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The microRNA (mir)-374a has been implicated in several types of human
cancer; however, its role in diabetic nephropathy (DN) remains unclear. Monocyte
chemoattractant protein (MCP)-1 is a chemokine that recruits macrophages to
inflammatory sites and is important for the development and progression of DN.
However, the relationship between miR-374a and MCP-1 in DN is unknown. We
addressed this in the present study by examining the expression of these factors
in kidney tissue samples from DN patients and through loss- and gain-of-function
experiments using HK2 human renal tubular epithelial cells. We found that miR-374a
was downregulated whereas MCP-1 was upregulated in DN tissue. A bioinformatics
analysis revealed that MCP-1 is a putative target of miR-374a. To confirm this
relationship, HK2 cells treated with normal glucose (5.6 mmol/l D-glucose), high
glucose (HG) (30 mmol/l D-glucose), or high osmotic pressure solution (5.6 mmol/l D-
glucose + 24.4 mmol/l D-mannitol) were transfected with miR-374a mimic or inhibitor.
miR-374a mimic reduced MCP-1 mRNA expression and migration of co-cultured U937
cells, whereas miR-374a inhibition had the opposite effects. Additionally, interleukin-6
and -18 and tumor necrosis factor-α levels were downregulated by transfection of miR-
374a mimic. On the other hand, MCP-1 overexpression reversed the inhibitory effects
of miR-374a in HK2 cells. Thus, miR-374a suppresses the inflammatory response
in DN through negative regulation of MCP-1 expression. These findings suggest
that therapeutic strategies that target the miR-374a/MCP-1 axis can be an effective
treatment for DN.
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INTRODUCTION

Diabetic nephropathy (DN) is one of the major microvascular complications associated with
diabetic patients. Approximately 15–25% of type 1 diabetes and 30–40% of type 2 diabetes develop
DN, which is the main cause of end-stage renal disease (ESRD) (Schernthaner and Schernthaner,
2013). The United States Renal Data System reported that type 2 DN accounts for 35–50% of ESRD
cases (Collins et al., 2014). There are currently no treatments for DN other than symptomatic
relief such as blood pressure and glucose control, administration of renin–angiotensin–aldosterone
inhibitors, and dialysis and kidney transplantation. None of these treatments has reduced the high
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morbidity and mortality rates associated with DN, resulting
in a significant health care burden for society (Lopez-Vargas
et al., 2016). Patients undergoing dialysis have a mortality
rate of 20% per year, and transplantation is restricted by
the lack of renal allografts (DeFronzo et al., 2017). Clarifying
the mechanism underlying DN and developing novel and
effective therapeutic strategies is critical for improving disease
outcome.

Recent studies have demonstrated an important role for
inflammation in the development and progression of DN
(Feng et al., 2015; Sancar-Bas et al., 2015; Zheng and Zheng,
2016). Glomerular sclerosis and interstitial fibrosis are the
major pathological changes associated with DN, and renal
biopsies suggest that macrophage infiltration and elevated levels
of inflammatory cytokines are closely associated with kidney
fibrosis. Inflammatory factors can activate myofibroblasts at
injury sites in the kidney while inducing the differentiation
of mesangial cells, glomeruli, and renal tubular epithelial cells
into fibroblasts, resulting in enhanced extracellular matrix
(ECM) production and deposition, which in turn promote
tubulointerstitial fibrosis (Kanasaki et al., 2013; Maeshima et al.,
2014).

Elevated levels of monocyte chemoattractant protein (MCP)-1
in type 1 and 2 DN patients have been linked to DN development
(Banba et al., 2000) through recruitment of macrophages and
monocytes to inflammatory sites and upregulation of cytokines
such as interleukin (IL)-1, -6, -8, and tumor necrosis factor
(TNF)-α. MCP-1 expression is induced by hyperglycemia, lipid
metabolism, advanced glycation end products, overstimulation of
the renin-angiotensin system, oxidative stress, and nuclear factor
(NF)-κB signaling (Wei et al., 2015) in DN patients.

