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Sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-
MS) has emerged as one of the most popular techniques for label-free proteome
quantification in current pharmacoproteomic research. It provides more comprehensive
detection and more accurate quantitation of proteins comparing with the traditional
techniques. The performance of SWATH-MS is highly susceptible to the selection
of processing method. Till now, ≥27 methods (transformation, normalization, and
missing-value imputation) are sequentially applied to construct numerous analysis
chains for SWATH-MS, but it is still not clear which analysis chain gives the optimal
quantification performance. Herein, the performances of 560 analysis chains for
quantifying pharmacoproteomic data were comprehensively assessed. Firstly, the most
complete set of the publicly available SWATH-MS based pharmacoproteomic data were
collected by comprehensive literature review. Secondly, substantial variations among
the performances of various analysis chains were observed, and the consistently well-
performed analysis chains (CWPACs) across various datasets were for the first time
generalized. Finally, the log and power transformations sequentially followed by the
total ion current normalization were discovered as one of the best performed analysis
chains for the quantification of SWATH-MS based pharmacoproteomic data. In sum, the
CWPACs identified here provided important guidance to the quantification of proteomic
data and could therefore facilitate the cutting-edge research in any pharmacoproteomic
studies requiring SWATH-MS technique.

Keywords: pharmacoproteomics, SWATH-MS, processing method, transformation, normalization

INTRODUCTION

The pharmacoproteomics has been widely applied to various aspects of current pharmaceutical
researches by discovering disease-related genes (Mrozek et al., 2013; Quiros et al., 2017; Zeng et al.,
2017) or new drug targets (Li et al., 2018; Saei et al., 2018), constructing pharmacology screening
model (Hauser et al., 2005), and revealing the drug mechanism of action (Yue et al., 2016; Zhu
et al., 2018), resistance (Paul et al., 2016), and toxicity (Tan et al., 2017; Wang et al., 2017b).
Recent findings uncover its potentials to fulfill the promise that the pharmacogenomics has not
accomplished yet (D’Alessandro and Zolla, 2010; Chambliss and Chan, 2016; Yang et al., 2016).
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As a newly emerging technique (Anjo et al., 2017), the
sequential windowed acquisition of all theoretical fragment ion
mass spectra (SWATH-MS) has been reported to provide
much more comprehensive detection and accurate quantitation
of proteins compared to the traditional techniques used in
pharmacoproteomic analyses (Zhu et al., 2008b; Tao et al.,
2015; Aebersold and Mann, 2016; Li et al., 2016a; Anjo et al.,
2017), and it thus becomes one of the most popular techniques
for target discovery (Li et al., 2016b; Xu et al., 2016; Anjo
et al., 2017), drug/lead quantification (Roemmelt et al., 2015)
and identification (Scheidweiler et al., 2015; Wang et al., 2015;
Aratyn-Schaus and Ramanathan, 2016; Li B. et al., 2017),
construction of assay library for targeted proteomic analysis
(Schubert et al., 2015), and quantitative protein profiling (Krasny
et al., 2018) for recognizing drug-induced alterations (Roemmelt
et al., 2015; Xue et al., 2016).

However, due to the interdependent nature among multiple
acquisition parameters (dwell time, duty cycle, precursor
isolation window width, and mass range), the protein
quantification based on SWATH-MS is reported to be limited in
dynamic range (Anjo et al., 2017) and in turn low in accuracy
(Gillet et al., 2012; Huang et al., 2015; Shi et al., 2016; Yang et al.,
2017; Xue et al., 2018b). The problems above can be even worse
considering the innate complexity of clinical samples (Jamwal
et al., 2017), small amount of proteins (Sajic et al., 2015), and low
abundance of drug-metabolizing enzymes (Jamwal et al., 2017).
To cope with these problems, a variety of popular quantification
tools, including DIA-Umpire (Sajic et al., 2015), OpenSWATH
(Rost et al., 2014), Skyline (MacLean et al., 2010), Spectronaut
(Bruderer et al., 2015), and SWATH2.0 (Li S. et al., 2017), and
dozens of subsequent processing methods (transformation,
normalization, and missing-value imputation) are developed
to enhance the accuracy of SWATH-MS (Navarro et al., 2016).
Recent reports further reveal that SWATH-MS’ accuracies
depend heavily on the specific quantification tool/processing
method used in a particular study (Navarro et al., 2016),
and the protein quantification can significantly benefit from
comparative benchmarking of the performance of these tools
and methods (Gatto et al., 2016; Zheng et al., 2016). Therefore, it
is urgently needed to assess the performances of tools/methods
for discovering the optimal one(s) for SWATH-MS based
pharmacoproteomic studies.

