxygenated standard solution, a recovery of fEPSP was found in all
OGD-treated PSB60S3 slices, even those in which AD occurred. (F, Left) each column represents the mean + SEM of AD latency recorded in the CA1 region during
7 min OGD in the absence or in the presence of MRS1754 (500 nM) or PSB603 (50 nM). AD latency was measured from the beginning of OGD insult. Note that
when OGD was applied in the presence of MRS1754 or PSB603 the appearance of AD was significantly delayed in comparison to OGD untreated slices. *P < 0.05
vs. OGD, One-way ANOVA followed by Newman-Keuls Multiple comparison test. (Right) each column represents the mean + SEM of AD amplitude recorded in the
CA1 during 7 min OGD. The number of slices is reported in the columns. (G) The graph shows the time course of the effect of 7 min OGD on fEPSP amplitude in
OGD-untreated slices and in 500 nM MRS1754- or 50 nM PSB603-treated slices. The selective antagonism of adenosine Agg receptors counteracted the CA1
synaptic damage induced by severe OGD up to 3 h from the end of the insult. Inset: 7 min OGD induced AD was recorded untreated OGD slices, but not in the
presence of 500 nM MRS1754 or 50 nM PSB603. Gray bar: OGD time duration. Open bar: time of drug application. Amplitude of fEPSPs (mean + SEM) is
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normoxic conditions (from 1.05 £ 0.06 mV immediately before
to 1.01 £+ 0.08 mV after 15 min drug application, n = 17).
Also, PSB603 did not change the amplitude of synaptic potentials
under normoxic conditions (from 1.32 £ 0.12 mV before to
1.35 £ 0.14 mV after 15 min drug application, n 15).
These data indicate that the blockade of A,p receptors does
not modify low-frequency-induced CA1l synaptic transmission

under normoxic conditions, in agreement with results reported
in mouse hippocampal slices (Gongalves et al., 2015).
Nevertheless, the two Ajp receptor antagonists were able to
prevent or delay the appearance of AD and to modify synaptic
responses after OGD.
During 7 min OGD, MRS1754 prevented the appearance of
AD in 13 out of 17 slices tested (Figure 2B). In these 13 slices

Frontiers in Pharmacology | www.frontiersin.org

April 2018 | Volume 9 | Article 399


https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Fusco et al.

Agg Antagonists Protect From Ischemia

a complete recovery of fEPSPs was recorded (111.9 £ 7.4%,
calculated 50 min from the end of OGD, Figure 2D). In
the remaining 4 slices, AD developed, although at later times
(Figure 2F, mean AD latency: 7.37 £+ 0.41 min; mean peak
amplitude: —5.8 £ 1.1 mV, n = 4), and, unexpectedly, was
followed by a consistent fEPSP recovery (85.2 & 15.3%, n = 4,
Figure 2D).

During 7 min OGD, PSB603 prevented the appearance of AD
in 11 out of 15 slices tested (Figure 2C). In these 11 slices a
complete recovery of fEPSPs was found (110.4 & 10.2%, n = 11,
Figure 2E). In the remaining four slices in which AD appeared,
a delay in AD latency was recorded (Figure 2F, mean AD
latency: 7.33 &£ 0.08 min; mean peak amplitude: —6.8 & 1.9 mV,
n =4). Moreover, in these four PSB603-treated slices, a significant
recovery of fEPSP (36.2 = 19.7%, n = 4, Figure 2E) was found.

In the slices in which AD appeared in the presence of
MRS1754 or PSB603, we compared the time of AD appearance
in the absence and in the presence of drugs. As illustrated in
Figure 2F, during 7 min OGD, AD appeared in OGD slices with
a mean latency of 6.04 & 0.2 min (Left panel) and a mean peak
amplitude of 6.7 & 0.4 mV (n = 24, Right panel). When 7 min
OGD was applied in the presence of 500 nM MRS1754 or 50 nM
PSB603 the d.c. shifts were always delayed (Figure 2F, Left panel),
while AD amplitude values were not significantly modified in
comparison to OGD slices (Figure 2F, Right panel).

In an experimental group of slices which never developed
AD in the presence of PSB603 (50 nM) (n = 6) and MRS1754
(500 nM) (n = 6), we followed the evolution of the synaptic
response for 3 h after the end of the 7 min ischemic like insult in
comparison to untreated OGD slices (n = 6). As reported in the
representative electrophysiological traces shown in Figure 2G,
PSB603 (50 nM) and MRS1754 (500 nM) allowed the recovery
of synaptic potentials for at least 3 h after 7 min OGD.

Furthermore, in order to confirm that both the recovery of
fEPSP and the irreversible loss of neurotransmission after 7 min
OGD observed in the different experimental groups were not
transient, we tested slice viability 24 h after the OGD insult in
control, untreated, slices and slices treated with Ajp-receptor
antagonists. In agreement with our previously published results
(Pugliese et al., 2009), we showed that untreated OGD slices,
which did not recover any synaptic activity within 1 h after the
insult, maintained synaptic impairment when tested 24 h later
(Supplementary Figure 1A shows a representative experiment out
of a total of six slices). On the contrary, MRS1754- or PSB603-
treated OGD slices, which recovered initial fEPSP amplitude
1 h after OGD, preserved neurotransmission for at least 24 h
after the insult (Supplementary Figure 1B shows a representative
experiment out of a total of four slices, and Supplementary
Figure 1C shows a representative experiment out of a total of five
slices for MRS1754 and PSB603, respectively).

In order to characterize the role of adenosine A;p receptors on
AD development, in a next series of experiments we prolonged
the OGD duration up to 30 min, in order to allow AD to
unavoidably appear in all experimental groups. This longer
duration of OGD is invariably associated with tissue damage
(Pearson et al, 2006). We compared the latency and the
magnitude of depolarizing d.c. shifts recorded in the absence or

presence of PSB603 or MRS1754. As illustrated in Figure 3A,
30 min OGD elicited the appearance of AD in all slices, with a
mean peak amplitude of —7.5 £ 0.7 mV (n = 8) and a mean
latency of 5.8 £ 0.3 min, as shown in Figures 3D,E. When
OGD was applied in the presence of 500 nM MRS1754, the d.c.
shift was significantly delayed to 9.2 & 0.7 min (Figures 3B, D;
n = 5), although the AD amplitude (—5.7 £ 0.7 mV) was
not significantly changed (Figure 3E). Similarly, when OGD
was applied in the presence of 50 nM PSB603, the d.c. shift
was significantly delayed to 7.7 + 0.3 min (Figures 3C,D;
n = 7) whereas AD amplitude (—7.7 & 0.7 mV) was unchanged
(Figure 3E).

