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Traditionally, the solution to reduce parameter dimensionality in a physiologically-based

pharmacokinetic (PBPK) model is through expert judgment. However, this approach

may lead to bias in parameter estimates and model predictions if important parameters

are fixed at uncertain or inappropriate values. The purpose of this study was to

explore the application of global sensitivity analysis (GSA) to ascertain which parameters

in the PBPK model are non-influential, and therefore can be assigned fixed values

in Bayesian parameter estimation with minimal bias. We compared the elementary

effect-based Morris method and three variance-based Sobol indices in their ability to

distinguish “influential” parameters to be estimated and “non-influential” parameters

to be fixed. We illustrated this approach using a published human PBPK model

for acetaminophen (APAP) and its two primary metabolites APAP-glucuronide and

APAP-sulfate. We first applied GSA to the original published model, comparing Bayesian

model calibration results using all the 21 originally calibrated model parameters (OMP,

determined by “expert judgment”-based approach) vs. the subset of original influential

parameters (OIP, determined by GSA from the OMP). We then applied GSA to all

the PBPK parameters, including those fixed in the published model, comparing the

model calibration results using this full set of 58 model parameters (FMP) vs. the

full set influential parameters (FIP, determined by GSA from FMP). We also examined

the impact of different cut-off points to distinguish the influential and non-influential

parameters. We found that Sobol indices calculated by eFAST provided the best

combination of reliability (consistency with other variance-based methods) and efficiency

(lowest computational cost to achieve convergence) in identifying influential parameters.

We identified several originally calibrated parameters that were not influential, and

could be fixed to improve computational efficiency without discernable changes in

prediction accuracy or precision. We further found six previously fixed parameters that

were actually influential to the model predictions. Adding these additional influential
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parameters improved the model performance beyond that of the original publication

while maintaining similar computational efficiency. We conclude that GSA provides an

objective, transparent, and reproducible approach to improve the performance and

computational efficiency of PBPK models.

Keywords: global sensitivity analysis, physiologically-based pharmacokinetic model, Bayesian, computational

efficiency, parameter fixing

INTRODUCTION

Physiologically-based pharmacokinetic (PBPK) modeling plays
a critical role in the fields of predictive toxicology and
pharmacology (Reisfeld and Mayeno, 2012; Chen et al., 2015).
By including the physiological structures of organisms and the
physiochemical properties of chemicals, PBPK models provide
a quantitative description of the pharmacokinetic processes
such as absorption, distribution, metabolism, and excretion,
and can be used to investigate mechanistic processes, evaluate
hypotheses, and guide experiment design. They can also help
reduce animal testing through their ability to simulate and
predict bio-distribution of target tissue dose of the parent
chemicals and metabolites.

In toxicology and pharmacology, toxicokinetic or PBPK
models are essential tools to evaluate the variability in chemical or
drug concentrations among individuals in the target population
(Jones and Rowland-Yeo, 2013; Ring et al., 2017). These models
are particularly useful in helping to design safer treatments
and/or assessing risks for sensitive populations, either for
pharmaceuticals or environmental contaminants (Liao et al.,
2010). PBPK models usually have dozens of parameters. This
complexity poses a challenge in parameter estimation (Slob
et al., 1997; Yates, 2006; Garcia et al., 2015; Wendling et al.,
2015) and precludes the application of standard frequentist
algorithms used for traditional PK analyses. Moreover, unlike
traditional compartmental models, PBPK model parameters are
not uniquely identifiable based on PK data alone (Yates, 2006).
The usual solution to calibrate a PBPK model is to fix the “felt to
be known” model parameters and optimize only a small subset
of parameters (Peters, 2008; Lyons et al., 2013). However, this
“expert judgment”-based approach lacks statistical rigor.

Bayesian statistics provides a rational way to address the
identifiability issue in PBPK models through the use of
informative prior knowledge in parameter distribution (Gelman
et al., 1996, 2013; Chiu et al., 2014). Prior knowledge
can be updated with informative data through a likelihood
function, resulting in a so-called posterior distribution reflecting
an updated estimate of each parameter. For population
PBPK models, the use of a hierarchical Bayesian approach
allows PBPK model parameters to be estimated both at
the individual and the overall population level. In general,
Markov chain Monte Carlo (MCMC) is used to estimate
these posterior distributions. However, the determination of
the posterior distribution for all parameters in complex
dynamic models is very challenging owing to the model
nonlinearity and interactions among multiple parameters.

In PBPK models, nonlinear biological processes, such as
enzyme saturation and interactions between physiological
parameters, increase the computational difficulty in the Bayesian
calibration process. Non-identifiable parameters can further
increase the computational burden of Bayesian analysis, and
therefore reduce the computational efficiency. Additionally,
currently implemented Bayesian numerical algorithms for PBPK
modeling often have challenges in convergence with acceptable
computational times due to the need to solve systems of coupled
ordinary differential equations (Wendling et al., 2015).

Sensitivity analysis (SA) provides a means to evaluate the
influence of model parameters and identify non-influential
parameters that can be fixed with minimal effect on model
output (Ratto et al., 2007; Zhang et al., 2015). Sensitivity analyses
can generally be grouped into two categories: local and global
(Pianosi et al., 2016). Typically, local SA uses the one-at-a-
time sampling method to examine the uncertainty of parameter
impacts on model output. This straightforward method has high
efficiency in computational analysis, but neglects the interactions
and simultaneous variations in various input parameters and
may give the misleading results. Unlike local SA, global SA
(GSA) calculates the contribution from the variety of all model
parameters, including both single parameter effects and multiple
parameter interactions. This approach has been widely applied
to biological models (McNally et al., 2011; Boas et al., 2015;
Loizou et al., 2015; Lumen et al., 2015). For example, McNally
et al. (2011) provided a GSA workflow for PBPK models that
begins with preliminary screening from elementary effect (EE)-
based Morris method to eliminate (i.e., fix at nominal values) the
parameters with negligible impact on the model output, and then
used variance-based GSA to determine the influential parameters
in the PBPK model. GSA thus provided an algorithm to simplify
the computational approach while maintaining accuracy and
precision, thereby improving computational efficiency.