The performance of various quantification tools has already
been systematically evaluated by benchmark SWATH-MS data
(Navarro et al., 2016). Among those tools, only 2 (OpenSWATH
and Skyline) are non-commercial ones, and the OpenSWATH
(Rost et al., 2014) is of the most popular one used to quantify
SWATH-MS based pharmacoproteomic data (Rost et al., 2014;
Parker et al., 2015; Weisser and Choudhary, 2017). So far,
≥4 transformation, ≥15 normalization, and ≥6 missing-value
imputation algorithms (Guo et al., 2015; Li et al., 2016c; Ori
et al., 2016; Wu et al., 2016; Tan et al., 2017; Wang et al., 2017a)
have been sequentially applied to process pharmacoproteomic
data. Among these algorithms, four for normalizing label-free
proteomic data have been assessed to identify the best performed
one (Callister et al., 2006) and six for missing-value imputation
have been evaluated to discover the one enhancing proteomic

quantifications in the differential expression analysis (Valikangas
et al., 2017). Appropriate integrations of the processing methods
into a sequential analysis chain are reported to improve the
quantification accuracies (Karpievitch et al., 2012; Chawade et al.,
2015; Valikangas et al., 2017) with some chains identified as
highly accurate in particular pharmacoproteomic studies (Guo
et al., 2015; Ori et al., 2016; Tan et al., 2017; Zheng et al., 2017). For
example, log transformation followed by median normalization
performs well in identifying the therapeutic target/pathway
for Down syndrome (Sullivan et al., 2017), endogenous toxins
inducing the haploinsufficiency of tumor suppressor (Tan et al.,
2017) and biological mechanism underlying the role of proteins
played in Alzheimer’s disease (Khoonsari et al., 2016). Since the
processing methods are sequentially used to form the integrated
analysis chain (Guo et al., 2015; Ori et al., 2016; Tan et al., 2017),
any performance assessment aiming solely at transformation,
normalization, or imputation may not be able to reflect the overall
performance of the whole analysis chain. Considering the huge
amount of possible analysis chains [560 in total, taking non-
transformation, non-normalization, and non-imputation into
account adopted by previous studies (Guo et al., 2015; Liu et al.,
2015; Wu et al., 2016)] by randomly integrating those processing
methods, it is therefore essential to comprehensively evaluate the
performance of all analysis chains to identify the optimal one for
specific pharmacoproteomic dataset. However, no such analysis
has been conducted yet.

In this study, the performances of all possible analysis chains
integrating 4 transformation, 15 normalization, and 6 imputation
algorithms were comprehensively assessed by their precisions
based on the proteomes among replicates (Kuharev et al., 2015;
Navarro et al., 2016; Chignell et al., 2018; Muller et al., 2018).
Systematic literature review on the popular quantification tool
OpenSWATH firstly yielded seven SWATH-MS based benchmark
pharmacoproteomic datasets of varied sample sizes (from 6 to
116). To the best of our knowledge, these seven provided the most
complete set of the publicly available pharmacoproteomic data
based on the SWATH-MS technique. Secondly, the performance
of analysis chains was assessed by each dataset. Thirdly, the
analysis chains consistently performed well across all datasets
were identified for the first time and compared with those
popular chains frequently applied in current pharmacoproteomic
studies. Finally, the consistently well-performed analysis chains
were further discussed based on their performances. The analysis
chains identified in and the corresponding findings of this study
provided important guidance to current pharmacoproteomic
studies.