Data in the literature demonstrate that adenosine Ajg
receptors exert their effects through a control of A; receptor
function in the hippocampus under simil-physiological,
normoxic, conditions (Gongalves et al., 2015). In order to test
this possibility, we studied whether A,p receptor antagonists
were still effective in inhibiting OGD-induced alterations
of synaptic transmission in the presence of the A; receptor
antagonist DPCPX. As shown in Supplementary Figures 2A-C,
we applied DPCPX before, during and after a 7 min OGD and,
unexpectedly, we found that 2 out of 6 slices tested did not
undergo AD and completely recovered their synaptic activity.
This unexpected result was possibly due to the unselective block
of A4 receptors by DPCPX, as already described in hippocampal
slices during OGD (Sperlagh et al., 2007). Therefore, we reduced
DPCPX concentration to 100 nM and we prolonged the OGD
period up to 30 min (Supplementary Figure 2D). Under these
experimental conditions, DPCPX-exposed slices presented a
delayed AD appearance (mean AD peak time = 8.4 £ 0.5 min)
in comparison to control, untreated, OGD slices (mean AD
peak time = 6.8 £+ 0.2 min) thus confirming that DPCPX
protects hippocampal slices from OGD insults (Supplementary
Figure 2E). The time window of Ap or A; receptor-mediated
effects found in the present studies overlaps with the delay
found treating the slices with glutamate receptor antagonists
(Tanaka et al., 1997; Yamamoto et al., 1997), or blocking NMDA
receptors that are involved both in initiation and propagation
of AD (Herreras and Somjen, 1993; Somjen, 2001). In a further
series of experiments, we demonstrated that D-AP5 (50 wM)
significantly delayed AD appearance (from 6.8 + 0.2 min in
untreated OGD slices to 9.8 £ 1.0 min in D-AP5-treated OGD
slices, Supplementary Figure 2E).

For this reason, in order to assess the involvement of A;
receptors in Ap receptor-mediated effects, we choose a different
protocol. It has been shown that short-term plasticity, measured
by PPE is modified by Ajp receptor activation in mouse
hippocampal slices in a DPCPX-sensitive manner (Gongalves
et al., 2015). We confirmed that the Ajp receptor agonist
BAY606583, at 200 nM concentration, significantly decreased
PPF in rat CAl hippocampus (Figure 4), thus indicating an
increase of presynaptic glutamate release upon Ajp receptor
activation. This effect was blocked not only by the A,p receptor
antagonists PSB603 and MRS1754, but also by the A; receptor
antagonist DPCPX (Figure 4B), thus confirming that Ajp
receptor effects are mediated by the inhibition of the A; subtype,
as already stated by Gongalves et al. (2015).
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FIGURE 3 | MRS1754 and PSB603 delayed the appearance of AD induced by 30 min OGD in rat hippocampal slices. (A-C) The graphs show the d.c. shift traces
during 30 min OGD in untreated OGD slices (A, n = 8), in the presence of 500 nM MRS1754 (B, n = 5), or 50 nM PSB603 (C, n = 7). (D) Each column represents the
mean + SEM of AD latency recorded in hippocampal slices during 30 min OGD in different experimental groups. AD was measured from the beginning of OGD
insult. Note that both adenosine Aog receptor antagonists significantly delayed AD development. **P < 0.01 vs. OGD, One-way ANOVA followed by Newman—-Keuls
Multiple comparison test. (E) Each column represents the mean 4+ SEM of AD amplitude recorded in the CA1 during 30 min OGD. The number of slices is reported

Analysis of Neuronal Damage in CA1
Stratum Pyramidale 1 and 3 h After the
End of 7 min OGD

The extent of neuronal damage caused by 7 min OGD in
stratum pyramidale of hippocampal CAl was assessed by
immunohistochemistry using the anti-NeuN antibody in control
slices, in slices after 7 min OGD alone, and after 7 min OGD in
the presence of 500 nM MRS1754 or 50 nM PSB603, both at 1
and 3 h after the end of OGD. Representative images of NeuN
immunostaining in CA1 of slices collected 1 h after the end of
OGD are shown in Figures 5A-D.

Figures 5E,F show the quantitative analyses of the area of
NeuN™ immunofluorescence in CA1, which represents an index
of the number of pyramidal neurons, 1 and 3 h after the end
of OGD, respectively. The data demonstrate that NeuN*t CAl

pyramidal neurons significantly decreased both 1 h (Figure 5E)
and 3 h (Figure 5F) after the end of 7 min OGD. Statistical
analysis showed that 7 min OGD caused a statistically significant
reduction of NeuNT area at 1 h (—29.6%, *P < 0.05 vs. control
slices) and at 3 h (—41%, *P < 0.05 vs. control slices). The time-
course of the effect, indicating that the decrease of NeuN* area
was more pronounced at 3 h than at 1 h after the end of OGD,
demonstrates that neuronal degeneration is an ongoing process
at least at these time points.

The decrease of NeuN™ area in CAl stratum pyramidale was
completely antagonized by treatment with 50 nM PSB603 (—1%
at 1 h and —14% at 3 h, ns vs. control slices). This effect was
statistically significant vs. 7 min OGD slices both at 1 and 3 h after
the end of OGD (*P < 0.05 vs. respective OGD). Treatment with
500 nM MRS1754 completely blocked the decrease of NeuN™
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area in CA1 stratum pyramidale 3 h after the end of OGD (—7%
vs. control slices, ns; P < 0.05 vs. OGD). MRS1754 had no
effect 1 h after the end of OGD (—31.5% vs. control slices; ns
vs. OGD). Therefore, antagonism of A,p receptors blocked the
neuronal damage induced by 7 min OGD up to 3 h after the
end of the simil-ischemic insult. In the OGD slices treated either
with MRS1754 or PSB603 that developed AD we found a partial
reduction of neuronal damage at 1 h after the end of OGD (data
not shown).