MicroRNAs (miRNAs) are endogenous non-coding RNAs 20–
25 nucleotides in length that negatively regulate gene expression
in animals and plants by targeting the 3′ untranslated region
(3′-UTR) of target mRNA (Cai et al., 2013). Aberrant miRNA
expression has been reported in several kidney conditions
including DN, polycystic kidney disease, renal fibrosis, drug-
induced kidney injury, and kidney transplantation (Cardenas-
Gonzalez et al., 2017; Celen et al., 2017; Cho et al., 2017;
Huttenhofer and Mayer, 2017; Wonnacott et al., 2017; Yheskel
and Patel, 2017; Zununi et al., 2017). miRNAs participate in
positive or negative feedback loops by targeting NF-κB, IκB,
inhibitor of IκB kinase (IKK) (Ma et al., 2011). Members of the
miR-184, -29, and -200 families as well as miR-192 and miR-21
have also been implicated in fibrotic processes in DN (Kato and
Natarajan, 2014, 2015; McClelland et al., 2014; Rudnicki et al.,
2015; Zanchi et al., 2017).

miR-374a has been reported to be involved in many types of
cancer. For example, miR-374a suppresses lung adenocarcinoma
cell proliferation and invasion by targeting transforming growth
factor (TGF)-α gene expression (Wu et al., 2016), whereas in
gastric cancer, miR-374a level is increased and targets SRC kinase
signaling inhibitor 1 to promote cell proliferation, migration, and
invasion (Xu et al., 2015). miR-374a also negatively regulates
WNT5A, Wnt inhibitory factor 1, and phosphatase and tensin
homolog to promote breast cancer epithelial-to-mesenchymal
transition and metastasis in vitro and in vivo (Cai et al., 2013).

However, the molecular mechanism and function of miR-374a in
DN is not known.

We addressed this in the present study by examining the
expression of miR-374a and MCP-1 in kidney tissue samples
from DN patients and performing loss- and gain-of-function
experiments using HK2 human renal tubular epithelial cells. We
found that miR-374a is downregulated in DN tissues and HK2
cells treated with high glucose (HG). We also confirmed that miR-
374a suppresses the production of cytokines including IL-6 and
-18, TNF-α, and MCP-1. These results indicate that miR-374a
inhibits the inflammatory response via modulation of MCP-1
during DN progression.

MATERIALS AND METHODS

Clinical Samples and
Immunohistochemistry
Human DN (n = 10) and adjacent non-cancerous (n = 5) tissue
samples (3–5 cm from the tumor edge) were obtained from
patients without diabetes mellitus or any other type of kidney
disease who underwent surgical resection for kidney tumors at
the First Affiliated Hospital of Zhengzhou University. The clinical
characteristics of DN patients are shown in Supplementary
Table 1. This study was approved by the Ethics Committee of the
First Affiliated Hospital of Zhengzhou University. Kidney tissue
sections approximately 4 µm thick and embedded in paraffin
were labeled with an antibody against MCP-1 using a commercial
kit (Abcam, Cambridge, MA, United States). Brown positive
staining in DN (n = 10) and adjacent non-cancerous tissue (n = 5)
was semi-quantitatively scored based on density and area by an
independent investigator in a blinded fashion.

Hematoxylin and Eosin (HE) Staining
Kidney tissue samples were immersed in 4% paraformaldehyde
for 4 h and then transferred to 70% ethanol. Individual lobes
of renal biopsy specimens were placed in processing cassettes,
dehydrated through a graded series of alcohol, and embedded in
paraffin. The renal tissue blocks were cut into sections 4 µm thick
that were deparaffinized in xylene, rehydrated with decreasing
concentrations of ethanol, washed in phosphate-buffered saline,
and stained with HE. The sections were then dehydrated in
increasing concentrations of ethanol and xylene and mounted for
microscopic observation.

Plasmid Construction and Luciferase
Reporter Assay
The 3′-UTR sequence of MCP-1 was predicted to interact with
miR-374a by bioinformatics analysis with TargetScan, Microrna,
and PicTar programs. Mutant (MT) and wild-type (WT) MCP-
1 3′-UTR sequences were synthesized and inserted into the
pmirGLO vector. pmirGLO-WT-MCP-1-3′-UTR or pmirGLO-
MT-MCP-1-3′-UTR constructs were co-transfected into 293T
cells with miR-374a mimic or a scrambled sequence (negative
control). After 48 h, firefly and Renilla luciferase activities were
measured using the Dual Luciferase Reporter Assay kit (Promega,
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Beijing, China) according to the manufacturer’s instructions. The
assay was performed in triplicate.

