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Tumor cells undergo epithelial-mesenchymal transition (EMT) or macroautophagy

(hereafter autophagy) in response to stressors from the microenvironment. EMT ensues

when stressors act on tumor cells in the presence of nutrient sufficiency, and mechanistic

target of rapamycin (mTOR) appears to be the crucial signaling node for EMT induction.

Autophagy, on the other hand, is induced in the presence of nutrient deprivation and/or

stressors from the microenvironment with 5′ adenosine monophosphate-activated

protein kinase (AMPK) playing an important, but not exclusive role, in autophagy

induction. Importantly, mTOR and EMT on one hand, and AMPK and autophagy on

the other hand, negatively regulate each other. Such regulation occurs at different

levels and suggests that, in many instances, these two stress responses are mutually

exclusive. Nevertheless, EMT and autophagy are able to interconvert and we suggest

that this may depend on spatiotemporal changes in the tumor microenvironment and/or

on duration/intensity of the stressor signal(s). Eventually, we propose a three-pronged

therapeutic approach aimed at targeting these three major tumor cell populations. First,

cytotoxic drugs that act on differentiated and proliferating tumor cells and which, per se,

may promote induction of EMT or autophagy in surviving tumor cells. Second, inhibitors

of mTOR in order to prevent EMT induction. Third inducers of autophagic cell death

(autosis) in order to deplete tumor cells that are constitutively in an autophagic state or

are induced to enter an autophagic state in response to antitumor therapy.

Keywords: EMT, autophagy, mTOR, AMPK, stressor, nutrients, therapy

EPITHELIAL-MESENCHYMAL TRANSITION (EMT) AND
AUTOPHAGY: TWO DIFFERENT RESPONSES TO SIMILAR
STIMULI

Tumor cells have evolved two different mechanisms to respond to stress from the tumor
microenvironment (TME): epithelial-mesenchymal transition (EMT) (Polyak andWeinberg, 2009;
Marcucci et al., 2016) and macroautophagy (hereafter autophagy) (Jiang et al., 2015). EMT endows
tumor cells with increased motility, invasiveness, propensity to metastasize, tumor-propagating
potential, and resistance to apoptosis and genotoxic stress. Autophagy allows tumor cells to survive
under stressful conditions by incorporating cellular material into cytosolic membrane vesicles
for catabolic degradation in lysosomes. As such, EMT and autophagy represent two opposite
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responses to stress from the TME: in one case, escape from an
unfriendly environment and dissemination (EMT) and, in the
other case, mere survival (autophagy). This might suggest that
EMT and autophagy represent tumor cell responses to different
forms of stress. However, different stressors such as mechanical
stress (Gill et al., 2012; Lien et al., 2013), altered extracellular
matrix composition (Neill et al., 2014; Peng et al., 2017), hypoxia
(Lu and Kang, 2010; Tan et al., 2016), acidosis (Wojtkowiak et al.,
2012; Estrella et al., 2013), genotoxic stress(Wu et al., 2013; Torii
et al., 2016), extracellular mediators (Stadler et al., 2013; Jiang
et al., 2016; Lou et al., 2016), or endoplasmic reticulum stress (Ma
et al., 2014; Shah and Beverly, 2015) can induce proliferating and
differentiated tumor cells to undergo either EMT or autophagy.
This raises the question as to which mechanism(s) dictate(s) the
choice between EMT and autophagy (Gugnoni et al., 2016). In
order to address this question, we will first discuss some aspects
underlying the induction of EMT and autophagy that are relevant
in this setting. For a more detailed discussion on these aspects the
reader can refer to several comprehensive reviews (Levine and
Kroemer, 2008; Polyak and Weinberg, 2009; Thiery et al., 2009;
Jiang et al., 2015).

STIMULI AND PATHWAYS THAT INDUCE
EMT IN TUMOR CELLS

One crucial signaling node involved in the induction of EMT is
the mechanistic target of rapamycin (mTOR) (Marcucci et al.,
2016). mTOR is part of a signaling pathway that includes,
upstream of mTOR, phosphatidylinositol 3-kinase (PI3K) and
AKT. mTOR is a Ser/Thr kinase that interacts with several
proteins to form two complexes, mTOR complex (mTORC) 1
and 2 (Zoncu et al., 2011). mTOR, as part of mTORC1, is
activated by extracellular mediators (Sabatini, 2017). Insulin, for
example, induces the sequential activation of PI3K and AKT.
AKT then phosphorylates the tuberous sclerosis complex 2, a
guanosine triphosphatase (GTPase)-activating protein that leads
to the accumulation of the activated, GTP-bound form of Ras
homolog enriched in brain (Rheb) which, in turn, activates
mTORC1 (Zoncu et al., 2011).

