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Tuberculosis is one of the leading cause of death worldwide, particularly due to evolution

of drug resistant strains. Antitubercular peptides may provide an alternate approach

to combat antibiotic tolerance. Sequence analysis reveals that certain residues (e.g.,

Lysine, Arginine, Leucine, Tryptophan) are more prevalent in antitubercular peptides. This

study describes the models developed for predicting antitubercular peptides by using

sequence features of the peptides. We have developed support vector machine based

models using different sequence features like amino acid composition, binary profile

of terminus residues, dipeptide composition. Our ensemble classifiers that combines

models based on amino acid composition and N5C5 binary pattern, achieves highest

Acc of 73.20% with 0.80 AUROC on our main dataset. Similarly, the ensemble classifier

achieved maximum Acc 75.62% with 0.83 AUROC on secondary dataset. Beside this,

hybridmodel achieves Acc of 75.87 and 78.54%with 0.83 and 0.86 AUROC onmain and

secondary dataset, respectively. In order to facilitate scientific community in designing of

antitubercular peptides, we implement above models in a user friendly webserver (http://

webs.iiitd.edu.in/raghava/antitbpred/).

Keywords: tuberculosis, antitubercular peptides, machine learning, antimycobacterial therapy, Mycobacterium,

ensemble classifier, drug discovery

INTRODUCTION

Tuberculosis (TB) is one of the most ancient infectious disease of mankind caused by
Mycobacterium tuberculosis (M. tuberculosis). DNA sequencing of a 17,870± 230 years old fossil of
an extinct bison (Pleistocene bison), confirmed the existence of tuberculosis over thousands of years
(Rothschild et al., 2001). ‘WHO Global Tuberculosis Report-2017’ declared TB as one of the top 10
cause of death worldwide. In 2016, 1.7 million people died from TB and there were an estimated
10.4 million new (incident) TB cases worldwide among which 2.79 million were accounted for
India. It is estimated that about 40% of the Indian population is infected with TB bacteria, the
vast majority of whom have latent TB rather than TB disease (TB Statistics India | National,
treatment outcome and state statistics)1. India, Indonesia, China, Philippines, Pakistan, Nigeria,
and South Africa are accounted for 64% of the estimated new cases, making TB as major threat
to the developing nations. The aerosolization release of viable airborne bacilli from the individuals
with active tuberculosis, transmits it to the healthy individuals, with potential to further progress
in disease (Churchyard et al., 2017). Therefore, an estimated one third population act as reservoir
for TB (Teng et al., 2015).

1TB Statistics India. National, treatment outcome and state statistics. (Accessed July 21, 2018). Available online at: https://

www.tbfacts.org/tb-statistics-india/.
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Streptomycin was discovered as the first effective antibiotic
against tuberculosis in 1944, but very soon the strains resistance
to streptomycin was reported (Dickinson, 1947; Sandhu, 2011).
From onwards, number of antibiotics such as isoniazid,
rifampicin etc has been reported with significant initial success,
but resistance is always an issue. In 1974, WHO has approved
the use of BCG vaccine worldwide, to eradicate the TB, but
its efficacy decreases with time (Kernodle, 2010) and found to
be least effective in adults of tropical and subtropical region
along with immune-compromised individuals (Andersen and
Doherty, 2005). Currently, a combination of six first-line drugs
is given for a very long duration, ∼12 months (Wang et al.,
2015). Failure of this treatment, persuade use of second-line
drugs which are more toxic and less tolerable with severe side
effects (van den Boogaard et al., 2009; Arbex et al., 2010).
Evolution of multiple drug resistant (MDR), extremely drug
resistant (XDR) and totally drug resistant (TDR) strain makes
the scenario worst. Therefore, it’s an urgent need to develop new
anti-mycobacterial therapies. One of the possible alternative is
peptide-based therapies. The most important aspect of peptides
are their ability to bind range of biological targets, including
in vivo molecular entities, leading to high potency with lower
toxicity, making them better medicinal candidate than small
molecules (Usmani et al., 2017). Beside this, low immunogenicity
of anti-mycobacterial peptides make them a possible alternate
or supplement for conventional TB drugs (AlMatar et al.,
2018). These antimycobacterial peptides have selective affinity
to cell envelope as well as targeted immune response against
Mycobacterium (Teng et al., 2015).