Cell Culture and Treatment
HK2 or U937cells (Chinese Academy of Sciences Shanghai Cell
Bank, Shanghai, China) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 5.6 mmol/l glucose,
10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml
streptomycin in a 5% CO2 incubator at 37◦C. The cells were
trypsinized and seeded in 6-well culture plates at a density of
1 × 106/ml and grown to over 80% confluence; cultures were

synchronized with serum-free medium for 12 h and used for
experiments when they reached 70–80% confluence. HK2 cells
were treated with normal glucose (NG; 5.6 mmol/l D-glucose),
HG (30 mmol/l D-glucose), or high osmotic pressure solution
(HO; 5.6 mmol/l D-glucose+ 24.4 mmol/l D-mannitol).

Quantitative Real-Time (qRT)-PCR
Total RNA was extracted and reverse transcribed into cDNA
that was used as a template for qRT-PCR on a DNA Engine
Opticon system (Fuzhong Bio-Company, Shanghai, China) in
96-well plates under the following reaction conditions: 95◦C for

FIGURE 1 | MCP-1 and miR-374a expression in DN tissues. qRT-PCR analysis of MCP-1 mRNA (A) and miR-374a (B) levels in DN tissues. (C) Spearman’s
correlation analysis demonstrating an inverse correlation between miR-374a and MCP-1 mRNA levels. ∗P < 0.05. (D) Histological analysis of normal (n = 5) and DN
(n = 10) tissues, as determined by HE staining. (E) Upregulation of MCP-1 in DN tissue, as determined by immunohistochemistry. HG induced MCP-1 but
suppressed miR-374a in HK2 cells. (F) qRT-PCR and (G) western blot analysis of MCP-1 expression in HK2 cells treated with NG, HG, or HO for 24 h. ∗P < 0.05 vs.
NG or HO group (n = 3). (H) miR-374a expression in each group as determined by qRT-PCR. ∗P < 0.05 vs. NG group (n = 3).
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10 min, and 40 cycles at 95◦C for 15 s and 60◦C for 1 min.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used
as an internal control to determine the relative expression levels
of target genes; U6 small nuclear RNA served as an endogenous
control for miR-374a. The 2−11Ct method was used to normalize
and calculate fold changes in gene expression.

Western Blot Analysis
Cells were harvested and lysed in radioimmunoprecipitation
assay buffer containing protease and phosphatase inhibitors
and centrifuged at 12,000 rpm for 20 min at 4◦C. Protein
concentration was measured with the bicinchoninic acid assay
(BCA). Briefly, 20 µl of protein sample were added to 200 µl BCA
regent, and absorbance at 590 nm was measured on a microplate
reader. A standard curve was generated from the measured
values and used to determine protein content. Protein samples
in loading buffer were boiled at 100◦C for 5 min and resolved by
12% sodium dodecyl sulfate polyacrylamide gel electrophoresis,
and electrotransferred to a polyvinylidene difluoride membrane
that was blocked with 5% skimmed milk and probed with
a primary antibody against MCP-1 (Abcam; 1:500) for 12 h
at 4◦C. After washing, the membrane was incubated with an
appropriate secondary antibody at room temperature for 2 h;
3′-diaminobenzidine was used for visualization. The ChemiDoc
MP Imaging System (Bio-Rad, Shanghai, China) was used for
densitometric analysis. GAPDH (Santa Cruz Biotechnology,
Santa Cruz, CA, United States; 1:1000) was used as the loading
control.

Enzyme-Linked Immunosorbent Assay
(ELISA)
After establishing the co-culture system, cells were cultured
under the various treatment conditions. IL-6 and -18 and TNF-
α levels in the culture supernatant were measured by ELISA
using the appropriate ELISA kit (R&D Systems, Minneapolis,
MN, United States) according to the manufacturer’s instructions.