MATERIALS AND METHODS

Collection of SWATH-MS Based
Benchmark Pharmacoproteomic
Datasets
A systematic literature review on the popular quantification
tool OpenSWATH and the analysis on the datasets
provided in the PRIDE database (Navarro et al., 2016) were
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collectively conducted to find SWATH-MS based benchmark
pharmacoproteomic datasets. Firstly, PRIDE database was
searched against by keyword “SWATH-MS.” Together with
the literature review on the resulting projects, 85 projects were
identified as based on SWATH-MS, among which 76 and 9
projects were acquired by TripleTOF instruments 5600 and 6600,
respectively. Secondly, several criteria were used to guarantee
the availability and processability of the raw proteomic data,
which included (1) complete set of raw data files, (2) well-
defined parameters (isolation scheme, range of retention time,
and transition settings), (3) availability of spectral library and
protein database to search against, and (4) clear description on
sample groups. The application of these criteria on the resulting
PRIDE projects yielded seven SWATH-MS based benchmark
pharmacoproteomic datasets of varied sample sizes (Table 1),
which covered both TripleTOF instruments (5600 and 6600) of
all 85 projects. Therefore, these datasets can be recognized as
representatives of SWATH-MS based pharmacoproteomic data.
To the best of our knowledge, these datasets provided the most
complete set of SWATH-MS based pharmacoproteomic data.

Processing Methods for Data
Transformation, Normalization, and
Imputation
So far, ≥4 transformation, ≥15 normalization, and ≥6 missing-
value imputation algorithms (Guo et al., 2015; Li et al., 2016c; Ori
et al., 2016; Wu et al., 2016; Tan et al., 2017; Wang et al., 2017a)
have been reported to be sequentially and frequently used to
process pharmacoproteomic data. Based on our comprehensive
literature review, their corresponding applications to current
proteomic research were discussed in Supplementary Method
S1. These 25 methods include 4 transformation: Box-cox (Sakia,
1992), Cube Root (Wen et al., 2017), Log (De Livera et al.,
2012), and Power (Zhang, 2014), 15 normalization: Auto Scaling
(Kohl et al., 2012), Cyclic Loess (Zhu et al., 2012b), EigenMS

(Zhu et al., 2009), Locally Weighted Scatterplot Smoothing
(Wilson et al., 2003), Mean (Andjelkovic and Thompson, 2006),
Median (Bolstad et al., 2003), Median Absolute Deviation (Matzke
et al., 2011), Pareto (Zhu et al., 2010), Probabilistic Quotient
(Dieterle et al., 2006), Quantile (Callister et al., 2006), Robust
Linear Regression (Hong et al., 2016), Total Ion Current (Gaspari
et al., 2016), Trimmed Mean of M Values (Lin et al., 2016), VSN
(Huber et al., 2002), and Z-score (Cheadle et al., 2003), and 6
imputation: Background (Chai et al., 2014), Bayesian Principal
(Chai et al., 2014), Censored (Valikangas et al., 2017), K-nearest
Neighbor (Zhu et al., 2008a), Singular Value Decomposition (Alter
et al., 2000), and Zero Imputation (Gan et al., 2006). As shown in
the Supplementary Method S1, due to their popularity in current
pharmacoproteomic studies, these 25 methods were included,
sequentially applied, and analyzed in this study. Each method
was abbreviated by a three-letter code which was demonstrated
in Supplementary Table S1.

Assessing Analysis Chain Using the
Precision Based on Proteomes Among
Replicates
Diverse methods for proteomic data processing (transformation,
normalization, and imputation) profoundly affected the precision
of protein quantification which was frequently assessed using the
value of pooled intragroup median absolute deviation (PMAD)
of reported protein intensity among replicates (Chawade et al.,
2014; Kuharev et al., 2015; Valikangas et al., 2018; Yu et al.,
2018). Particularly, the PMAD was designed to demonstrate the
capacity of each analysis chain to reduce the variation among
replicates, and therefore to enhance the technical reproducibility
(Chawade et al., 2014). The lower value of PMAD denoted the
more thorough removal of the experimentally induced noise and
indicated better precision of the corresponding analysis chain
(Valikangas et al., 2018). So far, PMAD value within the range
of ≤0.3, >0.3 & ≤0.7, and >0.7 was generally accepted as with

TABLE 1 | Seven SWATH-MS based benchmark pharmacoproteomic datasets collected for the analysis of this study.