Closer examination of CA1 stratum pyramidale with confocal
microscopy indicated the presence of many damaged neurons
both 1 and 3 h after the end of 7 min OGD. The representative
confocal z stacks in Figures 5B, 6B, each obtained stacking
37 consecutive confocal z-scans (0.3 pm each, total thickness
11.1 wm) through the thickness of CAl, show that 3 h
after the end of OGD the layout and morphology of CAl
pyramidal neurons was significantly different from that of the
control slice (Figure 6A). Figures 6A1,B1 are magnification
of the framed areas in Figures 6A,B, and show stacks of
two consecutive z-scans, 0.3 pum each, total thickness 0.6 pwm,
taken at 2.1 pm depth inside the neurons. It appears evident
from panel Figure 6B1 the altered morphology of pyramidal
neurons after OGD, in comparison to those of the control
slice shown in Figure 6A1. Indeed, in CA1 stratum pyramidale
of OGD slices, both at 1 and 3 h after the end of OGD,
we observed the presence of many neurons with nuclei that
exhibit a highly condensed NeuN-positive nucleus and very faint
NeuN cytoplasmic labeling (Figures 6B,B1, open arrows). We
defined these neurons as High Density Nucleus neurons, “HDN
neurons.” Furthermore, we observed many NeuNT neurons

(OGD+PSB, D), all harvested 1 h after the end of 7 min OGD. Scale bar:

75 pm. (E,F) Quantitative analyses of NeuN* immunofluorescence in the four
experimental groups 1 h (E) and 3 h (F) after the end of 7 min OGD. Each
column represents the area, expressed in pixels (x 10°) above a threshold,
maintained constant for all slices investigated. (E) Statistical analysis: One-way
ANOVA: F(3;13) = 6.296, P < 0.01, Newman-Keuls multiple comparison test:
*P < 0.05, OGD vs. CTR; $P < 0.05, OGD+PSB vs. OGD. CTR, n = 6; OGD,
n =5; OGD+PSB, n = 3; OGD+MRS, n = 3. (F) Statistical analysis: One-way
ANOVA: F(3,16) = 4.924, P < 0.02; Newman-Keuls multiple comparison test:
*P < 0.05 OGD vs. CTR, #P < 0.05 OGD+MRS vs. OGD,SP < 0.05
OGD+PSB vs. OGD. CTR, n = 6; OGD, n = 3; OGD+PSB, n = 4; OGD+MRS
n = 4. All data in the graphs are expressed as mean + SEM.

that have lost the NeuN't nuclear immunofluorescence, an
index of damaged nuclei, while NeuN* immunofluorescence
persists in the cytoplasm (Figures 6B,B1, white arrows). We
defined these neurons as Low Density Nucleus neurons, “LDN
neurons.”

In order to better characterize this phenomenon, we
performed the quantitative analysis of HDN and LDN neurons
in control, 7 min OGD, 7 min OGD plus MRS1754 and 7 min
OGD plus PSB603 slices at 1 and 3 h after the end of OGD.
The results, presented in Figures 6C,D, show that HDN neurons
increased significantly in 7 min OGD slices both at 1 h (+603%
vs. control slices, **P < 0.01) and 3 h (+794% vs. control
slices, ***P < 0.001) after the end of OGD. The increase of
damaged, HDN neurons in the CA1 area caused by the simil-
ischemic insult was significantly blocked by treatment with
50 nM PSB603 at 1 and 3 h after the end of OGD (—97% at
1 h, and —77% at 3 h vs. 7 min OGD slices, both $%*P < 0.001;
ns vs. controls). Conversely, treatment with 500 nM MRS1754
significantly blocked the increase of HDN neurons only 3 h after
the end of OGD (—70% vs. 7 min OGD slices, **P < 0.001; ns vs.
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control slices), but not 1 h after the end of OGD (+12% vs. OGD
slices, ns; * P < 0.01 vs. control slices).

Also, as shown by the representative images in Figures 6B,B1,
we found many LDN neurons in stratum pyramidale 1 and 3 h
after the end of 7 min OGD. As demonstrated by quantitative
analysis (Figures 6E,F) LDN neurons in stratum pyramidale were
significantly increased both 1 and 3 h after OGD, in comparison
to control slices. The increase of LDN neurons, in comparison to
control slices, was 1489% at 1 h (***P < 0.01 vs. control slices)
and 1033% at 3 h after the end of 7 min OGD (***P < 0.01 vs.
control slices). The increase of damaged, LDN neurons brought
about by the simil-ischemic insult was significantly blocked by
treatment with 50 nM PSB603 both at 1 and 3 h after the
end of OGD (—98% at 1 h, and —62% at 3 h vs. OGD, both
$$8p < 0.001). Treatment with 500 nM MRS1754 significantly
blocked the increase of LDN neurons only 3 h after the end of
OGD (—52% vs. 7 min OGD,"**P < 0.001), but not 1 h after
the end of OGD (—17% vs. 7 min OGD, ns; P < 0.01 vs.
controls). These data further confirm the efficacy of the two A,p
receptor antagonists, and particularly of PSB603, in reducing not
only the electrophysiological effects but also the morphological
modifications that OGD caused on CA1 pyramidal neurons, up
to 3 h after the end of the ischemic-like insult.

Analysis of Apoptotic Neurons in
Stratum Pyramidale of CA1 1 and 3 h
After 7 min OGD

These data demonstrate that 7 min OGD can induce
neuronal damage in CAl stratum pyramidale, as evidenced
by immunohistochemical analyses that highlight conformational
modifications of pyramidal neurons that may subtend cell death.
Therefore, we studied whether all the above-described effects
and the decrease of neurons in CA1 stratum pyramidale might
be caused by apoptosis. To this end, as an apoptosis marker
we used CytC, a protein which, in physiological conditions,
is found in mitochondria but in the most advanced stages of
apoptosis is intensely and diffusely released in the cytoplasm,
where it activates caspases (Kluck et al., 1997; Yang et al., 1997;
Jiang and Wang, 2004; Suen et al., 2008) and can be used as
a marker of apoptosis using immunohistochemical analysis
(Martinez-Fdbregas et al., 2014). Using a selective antibody, CytC
can be visualized in apoptotic cells as an intense and diffuse
cytoplasmic immunostaining, as shown by the white arrows in
the representative confocal images of an OGD slice 1 h after
the end of OGD (Figures 7A-A2). As shown in the confocal
subslice of the framed area of Figure 7A2, obtained stacking 17
consecutive confocal z-scans through the CytC* neuron (0.3 pm
each, total thickness 5.1 wm), it is evident that the CytC™ positive
neuron is a LDN neuron (Figures 7B-B2, open arrow), thus
demonstrating that LDN neurons are apoptotic.