Transwell Migration Assay
Corning 24-well Transwell co-culture plates (pore size: 5 µm)
were used to evaluate cell migration. The co-culture system was

divided into two compartments separated by a microporous
membrane that permitted diffusion of soluble molecules and
chemotactic agents and the interaction of cells in the different
layers. Before the experiment, HK2 cells were inoculated in the
lower compartment at a density of 1× 105 cells/ml, while 600 µl
culture medium were added to the lower chamber. Cells were
synchronized with serum-free DMEM/F12 for 12 h before the
experiment. U937 cells were inoculated into the upper chamber
at a density of 5 × 104 cells/ml; 200 µl of culture medium
were added to the cells, which were synchronized 12 h before
the experiment. The cells remaining on the upper surface of
the membrane were removed with a cotton swab, and those
that had migrated through the 5-µm-diameter pores and had
adhered to the lower surface of the membrane were fixed with 4%
paraformaldehyde, stained with crystal violet, and photographed
under a light microscope.

Cell Transfection
HK2 cells were seeded in 6-well plates. When they reached 50–
80% confluence, they were transfected with miR-374a mimic or
inhibitor (GenePharma, Shanghai, China) using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s instructions. After 6 h, the cells were treated with
NG, HG, or HO. Protein and RNA were extracted for analyses.

Overexpression of MCP-1
The pcDNA3.1-MCP-1 vector lacking the 3′-UTR was
constructed and transfected into HK2 cells using Lipofectamine
2000.

Statistical Analysis
Data are expressed as mean ± SD. Means of multiple groups
were compared by one-way analysis of variance. The statistical
significance of differences between two groups was evaluated
with the least significant difference test. P < 0.05 was considered
statistically significant. The relationship between two variables
was evaluated by Spearman’s correlation analysis. Statistical
analyses were performed using SPSS v.18.0 software (SPSS Inc.,
Chicago, IL, United States).

FIGURE 2 | miR-374a negatively regulates MCP-1. (A) WT and MT complementary sequences of MCP-1 3′-UTR are shown with the miR-374a sequence.
(B) Luciferase reporter assay showing the inhibitory effect of miR-374a on MCP-1 3′-UTR luciferase activity in 293T cells transfected with miR-374a mimic.
∗P < 0.05.
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RESULTS

HG Induces MCP-1 but Suppresses
miR-374a Expression
MCP-1 mRNA and miR-374a levels were detected in DN
(n = 10) and adjacent non-cancerous (n = 5) tissues by qRT-PCR.
MCP-1 was upregulated whereas miR-374a was downregulated
in DN relative to control tissue (Figures 1A,B); there was
a negative linear correlation between their expression levels
(Figure 1C). A histological analysis revealed that DN tissue
had abnormal architecture, as evidenced by glomerular swelling
and vacuolization in the endothelial lining (Figure 1D). An
immunohistochemical analysis confirmed upregulation of MCP-
1 in DN tissue (Figure 1E). MCP-1 and miR-374a levels in the

supernatant of HK2 cell cultures incubated with NG, HG, and
HO were evaluated by qRT-PCR and western blotting. After
24 h of HG stimulation, MCP-1 mRNA and protein levels were
almost 3-fold higher than in the NG or HO group (Figures 1F,G).
In contrast, miR-374a was downregulated approximately 5 fold
in the HG as compared to the NG or HO group after 24 h
(Figure 1H). These results suggest a regulatory relationship
between MCP-1 and miR-374a in DN.

MCP-1 Is a Direct Target of miR-374a
Given the negative correlation between the expression levels
of miR-374a and MCP-1, we investigated whether MCP-1 is
a target of miR-374a regulation. A bioinformatics analysis
with TargetScan, Microrna, and PicTar programs identified a