Intensified interest in peptide-based therapies forces, both
researchers and pharmaceutical industries, to hasten the
designing of newer peptides. Therefore, to assist them, a number
of in silico tools to predict and design various kind of therapeutic
peptide such as cell-penetrating, tumor-hoping, anti-microbial,
anti-bacterial, anti-fungal, vaccine, immunotherapy, etc. has been
developed in recent years (Lata et al., 2007; Sharma et al., 2013;
Dhanda et al., 2017; Agrawal et al., 2018; Kumar et al., 2018;
Usmani et al., 2018a).Mycobacterium, neither Gram-positive nor
Gram-negative, has unusual waxy coating (primarily of mycolic
acid) on the cell surface, being dissimilar to other bacteria
(Bhat et al., 2017; Squeglia et al., 2018; Velayati et al., 2018).
The distinguish characteristic of Mycobacterium make them
inappropriate for universal anti-bacterial peptide prediction
methods. Consequently, in the current study, an attempt has been
made to develop models using machine learning techniques for
discriminating anti-tubercular (or anti-mycobacterial peptides)
with other anti-bacterial peptides (ABP) as well non-antibacterial
peptides (non-ABP).

MATERIALS AND METHODS

Dataset Preparation
The major challenge of developing bioinformatic tool is to get
the adequate amount of accurate experimental data. In this
study, we have extracted anti-tubercular peptides (AntiTbP),
from AntiTbPdb; a manually curated database of experimentally
verified AntiTbP (Usmani et al., 2018b). Most of the curated

peptides, in AntiTbPdb contains non-natural modifications,
but we have taken peptides with natural amino acid only.
After removing the identical peptides, final positive data
consist of 246 unique peptides, varies in length of 5–61,
effective againstMycobacterium (Figure 1). For negative dataset,
we have prepared two separate datasets; (i) AntiTb_MD,
which is prepared from DBAASP; an antimicrobial peptide
(AMP) database (Gogoladze et al., 2014; Pirtskhalava et al.,
2016) and (ii) AntiTb_RD, which is prepared from Swiss-
Prot (Bairoch and Apweiler, 2000). From DBAASP, we have
selected peptides containing natural amino acids without any
modifications and are active against Gram positive and Gram
negative bacteria. After removing the redundancy as well as
AntiTbP (identical to positive dataset) 4192 unique peptides
were left. From this, we have generated one of our negative
dataset, containing 246 anti-bacterial peptides only. Beside this,
246 random peptides were generated from Swiss-Prot. While
generating the random peptides; peptides identical to AntiTbP
and ABP were removed, making it non-ABP dataset. The
range of peptide length was kept same in all three datasets.
By generating different bins (5–14, 15–24 etc.), we ensured
that almost same number of equal length of peptides, must
be present in bins of all the datasets. All these datasets were
randomly divided into two parts, in such a manner, that
almost all length range must be included in both; (i) training
dataset, which contain 80% of data (199 sequences) and (ii)
validation dataset, comprising of 20% of data (47 sequences)
(Supplementary Table S1).

Internal and External Validation
For internal validation, we used standard five-fold cross
validation technique, in which whole dataset is divided into
five equal parts. The four dataset are used for training,
whereas remaining one is used for testing. The process
continues till each set is used for testing and the final
result is calculated by averaging the performance of all the
five sets (Nagpal et al., 2017). The external validation of
any prediction method plays a very significant role in its
evaluation. We have used 20% of our data (i.e., validation
dataset) for external validation. Validation dataset is defined
as sample of data, held back from training our model. In
machine learning, it is used to give an estimate of model
performance while tuning model’s parameters. We too have
evaluated the performance of all the models on validation
datasets.

Sequence Logo
The sequence logos were generated using online Seq2Logo
webserver (Nagpal et al., 2017). These are the graphical
representation of sequences, which gives position specific
frequency of amino acids in the multiple peptide sequences.
There is a stack of symbols representing the amino acid at each
positions. Large symbols represent frequently observed amino
acids, big stacks represents conserved positions and small stacks
represents variable positions.
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FIGURE 1 | The construction of positive and negative dataset to develop machine learning models for prediction of Anti-tubercular peptides.