Our study hypothesis is that GSA can provide a systematic
method to ascertain which PBPKmodel parameters have negligible
influence on model outputs and can be fixed to improve
computational speed in Bayesian parameter estimation with
minimal bias. Although GSA offers many advantages compared
to local SA, only a few applications in PBPK modeling have
been published. For instance, a previous study for a PBPK model
of m-Xylene demonstrated that parameters identified by GSA
as having little influence had similar posterior distributions to
those when all parameters were calibrated using the Bayesian
approach (McNally et al., 2012). Here, we extend this approach
in a new case study using a more complex model: a PBPK model
for acetaminophen (APAP) and its conjugated metabolites. We
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used this case study to answer four key questions: (1) What is the
relative computational efficiency/rate of convergence of various
GSA algorithms? (2) Do different algorithms give consistent
results as to direct and indirect parameter sensitivities? (3)
Can we identify non-influential parameters that can be fixed
in a Bayesian PBPK model calibration while achieving similar
degrees of accuracy and precision? (4) Does fixing parameters
using “expert judgment” lead to unintentional imprecision or
bias?

We examined questions (1) and (2) by applying four different
GSA algorithms to the PBPK model. For question (3), we
compared the results of MCMC simulations of the PBPK model
with and without fixing non-influential parameters. We applied
each of these analyses to the PBPK model using (a) the original
set of 21 model parameters (OMP), calibrated in the previously
published model, which also included 37 parameters fixed by
expert judgment, resulting in the influential subset of these
original parameters (OIP, determined by the GSA approach);
and (b) the full set of 58 model parameters (FMP) including
those previously fixed, resulting in the influential subset of
these parameters (FIP, determined by the GSA approach). Thus,
question (4) was examined by comparing the results obtained
from OMP, OIP, FMP, and FIP.

MATERIALS AND METHODS

APAP-PBPK Model, Parameters, and Data
Our analysis made use of our previously developed PBPK
model that describes the ADME of APAP and its conjugated
metabolites, APAP-glucuronide (APAP-G) and APAP-sulfate
(APAP-S) in humans (Zurlinden and Reisfeld, 2016, 2017).
All model details such as structure, parameters, and state
variables are detailed in this publication, but in brief, the model
equations were constructed based on chemical mass balances,
assuming blood-flow limited transport and human physiological
properties. Model compartments included fat, muscle, liver,
gastrointestinal (GI), and kidney, with remaining tissues lumped
into either rapidly- and slowly-perfused compartments. Standard
Michaelis-Menten saturation kinetics were used to quantify the
process of APAP metabolism for APAP-G and APAP-S in the
liver, and were parameterized by the Michaelis constant Km and
maximummetabolism rate Vmax. The original PBPK model was
able to predict the distribution of these chemicals in target tissues
adequately. Distributions for parameter priors were derived from
literature values and were assumed to be uniform or truncated
normal distributions under the log-transformed scale (Price et al.,
2003; Chiu et al., 2009; Zurlinden and Reisfeld, 2016). These
parameter probability distributions are summarized in Table 1.
Parameters that did not have measured values were assumed to
follow a biologically-plausible distribution for sensitivity analysis
and model calibration. We further assumed that the parameters
in the PBPKmodel were independently distributed. Therefore, all
parameters could be sampled independently, which is required
for the GSA algorithms we applied (see Li et al., 2010 for a
method that can incorporate correlated inputs). This assumption
is likely to not be strictly true, for instance with physiological
parameters, but recent work by Ring et al. (2017) using correlated

physiological parameters suggests that such correlations have
minimal impact on PBPK model predictions.

Available pharmacokinetic data from published clinical
studies of APAP and its metabolites, also previously reported,
were used for model calibration. Studies involved a single oral
dose ranging from 325mg to about 1,400mg (20 mg/kg). The
sources of the human experimental data and their corresponding
dose levels are in Table S1. Prior PBPK model predictions were
checked as to their coverage of the calibration data (Figure S1).
Specifically, the prior distributions for the model parameters
were sampled by Monte Carlo, and the simulations run for each
random parameter set.

GSA Algorithms and Approach
Morris Screening
The Morris method (Morris, 1991) is an extension of the
traditional one-at-a-time (OAT) approach, but over multiple
points in the multi-dimensional parameter spaces to provide
global OAT analysis through a number of sampling trajectories.
Beginning at a randomly sampled point, each PBPK parameter
was sampled along a grid to create a trajectory through the
parameter space. According to the standard practice for this
method, all parameters were re-scaled with the minimum
scaled to zero, the maximum scaled at 1, and the re-scaled
parameter assumed to follow the uniform distribution in [0, 1].
For the parameters with lognormal distributions, the rescaling
was performed on the natural log-transformed parameters.
These parameters were truncated at z-scores of ±2- to 4-fold
standard deviations (shown in parentheses in Table 1), and those
limits used as the minimum and maximum. Outputs from the
Morris method include the mean OAT sensitivities µ and its
standard deviation σ of the distribution, which represents the
overall influence and the interactions/non-linear effects on the
PBPK model output, respectively. The Morris σ also represent
the variability throughout the parameter space. Our study
adopted the more advanced EE-based Morris method that was
developed by Campolongo et al. (2007), which improved both the
effectiveness and reliability of the sensitivity measures (adding
the mean absolute value of distribution of the OAT sensitivities,
denoted µ

∗) as well as the efficiency of the sampling strategy
(generating a large number of proposed sampling trajectories
with Latin Hypercube sampling, and selecting a subset with the
highest diversity across parameter space). The design generated
random starting point for each parameter in the specific range
and then moved one at a time in a random order. The
minimum andmaximum value for each parameter from the prior
distribution inTable 1were used to define the sampling range. To
compare the result of the Morris screening with the Sobol index,
we normalized the Morris index for each independent output, so
the maximum index for each of the three different compounds at
a specific given time t was 1.