From the quantitative analysis of CytCT neurons in CAl
stratum pyramidale, we demonstrated that both 1 and 3 h
after the end of 7 min OGD many CAl pyramidal neurons
were apoptotic (Figures 7C,D). The increase was statistically
significant in comparison to control slices both at 1 h (4277% vs.
control slices, ***P < 0.001) and at 3 h (+107% vs. control slices,

**P < 0.01) after OGD. These data indicate that in CA1 area,
already after 1 h from the end of OGD, neurons had clear signs
of apoptotic processes. In the presence of MRS1754 or PSB603,
there was a significant reduction of CytC immunostaining, both
at 1 and 3 h after the end of OGD, showing that antagonism of
Ajp receptors significantly reduced neuronal death by apoptosis
at both times investigated. Indeed, treatment with MRS1754
decreased apoptotic neurons by 61% at 1 h (**P < 0.001 vs.
7 min OGD; ns vs. control slices) and by 33% at 3 h (*P < 0.05
vs. 7 min OGD; ns vs. control slices), in comparison to OGD
slices. Treatment with PSB603 decreased apoptotic neurons by
63% (P < 0.001 vs. 7 min OGD; ns vs. control slices) and
by 46% (P < 0.001 vs. 7 min OGD; ns vs. control slices) in
comparison to OGD slices. In the OGD slices treated either with
MRS1754 or PSB603 that developed AD the number of HDN and
LDN neurons were partially decreased in comparison to OGD
slices (data not shown).

These data indicate that in the CAl area already 1 h
after the end of OGD, when there was still no recovery
of neurotransmission, neurons showed obvious signs of
apoptosis. These data demonstrate that antagonism of Ajp
receptors brought about significant protection against neuron
degeneration.

Analysis of Phospho-mTOR in Area CA1
of the Hippocampus 1 and 3 h After

7 min OGD

We used a selective antibody for phospho-(Ser244)-mTOR,
the activated form of mTOR, to investigate whether mTOR
activation might be modified in our experimental conditions
(Figures 8A-D1). Representative qualitative images of mTOR
activation in cell bodies and dendrites of CA1 pyramidal neurons
in a control slice are shown in Figure 8A1l (green). Neurons
were also immunolabelled with anti-NeuN antibody (red). The
merge of the immunofluorescence (yellow-orange) in a control
slice is shown in Figure 8A. It is evident from the images
that activated mTOR is present in CA1l pyramidal neurons in
basal, control conditions where it is localized both in the cell
body and in neuronal apical dendritic tree spanning throughout
the stratum radiatum. The simil-ischemic condition caused a
significant decrease of mTOR activation 3 h after the end of
OGD, as shown in the representative image of Figures 8B,B1.
This effect is more evident in Figures 8E,F, that represent
digital subslices obtained stacking nine consecutive confocal
z-scans throughout the neuronal cell bodies (0.3 pm each,
total thickness 2.7 pm) of control and OGD slices. The images
clearly show that in control conditions phospho-mTOR was
present both in the cell body (Figure 8E, open arrow) and
in the dendrites (Figure 8E, white arrows), while 3 h after
7 min OGD activation of mTOR decreased both in cell body
and dendrites (Figure 8F). Quantitative analysis showed that in
slices harvested 1 h after the end of 7 min OGD, no significant
modification of activated mTOR immunostaining was present in
the neuronal cell body (Figure 8G) or in the apical dendrites
of CAl pyramidal neurons in any of the groups investigated
(Figure 8I). On the contrary, in slices harvested 3 h after the
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FIGURE 6 | Analysis of damaged neurons in CA1 stratum pyramidale after the
simil-ischemic insult. (A-B1) Representative images of NeuN+
immunofluorescence in the CA1 area of a control slice (CTR, A,A1), and of a
slice harvested 3 h after the end of 7 min OGD (OGD, B,B1). (A1-B1)
magnification of digital subslices of the framed areas in A,B (stacks of two
consecutive z-scans taken at 2.1 wm depth inside the neurons, total
thickness 0.6 um). Note the presence of many HDN neurons (open arrows)
and LDN neurons (white arrows) in CA1 stratum pyramidale after OGD (B,B1).
Scale bars: A,B: 25 um; A1,B1: 10 um. (C,D) Quantitative analyses of
NeuN* HDN neurons in CA1 stratum pyramidale 1 h (C) and 3 h (D) after the
end of OGD. (C) One-way ANOVA: F(3,12) = 11.32, P < 0.001.
Newman-Keuls multiple comparison test: **P < 0.01, OGD vs. CTR;

#P < 0.01, 0GD+MRS vs. CTR;¥¥P < 0.001 OGD+PSB vs. OGD. CTR,
n=5; OGD, n =5; OGD+PSB, n = 3; OGD+MRS, n = 3. (D) One-way
ANOVA: F(3.12) = 64.33, P < 0.001. Newman-Keuls multiple comparison
test: ***P < 0.001, OGD vs. CTR; *#P < 0.001, OGD+MRS vs.

OGD;*%P < 0.001 OGD+PSB vs. OGD. CTR, n = 5; OGD, n = 3; OGD+PSB,
n = 4; OGD+MRS, n = 4. (E-F): Quantitative analysis of NeuN™ LDN neurons
in CA1 stratum pyramidale 1 h (E) and 3 h (F) after the end of OGD.