mTOR, however, also responds to amino acids (leucine,
arginine, S-adenosylmethionine) and cholesterol (Wang et al.,
2015; Saxton et al., 2016; Wolfson et al., 2016; Castellano et al.,
2017; Gu et al., 2017), which stimulate the recruitment of
mTORC1 to the lysosomal surface, where it interacts with its
activator Rheb. mTORC1 is also regulated by cellular glucose
levels. The mechanism whereby glucose regulates mTORC1 is
distinct from that of amino acids, but the final result is similar,
i.e., recruitment of mTORC1 to the lysosomal surface (Efeyan
et al., 2015). Thus, a threshold level of nutrients (Saxton and
Sabatini, 2017) promote the recruitment of mTORC1 to the

Abbreviations: AMPK, 5′ adenosine monophosphate-activated protein kinase;

EMT, epithelial-mesenchymal transition; Foxo3, forkhead box O3; LKB1, kinase

liver kinase B1; mTOR,mechanistic target of rapamycin; mTORC,mTOR complex;

PI3K, phosphatidylinositol 3-kinase; Rheb, Ras homolog enriched in brain; STAT,

signal transducer and activator of transcription; TME, tumor microenvironment;

ULK, Unc-51-like kinase.

lysosomal surface where it interacts with its activator Rheb
and other components of a large molecular complex (Dibble
and Manning, 2013). As such, mTOR activation is a two-
signal system, where nutrients and extracellular mediators exert
permissive and effector functions, respectively (Figure 1).

In addition to mTOR activation through PI3K-AKT, other
signaling pathways have also been reported to induce EMT in
tumor cells (Marcucci et al., 2016). These pathways are, directly,
or indirectly, linked to mTOR, suggesting that these signaling
pathways induce EMT through their cross-talk with mTOR
(Figure 1). Examples of these pathways are RAS-RAF-MEK-
ERK (Thorpe et al., 2015), small mother against decapentaplegic
(SMAD) (Xue et al., 2012), Wnt (Inoki et al., 2006), Hedgehog
(Wang et al., 2012), Notch (Bailis and Pear, 2012), signal
transducer and activator of transcription (STAT) 3 (Vogt and
Hart, 2011), nuclear factor-κ-light-chain-enhancer of activated B
cells (NF-κB) (Lee et al., 2007), focal adhesion kinase (FAK)/SRC
(Zhang et al., 2016).

STIMULI AND PATHWAYS THAT INDUCE
AUTOPHAGY IN TUMOR CELLS

5′ adenosine monophosphate-activated protein kinase (AMPK)
is a signaling node that plays for the induction of autophagy
a role as important as that of mTOR for EMT. AMPK is
a heterotrimer composed of a catalytic (AMPKα) subunit
and two regulatory (AMKPβ and AMPKγ) subunits (Herzig
and Shaw, 2018). There are two different modes of AMPK
activation (Figure 1). First, conditions of nutrient deprivation
that elevate the cellular AMP:ATP ratio (Shackelford and Shaw,
2009) and induce binding of AMP to AMPKγ. This promotes
the phosphorylation of AMPKα Thr172 by liver kinase B1
(LKB1) and/or inhibits its dephosphorylation by protecting it
from phosphatases (Shackelford and Shaw, 2009; Herzig and
Shaw, 2018). Second, conditions that are independent of AMP
levels. The first of these conditions is glucose deprivation
(Zhang et al., 2017; Lin and Hardie, 2018), which leads to
the formation, at the lysosomal surface (i.e., the same where
mTOR becomes activated), of an AMPK activation complex
involving LKB1, AMPK and also components of the mTOR
activation complex. Formation of the AMPK activation complex
leads to dissociation of mTORC1 from the lysosomal surface.
AMPK is then phosphorylated in an LKB1-dependent, but AMP-
independent manner (Zhang et al., 2017). AMPK can also be
directly phosphorylated on Thr172 in response to calcium flux
by the calcium-sensitive calmodulin-dependent protein kinase
kinase 2 (CAMKK2) (Hawley et al., 2005; Woods et al., 2005).
This kinase activates AMPK in response to stressors like hypoxia
(Emerling et al., 2009; Mungai et al., 2011; Lee et al., 2015) or
chemotherapeutics through the generation of reactive oxygen
species (ROS) (Ji et al., 2010), which may also directly activate
AMPK through S-glutathionylation of Cys residues on AMPKα