Variance-Based Sensitivity Analysis
More sophisticated GSA methods include so-called “variance-
based” methods that aim to partition variance in the model
output among both individual parameter influences and
parameter interactions. All the variance-based GSA methods
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TABLE 1 | Description of prior distributions for original and additional parametersa.

Parameter Description Unit Distribution Mean or min sdlog (z-score

truncation) or max

ORIGINAL PARAMETERS

Tg Gatric emptying time constant h LN 0.23 0.5 (±3)

Tp GI perfusion time constant h LN 0.033 0.5 (±3)

CYP_Km Cytochrome P450 metabolism, Km µM LN 130 1 (±1)

CYP_VmaxC Cytochrome P450 metabolism, VMax µmole/h·BW0.75 U 0.14 2900

SULT_Km_apap Sulfation pathway acetaminophen, Km µM LN 300 1 (±1)

SULT_Ki Sulfation pathway substrate inhibition, Ki µM LN 526 0.5 (±2)

SULT_Km_paps Sulfation pathway PAPS Km – LN 0.5 0.5 (±2)

SULT_VmaxC Sulfation pathway acetaminophen, Vmax µmole/h·BW0.75 U 1 3.26e6

UGT_Km Glucronidation pathway acetaminophen, Km µM LN 6.0e3 1 (±1)

UGT_Ki Glucronidation pathway substrate inhibition, Ki µM LN 5.8e4 0.5 (±2)

UGT_Km_GA Glucronidation pathway GA Km – LN 0.5 0.5 (±2)

UGT_VmaxC Glucronidation pathway acetaminophen, Vmax µmole/h·BW0.75 U 1 3.26e6

Km_AG APAP-G hepatic transporter Km µM LN 1.99e4 0.3 (±3)

Vmax_AG APAP-G hepatic transporter Vmax µmole/h U 1.09e3 3.26e6

Km_AS APAP-S hepatic transporter Km µM LN 2.99e4 0.22 (±3)

Vmax_AS APAP-S hepatic transporter Vmax µmole/h U 1.09e3 3.26e6

kGA_syn UDPGA synthesis 1/h U 1 4.43e5

kPAPS_syn PAPS synthesis 1/h U 1 4.43e5

CLC_APAP APAP clearance L/h·BW0.75 U 2.48e-3 2.718

CLC_AG APAP-G clearance L/h·BW0.75 U 2.48e-3 2.718

CLC_AS APAP-S clearance L/h·BW0.75 U 2.48e-3 2.718

ADDITIONAL PARAMETERS

QCC Cardiac output L/h·BW0.75 LN 16.2 0.2 (±4)b

VFC Fraction volume of fat – LN 0.214 0.45 (±2)b

VKC Fraction volume of kidney – LN 0.0044 0.17 (±2)b

VGC Fraction volume of gut – LN 0.0144 0.08 (±2)b

VLC Fraction volume of liver – LN 0.0257 0.23 (±2)b

VMC Fraction volume of muscle – LN 0.4 0.34 (±2)c

VBLAC Fraction volume of arterial blood – LN 0.0243 0.12 (±2)b

VBLVC Fraction volume of venous blood – LN 0.0557 0.12 (±2)b

VSC Fraction volume of slowly perfused tissue – LN 0.185 0.34 (±2)b

QFC Fractional blood flow of fat – LN 0.052 0.46 (±2)b

QKC Fractional blood flow of kidney – LN 0.175 0.18 (±2)b

QGC Fractional blood flow of gut – LN 0.181 0.45 (±2)b

QLBC Fractional blood flow of hepatic artery – LN 0.046 0.12 (±2)b

QMC Fractional blood flow of muscle – LN 0.191 0.32 (±2)c

QSC Fractional blood flow of fat – LN 0.14 0.35 (±2)b

BP_APAP Blood and plasma ratio – LN 0.9 0.4 (±3)b

PF_APAP APAP partition coefficient of fat – LN 0.447

PG_APAP APAP partition coefficient of gut – LN 0.907

PK_APAP APAP partition coefficient of kidney – LN 0.711

PL_APAP APAP partition coefficient of liver – LN 0.687

PM_APAP APAP partition coefficient of muscle – LN 0.687

PR_APAP APAP partition coefficient of rapidly perfused tissues – LN 0.676

PS_APAP APAP partition coefficient of slowly perfused tissues – LN 0.606

PF_AS APAP-S partition coefficient of fat – LN 0.088

PG_AS APAP-S partition coefficient of gut – LN 0.297

PK_AS APAP-S partition coefficient of kidney – LN 0.261

(Continued)
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TABLE 1 | Continued

Parameter Description Unit Distribution mean or min sdlog (z-score

truncation) or max

PL_AS APAP-S partition coefficient of liver – LN 0.203

PM_AS APAP-S partition coefficient of muscle – LN 0.199

PR_AS APAP-S partition coefficient of rapidly perfused tissues – LN 0.207

PS_AS APAP-S partition coefficient of slowly perfused tissues – LN 0.254

PF_AG APAP-S partition coefficient of fat – LN 0.128

PG_AG APAP-G partition coefficient of gut – LN 0.436

PK_AG APAP-G partition coefficient of kidney – LN 0.392

PL_AG APAP-G partition coefficient of liver – LN 0.321

PM_AG APAP-G partition coefficient of muscle – LN 0.336

PR_AG APAP-G partition coefficient of rapidly perfused tissues – LN 0.364

PS_AG APAP-G partition coefficient of slowly perfused tissues – LN 0.351

aOriginal parameters and nominal value of all additional parameters were adapted from Zurlinden and Reisfeld (2016).
bParameter uncertainty adapted from Chiu et al. (2009) with truncation at z-scores of ±z (log-transformed mean ± z × log-transformed SD).
cParameter uncertainty adapted from Price et al. (2003) with truncation at z-scores of ±z (log-transformed mean ± z × log-transformed SD).