(E) One-way ANOVA: F(3.14) = 13.80, P < 0.001. Newman-Keuls multiple
comparison test: ***P < 0.01, OGD vs. CTR; #P < 0.01, OGD+MRS vs.
CTR;¥P < 0.001 OGD+PSB vs. OGD. CTR, n = 6; OGD, n = 6; OGD+PSB,
n =3; OGD+MRS, n = 3. (F) One-way ANOVA: F(3,12) = 69.77, P < 0.001.
Newman-Keuls multiple comparison test: ***P < 0.001, OGD vs. CTR;

##p < 0.001, OGD+MRS vs. OGD;¥%P < 0.001 OGD+PSB vs. OGD. CTR,
n=>5; 0GD, n = 3; OGD+PSB, n = 4; OGD+MRS, n = 4. All data in the
graphs are expressed as mean + SEM.
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FIGURE 7 | Analysis of CytocromeC™* (CytC™) neurons in CA1 stratum
pyramidale after the simil-ischemic insult. (A-A2) Representative
microphotographs, taken at the laser scanning confocal microscope, of
apoptotic neurons labeled with anti-CytC antibody (A, red), of pyramidal
neurons labeled with anti-NeuN antibody (A1, green) and the merge of the
two previous images (A2). NeuN* and CytC* apoptotic neurons in CA1
stratum pyramidale are indicated by the arrows (yellow-orange color in A2).
Scale bar: 25 pm. (B-B2) Subslice of the framed area in A2, obtained
stacking 17 consecutive confocal z-scans (5.1 wm total thickness), shown at
higher magnification (2x). The open arrow shows an LDN apoptotic pyramidal
neuron. Scale bar: 10 um. (C,D) Quantitative analysis of NeuN* and CytC*
neurons in CA1 stratum pyramidale at 1 h (C) and 3 h (D) after the end of

7 min OGD. Note the significant increase of CytC™ neurons both 1 and 3 h
after the end of OGD. (C) Statistical analysis: One-way ANOVA:

F@:11y = 18.40, P < 0.001, Newman-Keuls multiple comparison test:

*%P < 0.001, OGD vs. CTR; ¥#*P < 0.001, OGD+MRS vs. OGD;

$83p < 0.001, OGD+PSB vs. OGD. CTR, n = 4; OGD, n = 3; OGD+PSB,

n =4; OGD+MRS, n = 4. (D) Statistical analysis: One-way ANOVA:

Fa.11) = 11.41, P < 0.02, Newman-Keuls multiple comparison test:

**P < 0,01, OGD vs. CTR; P < 0.05, OGD+MRS vs. OGD; %P < 0.01,
OGD+PSB vs. OGD. CTR, n = 4; OGD, n = 3; OGD+PSB, n = 4; OGD+MRS,
n = 4. All data in the graphs are expressed as mean + SEM.

end of 7 min OGD, we found highly significant decrease of
activated mTOR immunostaining in the cytoplasm and dendrites
of CAl pyramidal neurons (Figures 8H,J). Indeed, statistical
analysis, shown in Figure 8H, demonstrates that 3 h after
the end of 7 min OGD there was a statistically significant
reduction of activated mTOR immunostaining in the cytoplasm
of CA1 pyramidal neurons (—74.8%, ***P < 0.001 vs. control
slices, Figure 8H) in comparison to control slices. As shown in
Figure 8H, treatment with 50 nM PSB603 blocked this effect
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FIGURE 8 | mTOR activation in CA1 stratum pyramidale and stratum
radiatum after the simil-ischemic insult. Representative microphotographs,
taken at the laser scanning confocal microscope, showing immunolabelling
with anti-NeuN antibody (red) and anti-phospho-mTOR antibody (green) of a
control slice (A,A1), a slice harvested 3 h after 7 min OGD (B,B1), a slice
treated with MRS1754 and harvested 3 h after 7 min OGD (C,C1), and a slice
treated with PSB603 and harvested 3 h after 7 min OGD (D,D1). Scale bar:
75 um. (E,F) Digital subslices of a control slice (E) and a slice collected 3 h
after 7 min OGD (F) immunostained for phospho-mTOR (green) and NeuN
(red). The open arrow shows the presence of activated mTOR in the cell body
and arrows in the dendrites of pyramidal neurons in the control slice (E). (G,H)
Quantitative analysis of activated mTOR in CA1 stratum pyramidale in the
different experimental conditions. Each column represents the mTOR*
immunofluorescent area calculated using the Imaged program (number of
pixels above a reference, fixed threshold). (G) No difference among the four
experimental groups, was found 1 h after the end of 7 min OGD. Statistical
analysis: One-way ANOVA: F(3.11) = 0.4563, P > 0.05, ns. (H) Slices
harvested 3 h after the end of 7 min OGD. Note the significant decrease of
activated mTOR in CA1 pyramidal neurons 3 h after the end of OGD. Both
MRS1754 and PSB603 significantly blocked this effect. Statistical analysis:
One-way ANOVA: F(3.10) = 26.99, P < 0.001, Newman-Keuls multiple
comparison test: ***P < 0.001, OGD vs. CTR; ##P < 0.01, OGD+MRS vs.
OGD; 8%P < 0.001, OGD +PSB vs. OGD. CTR, n = 4; OGD, n = 3;
OGD+PSB, n = 3; OGD+MRS, n = 4. All data are expressed as mean + SEM.
(1,J) Quantitative analysis of phospho-mTOR™* dendrites in CA1 stratum
radiatum in the different experimental conditions. (I) Length of
phospho-mTOR™T dendrites in CA1 stratum radiatum 1 h after the end of

7 min OGD. No difference among the four experimental groups was observed.
Statistical analysis: One-way ANOVA: F(3,11) = 0.7143, P > 0.05, ns.

(J) Length of MTOR™ dendrites in CA1 stratum radiatum 3 h after the end of
7 min OGD. Note the significant decrease of activated mTOR in dendrites 3 h
after the end of OGD. PSB6083 significantly blocked this effect. Statistical
analysis: One-way ANOVA: F(3.g) = 12.38, P < 0.02, Newman-Keuls multiple
comparison test: **P < 0.01, OGD vs. CTR; $p < 0.05, OGD+PSB vs. OGD.
CTR, n = 3; OGD, n = 3; OGD+PSB, n = 3; OGD+MRS, n = 4. All data in the
graphs are expressed as mean + SEM.