Datasets PRIDE ID Sample size and Dataset description Analysis Chain Instrument

Nat. Biotechnol. PXD002952 3 samples of 65% human, 30% yeast, and 5% E. coli proteins LOG-MED-??? TripleTOF 6600

34:1130-6, 2016 3 samples of 65% human, 15% yeast, and 20% E. coli proteins

Cell Rep. PXD003278 6 siRNA-treated Cal51 cell samples LOG-QUA-NON TripleTOF 5600

20:1229-41, 2017 6 PRPF8-depleted Cal51 cell samples

Cell. PXD006106 10 formaldehyde treated HeLa Kyoto cell samples LOG-MED-NON TripleTOF 5600

169:1105-18, 2017 10 formaldehyde untreated HeLa Kyoto cell samples

Nat Med. PXD000672 18 tumorous kidney tissue biopsies LOG-QUA-NON TripleTOF 5600

21:407-13, 2015 18 non-tumorous kidney tissue biopsies

Sci Rep. PXD004880 18 plasma samples from individuals with Down syndrome LOG-MED-NON TripleTOF 5600

7:14818, 2017 18 plasma samples from healthy controls

Cell Rep. PXD003972 20 wild type mouse samples LOG-???-??? TripleTOF 5600

18:3219-26, 2017 20 knock-in mouse samples expressing endogenous GRB2

Mol Syst. Biol. PXD001064 72 blood samples of monozygotic twins ???-RLR-BAK TripleTOF 5600

11:786, 2015 44 blood samples of dizygotic twins

All datasets were from PRIDE database (Navarro et al., 2016). Each method in the analysis chain was abbreviated by a three-letter code as demonstrated in Supplementary
Table S1, and ??? indicated that the corresponding method was not specified in the corresponding study of the dataset.

Frontiers in Pharmacology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 681

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00681 June 22, 2018 Time: 17:51 # 4

Fu et al. Consistently Well-Performed Quantification for SWATH-MS

superior, good, and poor precision, respectively (Chawade et al.,
2014; Valikangas et al., 2018), which had gradually become a
popular metric for assessing the precision of processing methods
in OMICs (Chawade et al., 2014; Valikangas et al., 2018).

Performance Assessment Among
Various Analysis Chains by Hierarchical
Clustering
Pooled intragroup median absolute deviation values of 560
possible analysis chains across the seven benchmark datasets
were firstly calculated. Fifty-one out of these 560 analysis chains
reported error for processing at least one of the benchmark
datasets. Therefore, the hierarchical clustering of the remaining
509 analysis chains with calculatable results of all seven
PMADs was conducted to identify the relationship among the
performances of various analysis chains. Particularly, PMAD
values of a specific analysis chain among 7 datasets were used
to form a 7-dimensional vector. Then, hierarchical clustering
was applied to investigate the relationship among those 509
vectors, and therefore among the corresponding analysis chains.
To measure the distance between any 2 vectors, the Euclidean
distance was adopted, which could be demonstrated as below:

Euclidean distance (a, b) =
√∑n

i=1

(
ai − bi

)2

where i denoted each dimension of the analysis chain a and b. The
clustering algorithm applied here was Ward’s minimum variance
algorithm (Barer and Harwood, 1999), which was designed to
minimize the total within-cluster variance. Ward’s minimum
variance module in R package (Tippmann, 2015) was used. To
visualize the hierarchical tree graph among those 509 analysis
chains, the tree generator iTOL was used to generate and display
the hierarchical tree structure (Letunic and Bork, 2016).

RESULTS AND DISCUSSION

Ranking the Analysis Chains Based on
Their Performances on Each Benchmark
The performances of each analysis chain on the seven SWATH-
MS based benchmark datasets (Table 1) were assessed by
measuring the corresponding PMAD values. As shown in
Figure 1, the performances of 509 analysis chains (log10 PMAD,
Y-axis) with calculatable PMAD values were measured and
ranked (X-axis). Because some analysis chains may not be
able to result in a PMAD value, there were slight variations
among the number of analysis chains for different benchmark
datasets (from 530 to 560). Taking the dataset shown in the
center of Figure 1 as an example (Nat Med. 21:407-13, 2015),
a total of 558 analysis chains were assessed and ranked, and
the performance of different analysis chains varied significantly
(PMAD from 1.8 × 10−15 to 2.0 × 105). With reference to the
frequently adopted cutoff (PMAD = 0.7) for differentiating the
analysis chains of good and poor precision (Chawade et al., 2014;
Valikangas et al., 2018), 203 (36.4%) out of these 558 analysis
chains were ranked as well-performed. Similar to this dataset

(Nat Med. 21:407-13, 2015), the performance of different analysis
chains for the other datasets also differentiated substantially
(PMAD from 1.7 × 10−16 to 3.4 × 105) with 38.8%∼49.7% of
the analysis chains ranked as well-performed.