and β (Filomeni et al., 2015). Also ionizing radiation and
certain chemotherapeutics like etoposide and cisplatin lead to
phosphorylation of AMPKα Thr172 independently of AMP and
LKB1, but dependent on signals mediated by ataxia teleangectasia
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FIGURE 1 | Modes of induction of EMT and autophagy. EMT is induced in response to mTOR activation, which requires two signals for activation: a permissive signal

represented by nutrients and an effector signal represented by extracellular mediators and/or other signaling pathways which are directly or indirectly linked to mTOR.

Autophagy is induced in response to AMPK activation or to a diverse array of stimuli, independently of AMPK activation. mTOR and AMPK undergo negative,

reciprocal regulation (shown in the central part of the figure). Some of the mechanisms underlying the negative, reciprocal regulation between EMT and autophagy that

can occur independently of any involvement of mTOR and AMPK are also shown in this part of the figure. See text for further details. ATM, ataxia teleangectasia

mutated; CAMKK2, calcium-sensitive kinase calmodulin-dependent protein kinase kinase 2; Rheb, Ras homolog enriched in brain; ROS, reactive oxygen species;

SAM, S-adenosylmethionine.

mutated (ATM) (Sanli et al., 2014). AMPK activation under
conditions of nutrient sufficiency has also been reported for
cytokines and hyperactivated signaling pathways (Herrero-
Martín et al., 2009; Kishton et al., 2016).

The existence of AMP-dependent and –independent modes of
AMPK activation suggests the possibility that the contemporary
presence of elevated AMP levels, low glucose, or other stressors
like hypoxia or genotoxic stress (leading to AMP-independent
AMPK activation) give rise to additive or synergistic effects. In
support of this possibility, it has been shown that, when both are
active, the low glucose-sensing pathway and the energy (AMP)-
sensing pathway reinforce each other (Lin and Hardie, 2018).
In an earlier work, Laderoute et al. (2006) showed that AMPK
is activated in response to hypoxia in the presence of glucose
sufficiency. The combination of hypoxia and glucose deprivation,
however, achieved stronger activation than either stimulus alone.
Intuitively, the contemporary presence of stressors and starvation
(either glucose and/or other nutrients) appears to be a logical
consequence when the stressor(s) lead(s) to a reduction or
even zeroing of nutrient supply (e.g., mechanical pressure and
hypoxia). This, however, is not necessarily the case. Thus,
it has been shown that glucose, a major energetic fuel for
tumor cells, diffuses over longer distances than oxygen, thereby
allowing to feed, at least transiently, also hypoxic tumor cells

(Gatenby and Gillies, 2004). Moreover, tumor cells can also
be fed with lactate, the end product of anaerobic glycolysis,
the main energetic pathway in hypoxia (Sonveaux et al., 2008).
These examples demonstrate that a discrepancy between the
presence of stressors and nutrient supply can occur, at least
transiently, during tumor growth. Therefore, it appears logical
that also AMPK can function as a two-signal system, with
AMP-dependent and -independent modes of activation which,
whenever acting in concert, lead to additive or synergistic effects
in AMPK activation.

Once activated, AMPK phosphorylates a number of
downstream substrates that affect energy metabolism and
growth, including autophagy induction (Jiang et al., 2015; Mans
et al., 2017). Initiation of autophagy requires activation of the
Unc-51-like kinase (ULK) complex, which consists of the protein
kinase ULK1 and the regulatory proteins Atg13 and FIP200.
Activated AMPK phosphorylates ULK1 on at least four residues:
Ser467, Ser555, Thr574, and Ser637 (Kim et al., 2011; Herzig
and Shaw, 2018). As will be discussed in the following, ULK1
phosphorylation is a point of intersection between opposite
effects of mTOR and AMPK on autophagy regulation.