Computation of Features for Prediction
Peptide features such as amino acid composition (AAC),
dipeptide composition (DPC), split composition and binary
profiles were used to develop prediction models.

Amino Acid Composition
AAC has been successfully applied in various sequence-based
classification algorithms (Soga et al., 2007; Gupta et al.,
2013; Kumar et al., 2017; Manavalan et al., 2017, 2018a,c).
AAC summarizes the peptide information in a vector of 20
dimensions. It is the fraction of each type of amino acid with in a
peptide and is calculated by the following equation;

AAC (a) =
Ra

N
x100

Where, AAC (a) is the percent composition of amino acid (a); Ra

is the numbers of residues of type a, and N represents the total
number of peptide’s residues.

Dipeptide Composition
It gives the composition of pair of residues (e.g., Gly-Gly, Gly-
Leu, etc.) present in peptide. DPC transform the variable length
of peptide to a fixed pattern of 400 vectors and summarizes
fraction of amino acids as well as their local order. It was
calculated by using the following equation;

Fraction of Dipeptide (a) =

Total number of Dipeptide (a)

Total number ofall possible dipeptides
× 100

Where dipeptide (a) is one out of 400 dipeptides.

Terminus Composition
Five amino acids from each N-terminal and C-terminal end of
peptides were considered to calculate the N5 and C5-amino acid
composition respectively. Beside this, we have joined the terminal
residues as N5C5 and its AAC is also considered as feature to
develop prediction model.

Binary Profile of Patterns
Previously, several studies shows the importance of binary
profiling while developing prediction methods (Agrawal et al.,
2018). The binary profile encapsulates information of both
composition as well as order of amino acids in peptides. Binary
profiles were generated for each peptide, where each amino acid
is represented by a vector of dimensions of 20 (e.g., Ala by
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). A pattern of window length
W was represented by a vector of dimensions 20 × W. Our
dataset consist of a varied length of peptides, ranging from 5 to
61, therefore a fixed length of binary vector is not possible. To
overcome this, we have extracted 5 amino acid from terminus
of each peptides to cover all the peptides. Beside these N5 and
C5 sequences, a concatenated derived sequence (N5C5) were also
used to generate the binary profile.

Machine Learning Techniques
We used SVMlight package, consisting of various kernels, to
develop the Support vector machine (SVM) based prediction
models (Joachims and Thorsten, 2002). SVM requires fixed
length of input features from training data. The maximum
information about peptides of variable length were converted
into fixed vector of same dimensions (AAC, DPC, Binary
profiling) were used as input features. We have augmented range
of parameters to get the best performance on training dataset.
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Subsequently, best learned model was used for validation. In
addition to SVM, different classifiers (e.g., Random Forest (RF),
SMO, J48, and Naïve Bayes) unified in WEKA suite were also
used to develop prediction models. Weka package has been
used to implement these classifiers (Witten et al., 2016). All
these machine learning methods have been successfully applied
in many bioinformatics studies (Manavalan et al., 2014, 2018b;
Chen et al., 2017; Lin et al., 2017; Manavalan and Lee, 2017; Zhao
et al., 2017).

Performance Evaluation Parameters
Both type of threshold dependent and independent parameters
were used to evaluate the performance of each model developed
in the study.

Threshold Dependent Parameters
Sensitivity (Sen), Specificity (Spc), Accuracy (Acc), and
Matthews’s correlation coefficient (MCC) are the threshold
dependent parameters. “Sen” is defined as true positive rate
whereas true negative rate is defined by “Spc.” “Acc” is ability
to differentiate true positive and true negative while MCC is a
correlation coefficient between observed and predicted values.
These can be calculated using the following equations.

Sen =
TP

PS
× 100

Spc =
TN

NS
× 100

Acc =
TP + TN

PS+ NS
× 100

MCC =
1−

(

FN
PS ×

FP
NS

)

√

(

1+ FP−FN
PS

)

×
(

1+ FN−FP
NS

)

Where TP represents correctly predicted positive, TN represents
the negative examples, PS represents total sequences in positive
set, NS represents total sequences in negative set, FP represents
actual negative examples which have been wrongly predicted as
positive, and FN represents wrongly predicted positive examples.
This is a well-established method of measuring performance and
has been used earlier in many studies (Kumar et al., 2018).