DAPI GFAP

1h F 3h
800
800 sk

“E 600 NE 600
E £
2 2
< 400 < 400
Q Q
£ £
0 I3
< 200 A < 200

0 - 0-

CTR MRS PSB CTR MRS PSB

FIGURE 9 | Quantitative analysis of astrocytes in the CA1 area in the different
experimental conditions after the simil-ischemic insult. (A-D) Representative
microphotographs, taken at the epifluorescence microscope, of astrocytes
immunolabelled with anti-GFAP antibodies in the stratum radiatum (green) of a
control (A), OGD (B), OGD plus MRS1754 (C), and OGD plus PSB603 (D)
slice. Scale bar: 50 um. (E,F) Quantitative analysis of astrocytes in the
stratum radiatum of CA1 in control, OGD, OGD plus MRS1754, and OGD
plus PSB603 slices at 1 h (E) and 3 h (F) after 7 min OGD. (E) No significant
differences among the four experimental groups analyzed was found.
Statistical analysis: One-way ANOVA: F (3,18 = 0.877, P > 0.05, ns. CTR,
n=8; OGD, n =7; OGD+PSB, n = 3; OGD+MRS, n = 4. (F) Statistical
analysis: One-way ANOVA: F(3.15) = 6.734, P < 0.01, Newman-Keuls
multiple comparison test: **P < 0.01, OGD vs. CTR; $p < 0.05, OGD+PSB
vs. OGD. CTR, n =7; OGD, n = 4; OGD+PSB, n = 4, OGD+MRS, n = 4. All
data in the graphs are expressed as mean + SEM.

(—4% vs. control slices, ns, *¥*P < 0.001 vs. 7 min OGD), while
treatment with 500 nM MRS1754 partially, but still significantly
attenuated this effect (—31% vs. controls, ns, **P < 0.01 vs. 7 min
OGD).

We used, as a determinant of mTOR activation in the
dendrites, the analysis of the length of phospho-mTOR positive
dendrites, as reported in the methods. The results shown in
Figure 8I reveal that mTOR activation was not statistically
significant among the four experimental groups 1 h after the
end of 7 min OGD. However, in the slices collected 3 h after
the end of 7 min OGD we found a significant decrease of
mTOR positive dendrites in the stratum radiatum of the CAl
area (Figure 8]). From the statistical analysis we demonstrated
a significant decrease of mTOR immunopositive dendrites in
CAl stratum radiatum of 7 min OGD slices 3 h after the
end of OGD (—80% vs. controls, **P < 0.01, Figure 8]). The
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selective antagonist MRS1754, did not significantly modify this
effect, while treatment with PSB603 partially, but significantly,
reversed this effect (+226% vs. 7 min OGD,*P < 0.05). These
data demonstrate that OGD significantly decreased mTOR
activation and that the selective antagonism selective antagonism
of Ajp receptors significantly reduced this impairment, a further
indication of prevention of neuronal degeneration by blockade of
this receptor.

Analysis of Astrocytes in CA1 Stratum

Radiatum After 7 min OGD

Astrocytes were labeled with the anti-GFAP antibody and
quantified in the stratum radiatum of CA1l hippocampus in
the four experimental conditions: in control slices, in slices
after 7 min OGD alone, and after 7 min OGD in the presence
of 500 nM MRS1754 or 50 nM PSB603, both at 1 and
3 h after the end of OGD, as shown in the representative
microphotographs in Figures 9A-D, taken at 3 h after the end
of OGD.

In the stratum radiatum of slices harvested 1 h after
the end of 7 min OGD we found a slight, not significant
increase of astrocytes (Figure 9E, +19%, ns vs. controls),
which became significant at 3 h after the end of 7 min
OGD (Figure 9F, +43% vs. control slices, **P < 0.01).
Both Ajp receptor antagonists, partially but significantly,
reduced the increase of astrocytes caused by the simil-ischemic
conditions. MRS1754 decreased the number of astrocytes by
10% (ns vs. OGD), while PSB603 by 13% (°P < 0.05 vs.
OGD).

Quantitative analysis of total microglia did not reveal
statistically ~ significant modifications in the different
experimental conditions both at 1 and 3 h after the end of
7 min OGD (data not shown).

Neurodegeneration of CA1 Pyramidal
Neurons Induced by Glutamate Was Not
Prevented by Adenosine Aog Receptor

Antagonists

In order to have an insight into the mechanism of A,p receptor
antagonism-induced neuroprotection, we verified whether
MRS1754 and PSB603 might protect CAl pyramidal neurons
from the well-known neurodegenerative effects caused by
glutamate exposure. We incubated the hippocampal slices
in vitro with 100 uM glutamate for 10 min and verified the
effect of MRS1754 and PSB603 on glutamate-induced cell death
(Figures 10A-D).

Administration of 100 WM glutamate for 10 min caused
significant damage to pyramidal neurons at 3 h after the
end of incubation, evidenced by the significant increase
of HDN neurons in hippocampal CAl, as shown in the
representative image presented in Figure 10B. Quantitative
analysis (Figure 10D) demonstrated that the increase of HDN
neurons was statistically significant in comparison to control
slices, and that neither MRS1754 nor PSB603 protected CAl
pyramidal neurons from the excitotoxic effect of glutamate
(*P < 0.05 vs. all other groups).
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FIGURE 10 | Evaluation of glutamate induced neurotoxicity in CA1 stratum
pyramidale in the different experimental conditions. (A-C) Representative
microphotographs, taken at the epifluorescence microscope, of CA1
pyramidal neurons immunolabelled with anti-NeuN antibodies in a control slice
(A), a slice treated with glutamate (GLU, B), a slice treated with glutamate plus
PSB603 (GLU+ PSB, C) slice. Scale bar: 50 pm. (D) Quantitative analyses of
NeuN* HDN neurons in the four experimental groups 3 h after the end of drug
incubation. Statistical analysis: One-way ANOVA: F (3.5 = 3.313, P < 0.05,
Newman-Keuls multiple comparison test: *P < 0.05, vs. all other groups.
CTR, n =6; GLU, n = 6; GLU+PSB, n = 3; GLU+MRS, n = 4.