The specific analysis chains for each benchmark dataset
adopted in the corresponding original studies were identified
by literature review (Table 1). Particularly, 4 out of these
datasets were with the clearly defined analysis chain (LOG-
QUA-NON, LOG-MED-NON, LOG-QUA-NON, and LOG-
MED-NON for PXD003278, PXD006106, PXD000672, and
PXD004880, respectively), while the remaining 3 datasets were
with incomplete information of the adopted analysis chain (LOG-
MED-???, LOG-???-???, and ???-RLR-BAK for the datasets of
PXD002952, PXD003972, and PXD001064, respectively). Taking
the same dataset in the middle of Figure 1 as an example (Nat
Med. 21:407-13, 2015), the red dot indicated the PMAD of
the analysis chain adopted by this study and its corresponding
ranking among all 558 analysis chains. As shown, the adopted
chain (LOG-QUA-NON) in this study was ranked to be the 156th
well-performed one (PMAD = 0.598) showing its capacity to
reduce variations among replicates and thus enhance technical
reproducibility (Chawade et al., 2014). However, there were
155 chains performed better than the adopted one (PMAD
from 1.8 × 10−15 to 0.595) with POW-TMM-ZER chain
performed the best. Similar to this example dataset, the analysis
chains adopted by the corresponding studies of PXD003278,
PXD006106, and PXD004880 were ranked 162nd, 154th, and
164th well-performed ones, which demonstrated appropriate
selection of analysis chain in previous studies. However, there
were still more than a hundred chains performed better than
the adopted ones, which may further enhance the accuracy
of SWATH-MS based protein quantification. For the studies
with incomplete information of the adopted chain (PXD002952,
PXD003972, and PXD001064), the possible integrations based on
the known information were highlighted by multiple red dots.
1 (20%) out of 5, 28 (25%) out of 112, and 7 (100%) out of
7 integrations were within the ranges of well-performance for
PXD002952, PXD003972, and PXD001064, respectively.

Analysis Chains Consistently
Well-Preformed Across All Benchmark
Datasets
The performances of 20 representative analysis chains across
different datasets were illustrated in Figure 2. PMAD within the
ranges of ≤0.3, >0.3 & ≤0.7, and >0.7 was generally accepted
as with superior, good, and poor performance, respectively
(Chawade et al., 2014; Valikangas et al., 2018), which was
illustrated by a circle of various diameters (the smaller diameter
denoted the lower PMAD value). As shown, the performances
of specific chain among various datasets varied significantly.
Particularly, the LOG-PQN-BPC performed superior, good,
and poor in 3, 3, and 1 datasets, respectively, and POW-
ZSC-ZER performed superior, good, and poor in 1, 5, and
1 datasets, respectively. These results demonstrated a certain
level of variations among the seven datasets for each analysis
chain. However, as shown in Figure 2, there were some chains
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FIGURE 1 | The performances of each analysis chain on those seven SWATH-MS based benchmark datasets assessed by measuring the corresponding PMAD
values [>500 analysis chains (log10 PMAD, Y-axis) were measured and ranked (X-axis)]. Since some analysis chains may not be able to result in a specific PMAD
value, there were slight variations among the number of analysis chains for different benchmark datasets (from 530 to 560). Detail information on these seven
datasets were provided in Table 1.

performed consistently across different benchmark datasets.
For instance, CUB-TIC-BAK and CUB-VSN-CEN performed
superior in all datasets, while 2 other chains (NON-CYC-ZER
and NON-MEA-SVD) performed poor in all seven benchmarks.
It was of great interests to explore dataset-independent properties
underlying the consistency across datasets, which thus inspired
us to further investigate the similarity among performances of
different analysis chains.