we used are based on calculating so-called Sobol sensitivity
indices, specifically “Main” (first-order), “Total” (total-order)
effect, and “Interaction” (their difference). The main effect is
used to measure the contribution proportion of a specific
parameter to the output variation and reflect the expected
reduction in the output variance if the parameter were known
precisely. Therefore, the magnitude of the main-effect can be
used to help determine if the specific parameter can be fixed.
The interaction effect is used to measure the contribution
proportion of parameter interactions to the output variation,
which quantifies the effect of interactions of two or more
parameters on the output. The total effect characterizes the effect
of the specific parameter and the results of its interaction with
all other parameters on the variation of the model output. It
represents the expected amount of output variance that would
remain unexplained (residual variance) if only that variable were
left free to vary over its range. Previous studies have used the
extended Fourier amplitude sensitivity test (eFAST) (Saltelli et al.,
1999) method to calculate the Sobol sensitivity indices, but
alternative algorithms using different sampling schemes are also
available (Saltelli et al., 2010). Variance-based methods are more
computationally intensive than theMorris method, so in addition
to using eFAST, this study investigated two other variance-based
methods to assess computational efficiency. Both these additional
methods are Monte Carlo-based (Jansen, 1999; Owen, 2013),
making use of two or three independent samples to estimate the
Sobol indices.

Distinguishing Influential and Non-influential

Parameters
Separate sensitivity indices can be produced for each output
measurement, so for pharmacokinetic data, there are indices
not only for different measurements (plasma concentrations of
APAP, APAP-S, and APAP-G), but also as a function of time.
All model outputs were transformed to logarithmic scale to
be consistent with the lognormal likelihood function used for
Bayesian model calibration (see section MCMC Simulations,

below). This also avoids excessive scale-related effects, such
as due to data being in different units. The logarithmic
transformation may not be appropriate for measurements near
the limit of detection or the numerical error tolerance of the
prediction simulations, neither of which was an issue in this case.
Because data may have been taken at different sampling time-
points across a group of subjects, it is often difficult to summarize
the overall impact of a parameter on the model calibration.
Therefore, we selected representative time points of 0.5-, 1-, 1.5-,
2-, 4-, 6-, 8-, and 12-h post intake as the SA time points, which
included the entire time-period of detectable concentrations in
plasma in the clinical data. For each parameter, we then used
the maximum sensitivity index across all data points (APAP,
APAP-S, APAP-G, each at time points 0.5–12 h) as the indicator
of sensitivity. After that, we set a cut-off point as a benchmark
to distinguish the influential and non-influential parameters
(see section Selection of influential/non-influential parameters,
below). This choice was made because the only way a parameter
can be labeled “non-influential,” and thus a candidate for fixing,
is if all of the sensitivity indices for that parameters are “small.”
Thus, the separation between “influential” and “non-influential”
was driven by the most sensitive output for each parameter.

Convergence of Sensitivity Index
All GSA results required the model to be evaluated in a finite
sample of the overall parameter space, so convergence was an
important metric to monitor. By convergence, we mean that the
result of sensitivity index is similar across replications under
the same sample size by using a bootstrap approach (for Jansen
and Owen methods) or a random phase-shift (for eFAST). Both
methods can generate confidence interval for the sensitivity
indices. The number of model evaluations is based on a sample
size n and number of input factors p, and it is notable that the
total number of model evaluations is different between Morris
(n × (p+1)), eFAST (n × p), Jansen (n × (p+2)), and Owen (n
× (3p+2)). We estimated the convergence value of sensitivity
indices for each parameter using the approach proposed by
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Sarrazin et al. (2016). This method quantitatively assesses the
convergence by computing the range of 95% confidence intervals
(from bootstrap or random phase shift) of the total sensitivity
indices for each parameter across all data points. For our
analysis, themaximum estimated convergence values in all model
parameters were used as this metric. A confidence interval close
to zero represents the parameter approaching convergence. For
Sobol indices, we considered the threshold value as 0.1 (95%
confidence interval less than 0.1) for the main and total effect
to determine an acceptable result based on the suggestion from
a previous study (Herman et al., 2013). For Morris indices,
we normalized the index by maximum estimation and set
the threshold as 10% of maximum estimation across model
parameters for the specific compound at time t. We then
used the maximum convergence index across all datasets (each
parameter for each output variable) as representative. Therefore,
the convergence index less than 0.1 (or 10% of maximum) was
used as a measure of acceptable convergence.

Comparison of GSA Sensitivity Indices
To investigate whether the different algorithms give consistent
results as to direct and indirect parameter sensitivities, we used
the Pearson and Spearman correlation coefficients to assess the
consistency of the main effects (Morris µ

∗ and Sobol main
effect) and interaction effects (σ , and Sobol interaction effect)
among each tested parameter using its maximum sensitivity
index.

Selection of Influential/Non-influential Parameters
For the EE-based Morris method, a cut-off point was set
at 0.1 for both the normalized µ

∗ and σ for each dataset.

If either the normalized µ
∗ or the normalized σ is greater

than 0.1, the parameter can be considered “influential”. For
Sobol indices, we compared cut-off values of 0.01 and 0.05
for both the total and interaction effects. We defined the
parameter as influential if the estimatedmain effect or interaction
was greater than the cut-point criteria. The interpretation
of these measures is that parameters with smaller indices
contribute less than 1 or 5% of the variance in the output,
and thus would be considered “non-influential” (Zhang et al.,
2015).