In addition to AMPK-dependent modes, there are also
AMPK-independent modes of autophagy induction (Figure 1).
Thus, constitutive activation of Ras leading to “autophagy
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addiction” (Guo et al., 2011), but also stressors like genotoxic
stress (Torii et al., 2016), hypoxia (Xue et al., 2016), acidic pH
(Wojtkowiak et al., 2012), and extracellular mediators (Jiang
et al., 2016) have been reported to induce autophagy in an
AMPK-independent manner. It goes beyond the scope of this
article to discuss in details the molecular mechanisms underlying
AMPK-independent induction of autophagy. Yet, the fact that
such pathways exist raises the problem as to which is the relative
relevance of AMPK-dependent and –independent mechanisms
in the overall induction of autophagy. It has even been argued
that the role of activated AMPK would be solely to fine-tune
ULK1 activity and subsequent autophagy induction (Jiang et al.,
2015). In some instances, however, it has been shown that AMPK
activity is a sine qua non condition for autophagy induction (Jang
et al., 2017). For this reason, we prefer to keep separate AMPK-
dependent and –independent modes of autophagy induction.

THE POINTS OF DISCERN BETWEEN
INDUCTION OF EMT AND INDUCTION OF
AUTOPHAGY

While the relevance of AMPK-independent autophagy induction
is, at present, difficult to estimate, mTOR and AMPK certainly
play pivotal roles in the induction of EMT and autophagy,
respectively. On the basis of what has been discussed so far, it
appears that EMT is induced by mTOR activation in response
to stressors from the TME and in the presence of nutrient
sufficiency (Marcucci et al., 2014). On the other hand, autophagy
is induced by AMPK activation when one of two situations
occur: first, in the presence of nutrient deprivation leading to
an elevation of the AMP/ATP ratio; second, in the presence of
low glucose and/or stressors that can activate AMPK in an AMP-
independent manner. The contemporary presence of starvation
and low glucose or other stressors gives rise to additive and/or
synergistic effects in AMPK activation.

While nutrient sufficiency is a necessary condition for mTOR
activation, nutrient depletion is a sufficient, but not a necessary
condition for AMPK activation. The possibility of activating
mTOR and AMPK in response to similar stressors and nutrient
sufficiency, however, raises the question as to how the choice is
made here between mTOR and AMPK activation. We suggest
that this may depend on the duration and/or intensity of
the stressor signal. Thus, it has been shown that sustained
treatment of mammary epithelial cells with transforming growth
factor (TGF)-β induces EMT and, subsequently, to loss of the
mesenchymal phenotype and induction of autophagy (Jiang et al.,
2016). These effects were observed after daily changes of serum-
supplemented medium and TGF-β, making other explanations
for the induction of autophagy, such as serum consumption
and starvation, unlikely. Interestingly, upon further prolongation
of treatment, cells underwent apoptosis. This bears strong
similarities with an earlier work showing that a growth factor-
deprived cell line underwent autophagy allowing it to survive for
several weeks but, ultimately, to undergo cell death (Lum et al.,
2005). Duration and/or intensity of the stressor signal may also
explain some other observations showing that EMT induction

in tumor cells can be followed by autophagy or vice versa, in
response to the same signal (Akalay et al., 2013; Zhu et al., 2014;
Whelan et al., 2017).

In addition to duration and intensity of individual stressor
signals, it should also be considered that the TME can vary over
time and space (Gilkes et al., 2014) and, consequently, also the
presence of stressors and nutrient availability. As a consequence
of this variability, it appears logical to assume that tumor cells
can shift from EMT to autophagy and vice versa. Thus, a shift
from EMT to autophagy may occur when nutrient availability
becomes inadequate to support EMT; the shift from autophagy to
EMT, when nutrient supply resumes after a period of starvation.
Antitumor therapy may also impact on this equilibrium given
that it represents, per se, a stressor (Marcucci et al., 2014), and
EMT and autophagy represent two mechanisms of resistance to
antitumor therapy (Singh and Settleman, 2010; Shin et al., 2014).

Moreover, it is well known that mTOR and EMT on one hand,
and AMPK and autophagy on the other hand, can negatively
regulate each other (Dibble and Manning, 2013; Catalano et al.,
2015). This occurs at different levels and we will address
only some of them here (Figure 1). Thus, activation of mTOR
leads to inhibition of autophagy (Fang et al., 2015) through
phosphorylation of ULK1 and inhibition of the interaction
between ULK1 and AMPK (Kim et al., 2011). Vice versa,
activation of AMPK blocks mTOR activation (Inoki et al., 2006;
Shi et al., 2012) through phosphorylation of the tuberous sclerosis
complex 2 and Rheb inactivation, and through phosphorylation
and inhibition of the mTOR binding partner Raptor (Zhao
et al., 2017). Inhibition of mTOR has been shown to reverse
the mesenchymal phenotype of tumor cells (Chou et al., 2014).
Moreover, also AKT, a kinase upstream of mTOR, undergoes
a negative, reciprocal regulation with AMPK through AKT-
mediated phosphorylation of AMPKα and, vice versa, AMPK-
mediated dephosphorylation of AKT (Zhao et al., 2017).