DISCUSSION

The putative protective role of adenosine Ajp receptors in
cerebral ischemia was studied in the CA1 region of hippocampal
slices under oxygen-glucose deprivation, an experimental
condition that mimics, albeit with the limits of in wvitro
methodology, the most common causes of cerebral ischemia,
such as vessel occlusion. In vitro slices give a partial view
of the physiology of the brain because of the absence of
an intact vascular system and the altered tridimensional
microenvironment. These alterations involve not only
neurons but also glia, and more generally the physiology of
the neurovascular unit formed by astrocytes, pericytes, microglia,
neurons, and the extracellular matrix (Holloway and Gavins,
2016). Nevertheless, the in vitro systems have many benefits such
as the opportunity to obtain highly valuable information in terms
of the time-course of the electrophysiological events, changes in
membrane potential (AD), changes in synaptic transmission and
morphological and biochemical changes in neurons and glia.
Our results confirm that in the CA1 region of rat hippocampus,
the application of a 7 min OGD episode induced the appearance
of AD which was followed by irreversible synaptic damage
and neurodegeneration of CAl pyramidal neurons (Pugliese
et al., 2003, 2006, 2009; Coppi et al., 2007; Traini et al., 2011).
We now demonstrate that these events are accompanied by
neurodegeneration of CA1 pyramidal neurons, with reduction of
neuronal density and significant increase of apoptotic neurons.
For the first time we demonstrated here that antagonism of
Ajp receptors using the selective ligands MRS1754 or PSB603,
applied before, during and after OGD, prevented or delayed
the appearance of AD, and prevented the irreversible loss of
neurotransmission induced by 7 min OGD. Furthermore, we
demonstrated that the selective blockade of A,p receptors during
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a prolonged (30 min) OGD insult delays the appearance of
AD indicating an extension of the time window between the
start of the insult and the appearance of excitotoxic damage.
Adenosine Ajp receptor antagonism also counteracted the
reduction of neuronal density in CA1 stratum pyramidale and
decreased apoptosis mechanisms at least up to 3 h after the
end of the insult. Both Ap receptor antagonists did not protect
CA1 neurons from neurodegeneration induced by glutamate
application, indicating that the antagonistic effect is upstream of
glutamate release.

The hippocampus, and particularly CA1 stratum pyramidale,
is one of the most vulnerable brain regions to ischemic damage.
We used the acute rat hippocampal slice preparation which
allows measurements of synaptic transmission with good spatial
and temporal resolution. In the early phases, hypoxia/ischemia
is known to induce a massive increase of extracellular glutamate
levels which trigger hyperactivation of glutamate receptors,
production of reactive oxygen species, pathological increase
of intracellular Ca?*, rapid decrease in ATP reserves and
activation of various proteolytic enzymes (Karadottir et al., 2005;
Al-Majed et al., 2006; Kovacs et al., 2006). In hippocampal
slices, a severe OGD insult as that applied in the present
experiments (7 min) elicits the appearance of AD within the
OGD period and is invariably followed by irreversible loss of
neurotransmission (Frenguelli et al., 2007; Pugliese et al., 2007,
2009), an index of cell suffering, damage to neurons and to the
surrounding tissue (Somjen, 2001). AD is caused by the sudden
increase of extracellular Kt and by the contemporary explosive
rise in glutamate extracellular concentration (Somjen, 2001).
Contemporarily to the extracellular increase of glutamate, the
extracellular concentration of adenosine significantly increases,
as demonstrated both in in vivo and in vitro experiments (Latini
and Pedata, 2001). After 5 min OGD, adenosine reaches an
extracellular concentration of 30 pM in hippocampal slices
(Latini et al., 1999; Pearson et al, 2006). At such high
concentration adenosine can stimulate all receptor subtypes,
including the A,p receptor, which exhibits affinity for adenosine
with an ECsg in the range of 5-20 uM, lower than all other
subtypes (Fredholm et al., 2011). For this reason, it is possible that
activation of Ajp receptors occurs mainly during pathological
conditions, such as inflammation, hypoxia, trauma, and ischemia
(Fredholm et al., 2001).

Our data show that Ap receptor antagonists, by preventing
or delaying the onset of AD, prevent the irreversible loss of
neurotransmission induced by 7 min OGD allowing complete
recovery of synaptic potentials. We showed for the first time
a partial recovery of neurotransmission was also observed
in a group of hippocampal slices, treated with A,p receptor
antagonists, that developed AD immediately after reoxygenation.
This delay of AD appearance might account for the partial
recovery of neurotransmission observed in these slices. The
occurrence of AD after the end of OGD period is a peculiar
characteristic that we observed in our hippocampal preparation.
We envisage that when the AD appears during the reoxygenation
period, similarly to the phenomenon of spreading depression
(Somjen, 2001), neurons are less damaged, and they can partially
recover their electrical activity. Thus, even in those slices treated

with the Ajp receptor antagonists in which AD takes place,
this event is less harmful to neuronal viability. This is a
substantial difference from A5 receptor antagonist-mediated
neuroprotection during a 7 min OGD insult. Indeed, fEPSP
recovery was never observed in those few slices undergoing AD in
the presence of the A, 5 receptor blocker ZM241385, as previously
published (Pugliese et al., 2009).