MCMC Simulations
In our previous study (Zurlinden and Reisfeld, 2016), only 21
metabolism and elimination-related parameters were used to
perform the statistical model calibration and validation with
experiment data. The other 37 PBPK model parameters were
fixed based on the “expert judgment” that the clearance-related
parameters were the most influential. Here, we evaluated global
parameter sensitivity both for the OMP alone, as well as the
FMP. As a benchmark, the Bayesian model calibration for a
PBPK model was initially performed for both the OMP and
FMP, recording baseline values for computational time and
model performance. After that, the dimensionality reductions
were made based on the cutoffs described above; Bayesian
calibration was then performed for the reduced “influential”
parameter sets (OSF and FIP), and the results compared to
those using the OMP and FMP. Four independent Markov
chains were run for each Bayesian analysis. As in our previous
similar Bayesian analyses, we used the Gelman-Rubin potential
scale reduction factor to assess whether different independent

FIGURE 1 | Illustration of the effect of GSA sampling number on convergence index and computational time (min). Note that to check convergence, the sample size

has been increased up from 1,024 to 8,192 under OMP and FMP. Each estimated convergence index was based on the model evaluation that was generated from

the sample number n.
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FIGURE 2 | Correlation matrix for main (gray) and interaction (red) effects for the Morris, eFAST, Jansen, and Owen estimates by using the maximum sensitivity index

for each parameter under (A) the OMP and (B) FMP. Both Pearson’s r and Spearman’s ρ are shown.
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TABLE 2 | Parameter-specific sensitivity results for OMP and FMP using different GSA methods.

Parameter OMP FMP

µ*/Main σ/Interaction µ*/Main σ/Interaction

M E J O M E J O M E J O M E J O

Tg

Tp

CYP_Km

CYP_VmaxC

SULT_Km_apap

SULT_Ki

SULT_Km_paps

SULT_VmaxC

UGT_Km

UGT_Ki

UGT_Km_GA

UGT_VmaxC

Km_AG

Vmax_AG

Km_AS

Vmax_AS

kGA_syn

kPAPS_syn

CLC_APAP

CLC_AG

CLC_AS

QCC

VFC

VKC

VGC

VLC

VMC

VBLAC

VBLVC

VSC

QFC

QKC

QGC

QLBC

QMC

QSC

BP_APAP

PF_APAP

PG_APAP

PK_APAP

PL_APAP

PM_APAP

PR_APAP

PS_APAP

PF_AS

PG_AS

PK_AS

PL_AS

(Continued)
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TABLE 2 | Continued

Parameter OMP FMP

µ*/Main σ/Interaction µ*/Main σ/Interaction

M E J O M E J O M E J O M E J O

PM_AS

PR_AS

PS_AS

PF_AG

PG_AG

PK_AG

PL_AG

PM_AG

PR_AG

PS_AG

Symbol meaning: M, Morris; F, eFAST; J, Jansen; O, Owen.

Color meaning: Dark purple, normalized Morris index ≥ 0.1; Red, Sobol sensitivity index ≥ 0.05; Light green, 0.01 ≤ Sobol sensitivity index < 0.05. Grey, normalized Morris index < 0.1

or Sobol sensitivity index < 0.01.

Markov chains had converged to a consistent distribution
(Gelman and Rubin, 1992). For converged simulations, we
used the predicted (log10-transformed) residuals from the
calibration result to compare the model performance. The log-
likelihood function was used to assess the goodness-of-fit of
the model to the data (Woodruff and Bois, 1993), defined
as

LL =

N
∑

i = 1

−
1

2
·

(

yi − ŷi
)2

s2j[i]
−

1

2
ln(2π s2j[i])

where N is the total number of the data points used in model
calibration; yi and ŷi are the experimental observed and model
predicted value (log-transformed), respectively; s2j is the variance

for data type j (i.e., APAP and each metabolite have separate
variances), and j[i] is the data type of data point i.

This function aggregates the likelihood of experimental
data value and corresponding model-predicted value across all
experimental data including different time points and output
variables. All individual likelihood functions were lognormal,
which was equivalent to transforming model predictions to a
logarithmic scale, as was done for GSA.

Software and Computing Platform
Statistical analysis and results visualization of this study were
carried out in R v.3.4. GSAwas performed with the R “sensitivity”
package v.1.15 (Pujol et al., 2017). We checked the convergence
and compared the test result of Morris and eFAST method
by using the Python v2.7.6 software package “SALib” v.1.0.3
(Herman and Usher, 2017). The MCMC simulations and output
predictions were conducted using GNU MCSim v.5.6 (Bois,
2009). Necessary model parameter distributions were available
within GNU MCSim, and Metropolis within Gibbs sampling
(one component at a time) was used during simulation process.
Aside from estimated of parameter posteriors, output from GNU

MCSim also included the diagnostic information, such as the log-
likelihood (LnData) at each iteration. Parallelized computation
of the MCMC was performed within the 64-bit CentOS Linux
distribution on a high-performance computing cluster at Texas
A&M University, comprising machines with Intel Xeon 2.5GHz
E5-2670 v2 (Ivy Bridge-EP) 10-core processors and 64 GB of
RAM each. The inspection and comparison of the convergence
results from the MCMC analyses were carried out using the R
“boa” package v.1.15 (Smith, 2016). The computation of GSA
was conducted on a Dell Optiplex 7040 desktop computer with
Intel(R) Core(TM) i7-6700 CPU 3.4 GHz 16GB RAM.

RESULTS

The results of our analyses are organized along the four key
questions described in the introduction.

What Is the Relative Computational
Efficiency/Rate of Convergence of Various
GSA Algorithms?
Results of convergence analysis across all the GSA methods
of Morris, eFAST, Jansen, and Owen are shown in Figure 1.
In each case, the maximum index (i.e., combination of time-
point, dataset, parameter, compound, and main vs. total effect
that converges the slowest) is shown, along with the cost in
terms of number of model evaluations and computational time.
For the Morris screening method, the analysis with the small
sample number of 1024 (resulting in 22,528 model evaluations)
reached an acceptable converged result (convergence index <

0.1), which is not surprising, since Morris is an extension of a
computationally-efficient local SA. Among the three variance-
based Sobol indices, eFAST rapidly converged with a sample
number of 2048 for the OMP and with 8192 (resulting in 475,136
model evaluations) for FMP. The alternative methods of Jansen
and Owen did not converge, even up to a sample number of
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FIGURE 3 | Venn diagram displaying the overlaps among the following four parameter sets: original model parameters, OMP; full set of model parameters, FMP;

original influential parameters, using 0.05 as a cut-off point, OIP; full set of influential parameters, using 0.01 as a cut-off point, FIP.