Threshold Independent Parameters
Area under Receiver Operating Characteristics (AUROC) value;
a threshold independent measure, is calculated between false
positive and false negative rates (Kumar et al., 2018).

Statistical Analysis
Wilcoxon signed-rank test was utilized to assess the significance
differences between sets of different AUROC values.

RESULTS

Peptide Compositional Analysis
Compositional analysis of peptides is very significant in
identifying the nature of peptide. Compositional analysis reveals
dominance of lysine (K), arginine (R), leucine (L), and
tryptophan (W) amino acid in AntiTbP. Similarly, ABP also

contains cysteine (C), glycine (G), lysine (K), and arginine (R)
in higher propensity than non-ABP (Figure 2). The percentage
of L and R are high in both ABP and AntiTbP, but the percentage
of C, G, L, and W might be the reason behind the difference in
nature.

Positional Residue Preference Analysis
Next, we analysed, which types of residues are preferred at
specific positions in AntiTbP as compared to other ABP.
Frequency of occurrence of amino acids at N5 and C5 terminal
end was examined to comprehend the difference (Figures 3, 4).
In case of AntiTbP, R is the most preferred amino acid at position
1 and 4, whereas L is preferred at position 2, 3, and 5 at the N-
terminal end. K is preferred at 2nd and 4th position while G is
found frequently 1st, 3rd, and 5th position at N-terminal of ABP.
Similarly, at C terminus of AntiTbP, L is preferred at 1st, 4th, and
5th position while at 2nd and 3rd position, R andW are preferred
respectively. In case of ABP, K is preferred at 1st, 2nd, and 3rd
position while at 4th and 5th position, L is the most preferred
amino acid.

Machine Learning Based Prediction
Models
Various machine-learning approaches like SVM, RF, Naive Bayes,
J48, and SMO have been used for developing prediction models.
These models employ different features to discriminate AntiTbP
with ABP as well as non-ABP. The results are explained in details
in the following sections.

Models for Discriminating AntiTbP From Non-ABP
As illustrated in material and method section, we have used
random peptides (non-ABP) as negative dataset (AntiTb_RD) to
differentiate between AntiTbP and non-ABP. Different features
like AAC, DPC, and terminal residue compositions and binary
pattern has been used as input feature to develop prediction
methods.

In case of AAC based models, SVM technique gives 81.41%
Acc, 0.63 MCC with 0.85 AUROC on training dataset whereas
79.79% Acc, 0.62 MCC with 0.88 AUROC on validation dataset.
RF gives 74.87% Acc with 0.85 AUROC on training dataset
while on validation Acc and AUROC reaches to 89.36%, and
0.94, respectively (Table 1). Similarly, Acc of 81.91, 78.72, and
81.91%, whereas 0.82, 0.87, and 0.88 AUROC are achieved on
validation dataset by SMO, Naïve-Bayes, and J48, respectively.
DPC as input feature gives 81.91% Acc on validation dataset
by both SVM and RF method. SMO, Naïve-Bayes and J48 gives
79.79, 79.79, and 77.66% Acc with 0.80, 0.80, and 0.81 AUROC
values (Supplementary Table S2),

We have also used 5 amino acid from both N and C
terminal of the peptide as input features. In case of N5 AAC,
0.82, 0.83, 0.72, 0.84, and 0.85 AUROC is achieved by SVM,
RF, SMO, Naïve- Bayes, and J48 respectively on validation
dataset (Supplementary Table S3). Likewise, C5 AAC gives
0.81, 0.76, 0.64, 0.81, and 0.73 AUROC values on validation
dataset by SVM, RF, SMO, Naïve- Bayes, and J48 respectively
(Supplementary Table S4). In addition to this, the catenated
N5C5 gives, 0.84, 0.90, 0.80, 0.89, and 0.82 AUROC values with
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FIGURE 2 | Comparison of percent amino acid composition of anti-tubercular, antibacterial, and non-antibacterial peptides.