There are also modes of negative, reciprocal regulation
of EMT and autophagy that are unrelated to the regulation
between AMPK and mTOR (Figure 1). AMPK, for example, was
ubiquitinated and degraded by the ubiquitin ligase melanoma-
associated antigen (MAGE)-A3/6, and this led to inhibition
of autophagy and activation of mTOR (Pineda et al., 2015).
Activation of AMPK suppressed EMT by modulating the
AKT-mouse double minute 2 homolog (MDM2)-forkhead
box O3 (Foxo3) axis, with Foxo3 activation leading to
the transactivation of genes encoding epithelial markers and
repression of genes encoding EMT-promoting transcriptional
regulators (Chou et al., 2014). Autophagy inhibited EMT
and promoted mesenchymal-epithelial transition in hepatocytes
through degradation of the EMT transcriptional regulator
Snail (Grassi et al., 2015). Vice versa, autophagy deficiency
stabilized the EMT transcriptional regulator TWIST1 through
p62 accumulation (Qiang andHe, 2014). EMT induction was also
observed upon silencing of the death-effector domain-containing
DNA-binding protein (DEDD), and consequent stabilization of
Snail and TWIST (Lv et al., 2012). STAT3 inhibited autophagy
through inhibition of the expression of the autophagy marker
microtubule-associated proteins 1A/1B light chain 3B (LC3)
(Gong et al., 2014).
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Eventually, autophagy is negatively regulated not only by
mTOR, but also by other signaling pathways and nodes that
are involved in EMT induction. Inhibition of autophagy by
Hedgehog (Jimenez-Sanchez et al., 2012), Wnt (Petherick et al.,
2013), and STAT3 (Gong et al., 2014) are examples of pathways
negatively regulating autophagy. Whether this occurs as a result
of their cross-talk with mTOR is a possibility to be considered in
future studies.

TRANSLATIONAL INFERENCES

As already referred to in the beginning, in addition to a
mesenchymal-like and autophagic state, tumor cells exist also
in a differentiated, proliferating state. We have proposed that
mesenchymal-like and autophagic tumor cells can interconvert
depending on how conditions in the TME vary over time and
space. This implies also the possibility that mesenchymal-like
tumor cells or autophagic tumor cells can revert back to a
differentiated, proliferating state with predominantly epithelial
characteristics. Given that, it appears logical to target, in a
therapeutic setting, all of these three populations in order to
achieve a tumor cell depletion as complete as possible. In
fact, mesenchymal-like tumor cells and autophagic tumor cells,
because of their capacity to resist apoptosis and genotoxic stress,
are particularly suited to act as reservoirs for the replenishment of
proliferating tumor cells once the TME reverts to conditions that
are conducive to resume proliferation (Marcucci et al., 2017).

In order to target proliferating tumor cells, the use of one
or more cytotoxic drugs that have received regulatory approval

over the years seems a logical approach. The choice of the
drug(s) will depend on tumor type and therapeutic historical.
Drug conjugates for the specific targeting of tumor cells are
also becoming available. Cytotoxic drugs, however, may, per se,
promote resistance in tumor cells and induce them to undergo
EMT or autophagy (Marcucci and Corti, 2012).

As regards EMT inhibitors, many compounds with anti-EMT
activity have been reported (Marcucci et al., 2016), but in light of
the present considerations, the use of mTOR inhibitors appears
to be preferred. Some rapalogs have already gained regulatory
approval but have shown modest efficacy in tumor therapy
(Laplante and Sabatini, 2012). Of greater promise appear catalytic
mTOR inhibitors (Fouqué et al., 2015; Rodrik-Outmezguine
et al., 2016), which achieve a more complete inhibition of mTOR,
but have not yet been approved. In preclinical studies, a catalytic
mTOR inhibitor was much more effective than rapamycin in
yielding tumor cell apoptosis when combined with an autophagy
inhibitor (Fan et al., 2010). mTOR inhibitors, however, can
induce autophagy and, consequently, drug resistance (Mitchell
et al., 2017). This has led to the synthesis and testing of
compounds that act as double mTOR and autophagy inhibitors
(Rebecca et al., 2017).