FIGURE 3 | HG induces U937 cell migration and inflammatory cytokine expression through miR-374a. (A–C) ELISA analysis of IL-6 and -18 and TNF-α in the culture
supernatant. ∗P < 0.05 vs. NG group (n = 3). (D) Quantitative analysis of U937 cell migration in different groups. ∗P < 0.05 vs. NG or HO group (n = 3). (E,F)
qRT-PCR analysis of miR-374a and MCP-1 mRNA. ∗P < 0.05 vs. negative control (miR-NC) group (n = 3). (G) Quantification of U937 cells with the transwell
migration assay. ∗P < 0.05 vs. miR-NC group (n = 3). (H–J) After the transwell migration assay, IL-6 and -18 and TNF-α levels in the culture supernatant of HK2 cells
transfected with a miR-374a mimic or inhibitor were monitored. ∗P < 0.05 vs. miR-NC group (n = 3).
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short complementary sequence shared by miR-374a and MCP-1
(Figure 2A). We carried out a luciferase reporter assay to
determine whether miR-374a regulates MCP-1 expression by
transfecting WT-MCP-1-3′UTR and MT-MCP-1-3′UTR plasmid
constructs into 293T cells along with a miR-374a mimic or
scrambled control sequence. The results showed that miR-374a
mimic suppressed the transcriptional activity of the luciferase-
WT-MCP-1-3′-UTR reporter by approximately 50% relative to
the control group. However, the activity of MT-MCP-1-3′UTR
harboring a mutated miR-374a binding site was not suppressed
by miR-374a mimic (Figure 2B). These results indicate that
miR-374a inhibits MCP-1 expression through a direct regulatory
mechanism.

HG Induces U937 Cell Migration and
Expression of Inflammatory Cytokines
via miR-374a
To determine whether miR-374a suppresses the inflammatory
response in DN by targeting MCP-1 expression, we carried out
a transwell migration assay with U937 and HK2 cells seeded in
the top and bottom chambers, respectively. The cells were treated
with NG, HG, or HO and IL-6 and -18 and TNF-α levels in the
supernatant were determined by ELISA and the number of U937
cells in the supernatant was counted. IL-6 and -18 and TNF-
α levels were higher in the HG group than in the NG and HO
groups (Figures 3A–C). In addition, HK2 cells treated with HG
induced the migration of U937 cells as compared to the NG and
HO groups (Figure 3D). Thus, HG induces U937 cell migration
and promotes inflammatory cytokine expression.

To investigate the effect of miR-374a on the production
of inflammatory cytokines in U937 cells, miR-374a mimic
or inhibitor was overexpressed in HK2 cells. The inhibitor
significantly reduced miR-374a expression (Figure 3E).
Compared to the negative control group, miR-374a mimic
suppressed the HG-induced upregulation of MCP-1 transcript
and IL-6 and -18 and TNF-α proteins, whereas miR-374a
inhibitor had the opposite effect (Figures 3F,H–J). Similarly,
miR-374a mimic suppressed HG-induced migration of U937

cells, which was reversed by miR-374a inhibitor (Figures 3F,G).
These data suggest that increased miR-374a expression
suppresses the inflammatory response in DN.

MCP-1 Overexpression Antagonizes the
Effect of miR-374a Mimic
To confirm the regulatory relationship between miR-374a and
MCP-1, we overexpressed MCP-1 lacking the 3′-UTR in HK2
cells transfected with miR-374a mimic (Figure 4A). MCP-
1 overexpression was not suppressed by miR-374a mimic
(Figure 4A). Furthermore, the migration of U937 cells was
not blocked under HG conditions upon co-transfection of
pcDNA3.1-MCP-1 and miR-374a mimic (Figure 4B), which also
did not affect the production of IL-6 and-18 and TNF-α in the
HK2 and U937 cell co-culture system with HG (Figure 4C).
These results confirm that miR-374a negatively regulates MCP-1
expression through binding to the 3′-UTR region.

DISCUSSION

In this study, we demonstrated that miR-374a expression
was lower in DN as compared to normal tissues and is
negatively correlated with that of MCP-1. Overexpression of
miR-374a suppressed MCP-1 expression; IL-6 and -18 and TNF-
α production; and cell invasion, whereas miR-374a inhibition
had the opposite effects. The results of the luciferase reporter
assay showed that miR-374a directly targets the 3′-UTR of
MCP-1 transcript. On the other hand, MCP-1 overexpression
antagonized the inhibitory effect of miR-374a mimic on the
inflammatory response, suggesting that MCP-1 is a downstream
target of miR-374a during DN. This is the first report describing
miR-374a function and its relationship to MCP-1 in DN.