8192. Overall, the Morris method provided the most efficient
computational performance and convergence result, followed by
eFAST.

Do Different Algorithms Give Consistent
Results as to Direct and Indirect Parameter
Sensitivities?
Figure 2 shows the comparison of sensitivity indices between the
Morris method (sensitivities µ

∗ and non-linear/interacts effects
σ) and variance-based global method (main and interaction)
with the sample size of 8,192. For the OMP (Figure 2A), the
variance-based Sobol indices showed a high correlation (r > 0.9)
with each other. The Morris indices had the relatively lower
correlation with variance-based indices. In addition, the rank
correlation results were higher between Morris with Sobol
indices than the product moment correlation. Therefore, the
Morris indices could be used to preliminarily distinguish the
non-influential parameters that were located at the lower level
of the correlation plot. We also found that the correlation
of the interaction had a lower range (r: 0.704–0.992) than
the main effects (r: 0.886–1.000). The correlation plot for the
Morris- and variance-based indices shows a “hockey stick”
shape, suggesting that there are different correlation properties
between “influential” and “non-influential” parameters. The
FMP shows similar correlation properties for the sensitivity

indices (Figure 2B). Compared with the OMP, the correlations
of the interaction effects in FMP for variance-based indices were
lower overall (r: 0.618–0.985). In addition, the number of highly
influential parameters (approximately 10) were similar across all
analysis.

Can We Identify “Non-influential”
Parameters That Can Be Fixed in a
Bayesian PBPK Model Calibration While
Achieving Similar Degrees of Accuracy and
Precision?
Table 2 summarizes the sensitivity of model parameter under
the OMP and FMP settings, respectively. The details of the GSA
results are shown in Supplementary Materials.

For the OMP, the Morris screening results indicated that
only SULT_Ki and UGT_Ki should be grouped with the non-
influential parameter, using the cut-off point of 0.1 for the main
effect (no parameters could be deemed non-influential using the
interaction; Figure S2). Here, all indices had been normalized
with the same dataset, compound, and time point to make them
more comparable. For the variance-based indices, for a cut-off
point of 0.01, all of the OMP were classified as influential due
to the estimated interaction effects being greater than the cut-
off (Figure S3). Results generated from the Jansen method for
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FIGURE 4 | Comparison and global evaluation of the PBPK simulation results with residual properties estimation to determine the accuracy (residual median) and the

precision (residual distribution) in model performance. The top (A) shows the relationships between experimental data (x-axis) and PBPK model predictions (y-axis)

and 95% predicted interval for five model parameter settings. The bottom (B) shows the residuals from the predicted and experimental values to evaluate the

accuracy and precision of model performance.

the main effects were inconsistent with those for the eFAST
and Owen methods, possibly due to a lack of convergence in
the Jansen methods. Using a cut-off point of 0.05, between
11 and 14 of the OMP were considered influential, so the
three methods gave more similar results (Figure S4). Because
the eFAST approach had better convergence characteristics, we
choose the 11 parameters (either main effect or interaction
greater than 0.05) identified by this method as the original
“influential” parameters (OIP) to use in the reduced-parameter
MCMC analyses.

For the FMP, the Morris screening result showed that only
three additional parameters (PG_APAP, PG_AS, and PG_AG)
that were fixed in the previous study were non-influential
(Figure S5; Zurlinden and Reisfeld, 2016). In addition, for the

variance-based methods, the Jansen and Owen methods showed
all parameters to be influential, but these results had not fully
converged. This lack of convergence, along with the inconsistencies
seen with the OMP, led us to focus on the eFAST method as
representing the best balance among reliability, efficiency, and
the ability to discriminate between influential and non-influential
parameters. For the cut-off point at 0.01, 20 parameters were
identified as influential (FIP01). This included six parameters that
were previously fixed in the previous study: QCC, BP_APAP,
PF_APAP, PL_APAP, PM_APAP, and PS_APAP (Figure S6).
Using a cut-off point of 0.05, 10 parameters were identified
as “influential” (FIP05), among which one was previously
considered to be a fixed parameter (BP_APAP) (Figure S7). In
addition, BP_APAP had the main effects above the cut-off, and
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TABLE 3 | Summary of parameter numbers and computational run times for GSA

and MCMC.

OMP FMP

Number of parameters 21 58

MCMC run time (h)a 40.8 ± 0.18 104.6 ± 0.96

GSA-EE run time (h)b Morris 0.009 ± 0.0002 0.04 ± 0.0004

GSA-Sobol run time (h)c eFAST 0.07 ± 0.001 0.33 ± 0.001

Jansen 0.13 ± 0.001 0.33 ± 0.004

Owen 0.22 ± 0.001 0.99 ± 0.002

Sensitivity cut-off point > 0.05 OIP FIP05

Number of influential parameters 11 10

MCMC run time (h)a 38.1 ± 0.07 24.8 ± 0.44

Sensitivity cut-off point > 0.01 (=OMP) FIP01

Number of influential parameters 21 20

MCMC run time (h)a 40.8 ± 0.18 42.1 ± 0.29

aNumber of iterations = 300,000.
bNumber of samples = 1,024.
cNumber of samples = 8,192.

the interaction effects below. Figure 3 shows a Venn diagram
that displays that the final determination of influential and non-
influential parameter from eFAST in each dataset.

Figure 4 compares the overall global evaluation of model
fits across all the alternative analyses: the OMP, FMP, OIP,
FIP01, and FIP05. Figure 4A compares the observed data and
model predictions, including the 95% prediction intervals (PIs).
Figure 4B compares the residuals from the predicted result
vs. experimental values to evaluate the accuracy and precision
of model performance. The simulations had better predictions
at higher concentrations (>10 µg/L). Based on estimated
mean/median residuals and their distribution (the inset boxplot),
we further found that the FIP01 simulation with 20 parameters
had better accuracy and precision than the OMP simulations.
Using the cut-off point at 0.05, the results using only “influential”
parameters (FIP05) were similar to those using the OMP. Table 3
summaries the time-cost in GSA and MCMC analyses as the
measurement of computational efficiency. Overall, we found that
restricting the MCMC simulations to the influential parameters
can substantially reduce computational burden while showing little
change in model performance.