On the autophagy side, the most popular approach has
been to use autophagy inhibitors like the lysosomotropic
drugs chloroquine or hydroxychloroquine (Pan et al., 2011;
Selvakumaran et al., 2013). A considerable number of clinical
studies have been started with these compounds (Poklepovic and
Gewirtz, 2014). Mixed results have been obtained so far, either
as monotherapy, or in combination with other drugs. In some

FIGURE 2 | A three-pronged therapeutic approach to target three major tumor cell subpopulations. Proliferating, differentiated tumor cells may be targeted with

classical cytotoxic drugs or with antibody-drug conjugates. Tumor cells that come in contact with cytotoxic drug concentrations that are subcytotoxic may respond to

this stress by undergoing EMT or autophagy (thick lines). mTOR inhibitors are a second class of drugs that may act preferentially on EMT tumor cells, inducing them to

undergo autophagy (thick line). Autophagic cells may be induced toward demise by a third class of drugs, inducers of autophagic cell death (autosis). This therapeutic

scheme is expected to act on the three major tumor cell populations leading to their demise and avoiding them to accumulate in one of the two resistant

compartments (i.e., EMT or autophagic tumor cells) as a consequence of genotoxic stress.
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cases negative results have been reported (Rangwala et al., 2014;
Wolpin et al., 2014), encouraging results in some other studies
(Vogl et al., 2014; Boone et al., 2015; Samaras et al., 2017).

In several preclinical studies autophagy inhibitors have been
shown to promote apoptosis and, when used in combination
with other antitumor drugs, improved therapeutic effects were
observed (Zeng et al., 2018). In other cases, however, a
combination of this kind led to the rescuing of growth-
inhibited cancer cells (Oh et al., 2016). Since the effects of
autophagy inhibitors still appear unpredictable, we suggest using
in combination an mTOR inhibitor as EMT inhibitor and
autophagy inducer, and compounds that promote autophagic cell
death (autosis) (Liu et al., 2013; Law et al., 2014; Zhai et al.,
2014; Shchors et al., 2015; Tomlinson et al., 2015; Yang et al.,
2015; Tai et al., 2017). This would allow pushing autophagic
tumor cells, whether constitutively present or induced following
mTOR inhibition, toward demise. On this basis, we propose to
investigate a therapeutic triad in order to target these three major
tumor cell populations (Figure 2), i.e., cytotoxic drugs acting
on differentiated, proliferating tumor cells; mTOR inhibitors
inhibiting EMT induction; autosis inducers promoting death of
autophagic tumor cells. Drug combinations of this kind should
be tested in appropriate preclinical models for efficacy and
unpredictable adverse events and, in case of favorable results,
might be considered for testing in the human setting.

UNRESOLVED QUESTIONS AND
CONCLUDING REMARKS

In this article we have addressed the relationship between tumor
cell EMT and autophagy. We have proposed a model that allows
explaining how tumor cells decide whether to enter one or
the other stress response. There are, however, still many open
questions that need to be answered. In the following some of
those that appear to us most important.

First, we have suggested that signaling pathways or nodes,
other than mTOR, that induce EMT in tumor cells do so as a
result of their cross-talk with mTOR. While there a number of
observations in support of this assumption (Inoki et al., 2006;
Lee et al., 2007; Vogt and Hart, 2011; Bailis and Pear, 2012; Wang
et al., 2012; Xue et al., 2012; Thorpe et al., 2015; Zhang et al., 2016;
Herzig and Shaw, 2018), more conclusive evidence is desirable.

Second, also the role of AMP-dependent and -independent
modes of AMPK-dependent autophagy induction and the
additive or synergistic effects deriving from the contemporary
presence of the two modes requires a more definitive assessment,
in spite of indications supporting this possibility.

Third, while mechanisms have been put in place to make
EMT and autophagy mutually exclusive events, there are reports
showing that phenotypic markers of EMT and autophagy can
coexist or that one of the two responses is a necessary condition
for the induction of the other(Li et al., 2013; Zhu et al., 2014;
Singla and Bhattacharyya, 2017). Singla and Bhattacharyya (2017)
have brought evidence active that mTOR signaling is no longer
required once tumor cells have undergone EMT and that its
inhibition may promote autophagy induction in EMT cells.

Clearly, more information is needed to clarify this important
point.

In spite of these limitations, our model may represent
a useful framework for future work aimed at clarifying the
intricate relationship between tumor cell EMT and autophagy
(Gugnoni et al., 2016). Eventually, in order to address tumor
cell heterogeneity, we have proposed a three-pronged therapeutic
approach based on a cytotoxic drug, an mTOR inhibitor and an
inducer of autophagic cell death.
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