Since the type of instrument (TripleTOF 5600 and 6600)
covered by seven benchmark datasets were the same as that
of 85 SWATH-MS based projects, those datasets could be
recognized as representative datasets of SWATH-MS based
pharmacoproteomic data. Thus, the discovery of analysis chain
performed consistently well across the various datasets might
give great insights into the selection of the most appropriate
analysis chain in SWATH-MS based proteomic study. To

identify such chains performed consistently well across datasets,
the hierarchical clustering with the ward algorithm (Barer
and Harwood, 1999; Zhu et al., 2011; Fu et al., 2018;
Xue et al., 2018a) was used to identify the “consistently
well-performed” analysis chains (CWPACs) based on their
PMAD values across different datasets. Theoretically, there
were 560 possible analysis chains by randomly integrating 5
transformation, 16 normalization, and 7 imputation algorithms
(including non-transformation, non-normalization, and non-
imputation). 51 (9.1%) out of these 560 were with at least
one PMAD value of the seven datasets unavailable due to the
calculation error. Then, the PMAD values of the remaining
509 analysis chains were applied for clustering analysis. As
illustrated in Figure 3, six partitions of the analysis chains
(A1, A2, A3, B, C, and D) were identified. The PMADs
meeting the “well-performed” criterion (≤0.7) were displayed
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FIGURE 2 | Performances of 20 representative analysis chains across different datasets measured by PMAD values. The PMAD values within the ranges of ≤0.3,
>0.3 & ≤0.7, and >0.7 was generally accepted as with superior, good, and poor performance, respectively (Chawade et al., 2014; Valikangas et al., 2018), which
was illustrated by the circles of different diameters (the smaller circle diameter indicated the lower PMAD value).

by blue color, with the log10 PMAD ≤ −5 set as exact blue
and the larger log10 PMAD gradually fading toward white
(PMAD = 0.7). Meanwhile, those “poor-performed” PMADs
(>0.7) were colored by orange, with log10 PMAD ≥ 5 set as exact
orange and the smaller PMAD gradually fading toward white
(PMAD = 0.7).

The analysis chains in the partition A1, A2, and A3 were
“consistently well-performed” across all datasets (Figure 3). For
partition A1, 320 (99.4%) out of 322 PMAD values were ≤0.1,
and the remaining PMADs were ≤0.7 (Supplementary Figure
S1). For partition A2, 288 (52.7%), 209 (38.3%), and 40 (7.3%)
out of those 546 PMAD values were ≤0.1, ≤0.3, and ≤0.7,
respectively (Supplementary Figure S2). In partition A3, 187
(46.1%) and 183 (45.1%) out of 406 PMADs were ≤0.3 and
≤0.7, respectively (Supplementary Figure S3). In summary, 608
(47.7%), 396 (31.1%), and 225 (17.7%) out of all 1,274 PMADs
in the partition combined by A1, A2, and A3 were ≤0.1, ≤0.3,
and ≤0.7, respectively, indicating an extremely high percentage
(96.5%) of the PMAD values meeting the widely adopted cutoff
(PMAD = 0.7) for differentiating the chain of good and poor
performances (Chawade et al., 2014; Valikangas et al., 2018).
Comprehensive literature review on the 85 SWATH-MS based
proteomic projects further identified the analysis chains adopted
by their corresponding studies (Supplementary Table S2). In total,
there were 55 analysis chains previously applied in proteomic
studies, which were mapped to and labeled on Figure 3 (pink
triangles). As illustrated, 7 (12.7%), 9 (16.4%), and 21 (38.2%)
out of the 55 analysis chains previously adopted were within the
partition A1, A2, and A3, respectively, which indicated that the
majority (67.3%) of these analysis chains were the CWPACs.

As shown in Supplementary Figure S4, the percentage of
each processing method adopted by the previous proteomic
studies were analyzed. Log Transformation was the only
transformation method used in SWATH-MS based proteomic
studies, and was widely recognized as powerful in quantifying
thousands of proteins (Rao et al., 2011; De Livera et al., 2012;

Wisniewski et al., 2012; Zhu et al., 2012a; Feng et al., 2014).
For normalizations, Median Normalization, Total Ion Current,
and Quantile Normalization were the top-3 ranked methods in
their popularity. The Median and Quantile Normalization were
frequently adopted in MS-based label-free proteomic analyses
(Callister et al., 2006), while the Total Ion Current was reported
to be preferably used in the proteomic profiling based on
MALDI- and SELDI-TOF mass spectra (Borgaonkar et al., 2010).
For imputation, K-nearest Neighbor and Background Imputation
accounted for >80% of the SWATH-MS based proteomic
studies adopting imputation methods. Among those methods
used in proteomic studies (4 transformation, 15 normalization,
and 6 missing-value imputation), Supplementary Figure
S4 showed that some methods were adopted seldomly
in SWATH-MS based proteomic studies (such as Box-
Cox Transformation, Pareto Scaling, and Singular Value
Decomposition). Therefore, it is of great interests to discover
whether there are other methods suitable or demonstrating
enhanced performance in SWATH-MS based proteomic
analysis.