Figure 5A shows themodel time-course predictions across the
different analyses for each human subject study group separately.
Visual inspection of the data points relative to the scatter of the
predictions suggests that each parameter set shows a consistent
or similar predicted curve in the high-dosage (20 and 80 mg/kg)
groups (E–H). The low-dose groups (325 and 1,000mg) (A–
D) showed slightly different calibration results in the predicted
curves from the given parameter set. To better quantify and
characterize the model performance and predicated differences,
we used the coefficient of determination (R2) as a metric of
precision (Figure 4B). Results show that the estimated R2 were
relatively high in all simulation sets (R2 > 0.7). Across all the
different analyses, the best performance was from the FMP and
the “influential” parameters FIP01 (all estimated R2 > 0.9)—
higher than the results from the OMP, OIP, or FIP05.

Does Fixing Parameters Using “Expert
Judgment” Lead to Unintentional
Imprecision or Bias?
The results depicted in Figures 4, 5 illustrate that GSA
could identify “influential” subsets of parameters that lead
to pharmacokinetic predictions that are of similar or greater
precision and accuracy than predictions using subsets of
parameters identified by “expert judgment.” Figure 6 shows
the comparison of the marginal posterior distributions for 20
influential parameters in FIP01. Some parameters showed similar
distributions among different analyses, such as the hepatic
transporter constants (Km_AG and Km_AS), the cardiac output
(QCC), and the partition coefficient of fat (PF_APAP). Moreover,
the fixed values of QCC and PF_APAP in the OMP were similar
to the central estimates of the posterior distributions in the
analyses based on the FMP. However, for some parameters,
such as the partition coefficient of muscle (PM_APAP), the fixed
nominal value was closer to the tail of the posterior distribution
when these parameters were estimated. Thus, fixing parameters
using “expert judgment” can lead to bias in some of the parameter
estimates.

Figure 6 is the posterior distribution of the LnData across
the different analyses. For OMP and OIP, the log-likelihood
distributions overlapped, indicating similar model fit. The log-
likelihood distribution for FIP05 was substantially below both the
OMP and FMP. However, for FIP01, using the cut-off of 0.01, not
only did the log-likelihood distribution overlap with FMP, based
on all the parameters, but it was also substantially greater than the
log-likelihood using the OMP. Thus, GSA was more effective than
“expert judgment” at identifying parameters that are influential,
and led to a better fit between predictions and data even though
almost the same number of parameters were used (20 vs. 21).

DISCUSSION

Efficiency of GSA Algorithms
Similar to results from previous studies, we found that theMorris
method showed the least computational burden compared to
several other approaches used inGSA. Among the variance-based

methods, the three methods we tested gave highly correlated
results, but with different computational burdens and rates

of convergence. For the same number of samples, the Owen

method had the highest computational burden, with eFAST and
Jansen being similar. However, eFAST required the least number

of samples to reach convergence, with the Jansen and Owen

methods sometimes not reaching convergence even after 10 h of
wall-clock time. This is likely because Owen and Jansen make

use of multiple independent Monte Carlo samples that increase
the number of model evaluations and computational demands.

Consistent with previous analyses (Sarrazin et al., 2016), we
found no clear predictive relationship between the number of

parameters and the sample number needed to reach reasonable
convergence, other than that more computational time is needed
to complete the analysis for a larger number of model parameters.

Unlike the previous analyses by McNally et al. (2011) and
Loizou et al. (2015), we found that the Morris method was not
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FIGURE 5 | (A) Model evaluation results for the eight experimental human studies with different APAP dosages (Top) across the five parameter sets: original model

parameters, OMP (gray); full set of model parameters, FMP (black); 11 original influential parameters, using 0.05 as a cut-off point, OIP (red); full set of 10 influential

parameters, using 0.05 as a cut-off point, FIP05 (green); and full set of 20 influential parameters, using 0.01 as a cut-off point, FIP01 (blue). (B) The R2 was used to

assess the model performance for each experimental group.

always effective at screening or ranking parameters, even with

proper normalization. While ranking of parameters was fairly
consistent between Morris and Sobol indices, for screening, the

Morris index was able to eliminate few if any parameters as non-
influential. Specifically, considering both main and interaction

effects, the Morris method identified all 21 OMP as influential
and all but three of the 58 FMP as influential. Only a few
other studies have compared and discussed the relationship
between these two indices (Campolongo et al., 2007; Confalonieri
et al., 2010; Herman et al., 2013; Vanrolleghem et al., 2015).
Campolongo et al. (2007) and Herman et al. (2013) found
that the results of the Morris method compared favorably
with the results of variance-based sensitivity methods. However,
Confalonieri et al. (2010) indicated that Morris and variance-
based method might give different results in parameter ranking
when the nonlinearity exists in the model. More concerning
is that Vanrolleghem et al. (2015) found that Morris method

could overestimate the number of non-influential model factors

compared to the eFAST method, potentially leading to improper
“fixing” of influential parameters. Our results are intermediate

between these, in that there some “false positives” with respect to
influential parameters, but not any “false negatives,” which would
be of greater concern.

Our results are similar to Herman et al. (2013), which

indicated that the relationships between Morris µ
∗ and

Sobol indices are approximately linear for the low-sensitivity
parameters, but nonlinear for the high-sensitivity parameters.
Also, Herman et al. (2013) found that the rank correlation
(Spearman) shows more consistency between the Morris and
Sobol indices than the product moment correlation (Pearson).
Given the computational efficiency of the eFAST algorithm
(requiring less than 10min when using the R “sensitivity”
package and GNU MCSim), the use of the Morris method as an
initial screen could be limited to cases where model evaluations
are substantially more computationally burdensome.