Previous studies have reported that miRNAs regulate gene
expression during DN progression (Long et al., 2010; Wang
et al., 2010) by targeting signaling pathways related to mechanical
stress, oxidative stress, generation of advanced glycation end
products and their receptors, renin–angiotensin–aldosterone
system (RAAS) activation, and autophagy (Wang et al., 2008;

FIGURE 4 | Overexpression of MCP-1 antagonizes the effect of miR-374a mimic. (A) MCP-1 protein level in HK2 cells after co-transfection of pcDNA3.1-MCP-1, as
determined by western blotting. ∗P < 0.05. (B) Numbers of migrating U937 cells in the co-culture system with or without MCP-1 overexpression under HG
conditions. (C) Detection of IL-6 and -18 and TNF-α by ELISA in the co-culture system with or without MCP-1 overexpression. ∗P < 0.05.
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Macconi et al., 2012; Fiorentino et al., 2013; Li et al., 2013;
Tekirdag et al., 2013). For example, miR-184 was shown to
promote tubulointerstitial fibrosis as a downstream effector of
albuminuria through lipid phosphate phosphatase 3 (Zanchi
et al., 2017). Hyperglycemia influenced pathogenic processes
during DN through an miR-23b/GTPase activating protein
(SH3 domain)-binding protein 2 feedback circuit involving p38
mitogen-activated protein kinase (MAPK) and p53 (Zhao et al.,
2016). Proteinuria, genetics, ethnicity, hypoxia, ischemia, and
inflammation have been proposed as factors contributing to DN
(Fernandez et al., 2012). miRNAs also regulate inflammation
by targeting TGF-β-activated kinase 1/MAPK kinase kinase 7-
binding protein 2/3, and inhibitor of NF-κB kinase subunit-α
(Zhu et al., 2012), while miR-155 and -146 were shown to regulate
inflammatory responses through NF-κB signaling (Mann et al.,
2017). Our results also provide evidence for the involvement of
miR-374a in the inflammatory response, although the detailed
mechanism remains to be elucidated.

MCP-1 is a ligand of CC chemokine receptor 2 that acts as
a chemotactic factor for monocytes/macrophages and activated
T cells (Boels et al., 2017). MCP-l levels in peripheral blood of
diabetes mellitus patients were positively correlated with urinary
albumin excretion rate, and MCP-l mRNA and protein levels
are higher in DN than in normal renal tissue (Giunti et al.,
2010). There are several mechanisms by which MCP-1 may
contribute to DN. Firstly, direct stimulation by HG could lead to
upregulation of MCP-1. Secondly, the general existence of blood
lipid metabolism disorder in DN and high levels of low-density
lipoprotein and its metabolite could induce MCP-1 production
by mesangial cells (Rutledge et al., 2010). Thirdly, endothelial
and mesangial cells may produce MCP-1 in response to IL-l,
TNF-α, and platelet-derived growth factor stimulation (Fufaa
et al., 2015). Fourthly, activated RAAS could regulate MCP-1
by increasing macrophage infiltration and ECM accumulation
through NF-κB signaling (Yang et al., 2016).

In this study, we confirmed the regulation of MCP-1 by miR-
374a in HK2 cells, which suggests an important role for this
signaling pathway in the development and progression of DN.
In cells expressing miR-146a and -146b, IκB phosphorylation on
serine 32–which is essential for its degradation—was reduced
to 40 or 20% of control levels in an experiment that directly
demonstrated the negative regulation of NF-κB by miR-146
(Ma et al., 2011). Advanced oxidation protein product-induced
MCP-1 expression has been linked to the IKK/NF-κB signaling
pathway (Zhao et al., 2015). Based on these findings, we propose

that miR-374a interacts with MCP-1 via the NF-κB signaling
pathway in DN.

CONCLUSION

Our results indicate that MCP-1 is a direct downstream target of
miR-374a in DN. Thus, therapeutic strategies targeting this axis
may be effective for the treatment of DN.
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