Fifty-three analysis chains consistently performed poor
among datasets were also discovered by Figure 3 (partition
D), all of which did not adopt any transformation method
in their analysis. In total, 101 out of the 509 analysis chains
(Figure 3) adopted non-transformation, and 53 (52.5%), 10
(9.9%), 11 (10.9%), 14 (13.9%), 6 (5.9%), and 7 (6.9%) out of
these 101 chains were within the partition D, C, B, A3, A2,
and A1, respectively. These results demonstrated the important
roles played by transformation methods in the quantification
performance of analysis chains.

Contribution of Each Processing Method
to the Performance of Analysis Chain
With the discovery of a variety of CWPACs based on those
independent benchmark datasets, it was interesting to go back
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FIGURE 3 | Six partitions of analysis chains (A1, A2, A3, B, C, and D) were identified based on their PMAD values. PMAD values meeting the “well-performed”
criterion (≤0.7) were displayed in blue color, with the log10 PMAD ≤ −5 set as exact blue and the larger PMADs gradually fading toward white (PMAD = 0.7).
Meanwhile, the “poor-performed” PMAD values (>0.7) were all colored in orange, with log10 PMAD ≥ 5 set as exact orange and the smaller PMAD gradually fading
toward white. The pink triangles indicated the analysis chains adopted by previous published SWATH-MS based proteomic studies.

to each processing method used to integrate these CWPACs,
which might be able to discover processing methods with
significant contributions to the performance of CWPACs.
Therefore, all CWPACs listed in Supplementary Figures S1–S3
were investigated by analyzing their corresponding processing
methods. As shown in Figure 4, the percentage of each method
appeared in 3 different partitions (A1 & A2 & A3, A1 & A2,

and A1) were analyzed. For transformation, the percentage
of Power Transformation significantly increased from 7% to
10% to 29% with the gradual narrow down of partitions
(from A1 & A2 & A3 to A1 & A2 to A1), which showed
significantly enhanced role played by this transformation to
achieve good performance in protein quantifications. However,
Log Transformation decreased greatly from 41% to 25% to
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FIGURE 4 | Percentages of each processing method (transformation, normalization, and imputation) appeared in three different partitions (A1 & A2 & A3, A1 & A2,
and A1) shown in Figure 3. Each processing method was abbreviated by a three-letter code as demonstrated in Supplementary Table S1.

26%. This indicated that Log Transformation contributed
most to the CWPACs compared to other transformations.
But when it came to the superior performance (partition
A1 with PMAD ≤ 0.1), its contribution decreased and
ranked as the second. For normalization, the Total Ion Current
method stood out among all methods as the one with the
highest contribution to CWPAC. With gradual narrow down
of partitions (from A1 & A2 & A3 to A1 & A2 to A1),
the importance of Total Ion Current method was enhanced
significantly from 19% to 27% to 74%. For imputation,
methods were almost evenly distributed with no clear change
among different partitions. This indicated that each imputation
method contributed equally to CWPACs, and the selection of
any of those methods could not make statistical difference
in protein quantification. Due to the equal contribution of
imputation methods, it was essential to focus on selecting the
appropriate combinations of transformation and normalization
methods to achieve the optimal performance of analysis
chains, which included POW-TMM, LOG-TIC, BOX-TIC, CUB-
TIC, NON-TIC, POW-TIC, and LOG-VSN (Supplementary
Figure S1).

CONCLUSION

Based on the most complete set of the publicly available
pharmacoproteomic data generated by SWATH-MS
technique, this study revealed a substantial variation among

the performances of various analysis chains applied for
pharmacoproteomic quantification, and the analysis chains
performed consistently well across a diverse set of publicly
available pharmacoproteomic data were discovered. As a
result, log and power transformations sequentially followed by
total ion current normalization were discovered as one of the
best performed analysis chains applied for the SWATH-MS
based pharmacoproteomic quantification. In summary, the
identified analysis chains provided important guidance to
current proteomic research and could thus facilitate the cutting-
edge research in any proteomic studies requiring SWATH-MS
technique.
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