Distinguishing Influential and
Non-influential Parameters
Several previous studies applied GSA in the calibration of the
complex models, such as environmental and biological models.
However, ranking of parameter sensitivities is the usual method
in the GSA approach (Boas et al., 2015), and most of the
past studies did not provide specific criteria that could be
used to distinguish influential and non-influential parameters.
Additionally, some studies only focused on the variation in the
steady state or integrated measures (e.g., area under the curve)
rather than full time-course behaviors (Safta et al., 2015; Zhang
et al., 2015). Consistent with the work of McNally et al. (2011),
our study found that parameter sensitivity can change with time
and different output variables. Using a global approach based on
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FIGURE 6 | Comparison of the marginal posterior distributions of influential parameters and log-likelihood (LnData) for OMP (gray), OIP (red), FMP (black), FIP05
(green), FIP01 (blue). The vertical line represents the prior mean and nominal value of original and additional parameters, respectively.

a heatmap visualization combined with an index “cut-off,” we
could systematically distinguish between “influential” and “non-
influential” parameters. In our case, a cut-off of 0.01 for the FMP
and a cut-off of 0.05 for the OMP worked as a compromise
between efficiency, accuracy, and precision.

Increasing Efficiency of Bayesian PBPK
Model Calibration Without Compromising
Accuracy
Bayesian analysis is a statistically-rigorous approach to address
the challenges of calibrating PBPK models. By incorporating
prior information, Bayesian posterior inference is valid even
with non-identifiable parameters (Tsamandouras et al., 2015).
However, the computational cost of MCMC algorithms, even
with modern fast computers, has limited the application of
Bayesian approaches in drug development and evaluation
(Langdon et al., 2007; Gibiansky et al., 2012). Therefore, except
for simple models, the general practice is to fix a certain subset of
parameters based on “expert judgment” to enable convergence
in a reasonable timeframe. However, it is not clear whether
“expert judgment” leads to compromises in terms of accuracy
or precision. Our hypothesis was that using GSA to decide
between parameters that needed to be estimated and those

that could be fixed would lead to increased efficiency without
leading to bias. Indeed, we found that using only “influential”
parameters in model calibration had little discernable effect on
prediction accuracy and precision, while substantially reducing
the computational burden. Additionally, by conducting GSA on
the FMP, including those that were previously fixed, we identified
a subset of parameters that, when calibrated, lead to improved
model fit compared to theOMP.Moreover, some previously fixed
parameters had posterior distributions that were shifted away
from their nominal values. In sum, our results indicate that GSA
can improve the efficiency of Bayesian PBPK model calibration
relative to traditional techniques for parameter selection based
on expert judgment without compromising accuracy.

Limitations and Future Research
In our sensitivity analysis, all parameters’ mean values and
ranges were based on published references when available. We
defined the ranges of the parameter distributions to be two to
three times the standard deviation given in these references.
During our testing, we found that this range had an influence
on the sensitivity measures of each parameter and is, therefore,
an important future area of exploration for GSA studies. A
notable limitation of the present analysis is that the approach
was demonstrated using a single PBPK model, and therefore the
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degree to which the results can be generalized was not established.
However, we do not expect that results for different PBPKmodels
and data will differ with respect to different GSA algorithms
and their computational efficiency; though, the appropriate
“cut-off” points for distinguishing between “influential” and
“non-influential” parameters may differ for different models
and datasets. Nonetheless, in the future, additional case studies
should be conducted to verify that specific values proposed in this
study can be used in general. Moreover, we made the assumption
that the input parameters in the PBPK model are independent
in the current study. Based on recent work by Ring et al.
(2017) that compared PBPK modeling results with and without
correlations, the impact of this assumption is likely to be small.
However, further investigation of the impacts of correlations
could be performed using approaches such as that by Li et al.
(2010).

CONCLUSION: AN UPDATED GSA-BASED
WORKFLOW FOR PBPK MODELING

In this study, we developed an approach to apply GSA to
reduce the computational burden in the Bayesian, MCMC-based
calibration process of a PBPKmodel. In comparing the EE-based
Morris method and three variance-based sensitivity methods
(eFAST, Jansen, and Owen), we found that the eFAST method
had the best balance of efficiency and accuracy. We found that
applying the eFAST approach for a complex multi-compartment,
multi-dataset, multi-metabolite PBPK model required less than
10min of computational time on current hardware. We also
developed a “cut-off”-based approach to consistently distinguish
between “influential” and “non-influential” parameters. Finally,
we demonstrated that performing Bayesian model calibration
using only “influential” parameters, and fixing “non-influential”
parameters, can lead to greater efficiency without compromising
accuracy. The GSA-based approach was shown to be more
reliable than an “expert judgment”-based approach to fixing
parameters.

Our results suggest the following efficient workflow for
applying GSA to Bayesian PBPK model calibration:

(1) Establish prior distributions for all parameters, and ensure
that the prior predictions cover the range of data being used
for model calibration.

(2) Only if model evaluation is computationally burdensome,
use the Morris method as an initial screen to remove clearly
“non-influential” parameters, making sure to normalize
separately for each output as well as to check convergence.

(3) Use the eFAST method for parameter sensitivity, making
sure to check convergence using the method of Sarrazin et al.
(2016).

(4) Visualize parameter sensitivity using a “heatmap”
approach, distinguishing “influential” and “non-influential”
parameters with a cut-off such as 0.01 or 0.05 (for Sobol
indices) or 0.1 (for normalized Morris indices), so that any
parameter with a sensitivity index for at least one output
greater than the cut-off would be identified as “influential.”
The cut-off approach to identify and classify parameters
could also be implemented in software once reasonable
threshold values are established.

(5) Conduct model calibration using MCMC simulation for
only the “influential” parameters, fixing “non-influential”
parameters at nominal values.

We expect that routinely implementing such a workflow will
enable broader application and use of Bayesian PBPK model
calibration by substantially reducing its associated computational
burden and allowing for greater ranges of studies within
a given amount of resources. Overall, we have focused on
one particular use of GSA—dimensionality reduction and
computational efficiency. However, in combination with expert
judgment, GSA is also a very useful approach for identifying
coding errors in the model.
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