As to the mechanism by which Ajp receptor antagonists
protect from hypoxia/ischemia, recent studies by Gongalves et al.
(2015) have demonstrated that in mouse hippocampus Ajp
receptors are expressed on glutamatergic terminals anatomically
comparable to those from which our recordings were performed.
Their selective stimulation counteracts the predominant A;
receptor-mediated inhibition of synaptic transmission. We
confirmed this assumption by performing PPF experiments
in rat hippocampal slices in which the Ajp receptor agonist
BAY606583 was able to reduce PPF ratio, which is known
to be caused by increased glutamate release at presynaptic
level. This effect is counteracted not only by the Ap receptor
antagonists MRS1754 and PSB603 but also by the A; receptor
antagonist DPCPX. As already hypothesized (Moriyama and
Sitkovsky, 2010; Gongalves et al., 2015), this result may be
related to the existence of an A;/A,p receptor heterodimer
in the CA1 hippocampal region. On these bases, our purpose
was to study the possible involvement of A; receptors in
the neuroprotective effects elicited by the two Ajp receptor
antagonists during OGD. In accordance to data reported by
Canals et al. (2008) in a model of chemical penumbra produced
by a mitochondrial gliotoxin in the hippocampus in vitro,
we would have expected conservation of synaptic transmission
during the first min of OGD and acceleration of AD appearance.
In our conditions, a similar response was observed only in
a limited number of slices during 7 min OGD. Instead, in
most of the slices we demonstrated that DPCPX induced
neuroprotection during OGD, delaying AD appearance. This
unexpected result may be due to a different response of A;
receptors during OGD in our experimental conditions. Our
data could also be explained considering the results obtained
by Sperlagh et al. (2007) who demonstrated that DPCPX
decreases glutamate release from hippocampal slices subjected
to OGD and that this effect is mimicked and occluded by
the Ajp receptor antagonist ZM241385. The same Authors
hypothesize that DPCPX, even at low nanomolar concentrations,
would directly bind to A;a receptors during severe ischemia
(in accordance with our previously published results, Pugliese
et al, 2009). The rational for this assumption is that the
Ay receptor agonist CGS21680 displays two distinct binding
sites in the hippocampus: a “typical” (striatal-like) binding site
which is displayed by DPCPX only at high (submicromolar)
concentrations, and an “atypical” binding site, which shows high
affinity for DPCPX (Johansson and Fredholm, 1995; Cunha et al.,
1996). On these bases, we can hypothesize that, in our OGD
experiments, DPCPX binds to this “atypical” binding site (i.e.,
an Aj-Ajp receptor heterodimer) thus decreasing glutamate
outflow and protecting hippocampal slices from OGD insults.
Furthermore, when overstimulated such as during ischemia,
A receptors undergo desensitization (Siniscalchi et al., 1999).
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This phenomenon can be further increased by A,p receptors
activation, triggering a vicious circle in which the beneficial
effect of A; receptor stimulation is overcome by the noxious
effect of Ap receptors activation (Gongalves et al., 2015) as
already suggested for A5 adenosine receptors (Pugliese et al.,
2009). Further mechanistic studies suggest that the A5 receptor,
when stimulated, facilitates A,p receptor externalization from
the endoplasmic reticulum to the plasma membrane, possibly
increasing the formation of the Aypo—-Asp dimer (Moriyama and
Sitkovsky, 2010). All these results taken together may explain
the deleterious activity of adenosine Ajp receptor stimulation
during an ischemic insult, and the protective effect of Ajp
receptor antagonists in this condition. Finally, observation that
the Ajp receptor antagonists did not protect CAl neurons
from neurodegeneration induced by direct glutamate application,
confirms that the mechanism underlying their protection against
ischemia-induced neurodegeneration is exerted at adenosine
receptors that, by the abovementioned mechanisms, regulate
extracellular glutamate release. Alternatively, since OGD is above
all a problem of efficient energy recovery, the demonstration
that Ajp receptors control astrocytic and neuronal glycogen
metabolism (Magistretti et al., 1986; Allaman et al., 2003) and
glucose utilization by hippocampal slices (Lemos et al., 2015)
may suggest an additional effect of these receptors on metabolic
activity during OGD.

Severe OGD increased apoptosis and damaged CA1 pyramidal
neurons at 1 and 3 h after the end of the ischemic insult.
Immunohistochemistry showed that CAl pyramidal neurons
had significant morphological changes, with increased density
of nuclei (HDN neurons), karyorrhexis (LDN neurons) and
possibly nuclear fragmentation, as evidenced by the significantly
higher number of LDN neurons and cell death after OGD. These
results are in agreement with those found by Unal-Cevik et al.
(2004) in the cerebral cortex of the rat after mild ischemia.
Pyknosis is typical of apoptotic cells (Elmore, 2007) and may
precede karyorrhexis. We demonstrated that LDN neurons, being
highly positive for CytC, were undergoing apoptosis. It has
been demonstrated that CytC released into the cytosol binds to
apoptotic protease activating factor-1, which leads to activation
of caspase-9 which is important in neuronal cell death following
ischemia (Kluck et al., 1997; Yang et al., 1997; Love, 2003; Jiang
and Wang, 2004; Suen et al., 2008; Lana et al., 2014, 2016,
2017a,b; Martinez-Fabregas et al., 2014). In turn, caspase-9 is
activated by high glutamate levels, as occurs during ischemia
(Li et al, 2009). As reported in the literature, activation of
mTOR, which has multiple roles in cells among which local
protein synthesis at the dendritic and spine level (Frey and
Morris, 1997; Tsokas et al., 2007; Thoreen et al., 2012), can be
modified in ischemic conditions (Dennis et al., 2001; Laplante
and Sabatini, 2012). As already reported (Gegelashvili et al,
2001; Maragakis and Rothstein, 2004), the decrease of mTOR
activation may be secondary to the excitotoxic mechanisms
evoked by massive increase of glutamate during OGD, which is
known to be an important component of neuronal injury in vitro
(Newell et al., 1995). The participation of decreased mTOR
activation in OGD-induced neuronal damage is supported by
our results showing decreased activation of mTOR both in the

cell body and dendrites of CAl neurons 3 h after the end of
OGD.

Within the limits of the in vitro model and the alteration of
the neurovascular unit and of neuro glia interplay, we found
interesting effects on astrocytic responses. Indeed, astrocytes
proliferation, possibly caused, among other stimuli, by increased
release of glutamate, is one of the early events that takes
place after acute focal CNS damage (Burda and Sofroniew,
2014). In accordance to our previous results (Pugliese et al,
2009), we found evidence of significant, although limited,
astrocytic proliferation in CA1 stratum radiatum already 3 h
after the end of OGD, possibly caused by increased glutamate
release. Ayp receptor antagonism significantly prevented all the
above neuronal and astrocytic modifications, sparing neurons
from the degenerative effects caused by the simil-ischemic
conditions, and reducing astrocytes proliferation. CA1 pyramidal
neurons treated with the Ap receptor antagonists had a
similar morphology to those of control slices, had neither
increased nor decreased nuclear density, did not undergo
apoptosis, and had activated mTOR levels similar to those of
controls.

The similar effects obtained using two different Ajp
receptor antagonists strengthen the hypothesis that the Ajp
receptor is involved in the mechanisms of cerebral ischemia.
Nevertheless, MRS1754 seems to have lower efficiency than
PSB603 on some of the parameters investigated. It is possible
that the two drugs act with a different time-course or
that PSB603 is more efficacious than MRS1754 in this
model.

In summary, our data demonstrate that antagonists
of adenosine Ajp receptors protect the CAl area of the
hippocampus from an acute damage induced by severe
hypoxic/ischemic conditions. The mechanism likely resides in
protection from the acute increase of glutamate extracellular
concentrations and consequent excitotoxicity. It is worth
noticing that since Ajp receptors have low affinity for the
endogenous ligand adenosine, they are activated only at high
extracellular adenosine concentrations that can be reached under
pathological conditions such as ischemia, thus representing a
selective target (Popoli and Pepponi, 2012).
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