FIGURE 3 | Comparison of residue preference at N-terminal of (A) Anti-tubercular, (B) Anti-bacterial, and (C) Non-antibacterial peptide.

80.85, 79.79, 79.79, 84.04, and 74.47% Acc by SVM, RF, SMO,
Naïve- Bayes, and J48 respectively (Supplementary Table S5).

With the aim of considering amino acid order in peptide,
binary patterns of N5 and C5 terminal end were generated and
used as input features by different machine learning techniques.

The N5 terminal binary pattern gives AUROC of 0.81, 0.81,
0.72, 0.84, and 0.70 by SVM, RF, SMO, Naïve- Bayes, and
J48 respectively on validation dataset (Supplementary Table S6).
Similarly, on validation dataset, C5 terminal binary pattern gives
0.86, 0.78, 0.76, 0.82, and 0.71 AUROC values by SVM, RF, SMO,
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FIGURE 4 | Comparison of residue preference at C terminal of (A) Anti-tubercular, (B) Anti-bacterial, and (C) Non-antibacterial peptide.

TABLE 1 | The performance of different machine learning techniques based

models on AntiTb_RD dataset developed using AAC of peptides.

Technique Sen Spc Acc MCC AUROC

SVM Train 78.39 84.42 81.41 0.63 0.85

Valid 65.96 93.62 79.79 0.62 0.88

RF Train 74.87 74.87 74.87 0.50 0.85

Valid 87.23 91.49 89.36 0.79 0.94

SMO Train 75.88 80.40 78.14 0.56 0.78

Valid 80.85 82.98 81.91 0.64 0.82

NB Train 67.84 90.45 79.15 0.60 0.84

Valid 63.83 93.62 78.72 0.60 0.87

J48 Train 67.84 75.38 71.61 0.43 0.75

Valid 82.98 80.85 81.91 0.64 0.88

Naïve- Bayes, and J48 respectively (Supplementary Table S7).
The catenated N5C5 binary pattern consider the order of amino
acid at both end of peptides, therefore also implemented as input
features in our study (Table 2). On validation dataset, It gives
79.79, 80.85, 82.98, 82.98. and 67.02% Acc with 0.88, 0.89, 0.83,
0.91. and 0.68 AUROC values by SVM, RF, SMO, Naïve- Bayes.
and J48 respectively.

To overcome any false prediction, we have also implemented
support vector machine based ensemble approach. As mentioned
earlier, Non-ABP were generated from, Swiss-Prot, therefore,
to maintain the sequential diversity in negative dataset, we
have generated five different negative datasets and used in five
different runs. As we have achieved significant performance

TABLE 2 | The performance of different machine learning techniques based

models on AntiTb_RD dataset developed using binary pattern of peptide

segments obtained from N and C terminals.

Technique Sen Spc Acc MCC AUROC

SVM Train 72.86 81.91 77.39 0.55 0.82

Valid 70.21 89.36 79.79 0.61 0.88

RF Train 73.87 78.39 76.13 0.52 0.82

Valid 72.34 89.36 80.85 0.63 0.89

SMO Train 70.85 80.40 75.63 0.51 0.76

Valid 74.47 91.49 82.98 0.67 0.83

NB Train 62.81 89.45 76.13 0.54 0.82

Valid 68.09 97.87 82.98 0.69 0.91

J48 Train 72.36 66.33 69.35 0.39 0.68

Valid 70.21 63.83 67.02 0.34 0.68

by using AAC and N5C5 binary patterns, the SVM scores
of both these models were average to get final model.
The process was accomplished on all five different datasets
and the average Acc achieved is 77.47% with 0.85 AUROC
and 0.56 MCC on training dataset while 75.62% Acc, 0.52
MCC and 0.83 AUROC is achieved on validation dataset
(Table 3).

In addition to ensemble model, we have also constructed
an hybrid model by combining AAC and N5C5 binary pattern
features. This model is generated to compare the performance
with ensemble approach. The same dataset used in each run of
ensemble approach is used here, and the average performance
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TABLE 3 | The SVM based ensemble of AAC and N5C5 binary pattern on AntiTb_RD on five different training and validation datasets along with average results.

Training Validation

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Run 1 69.19 88.38 78.79 0.59 0.86 62.50 79.17 70.83 0.42 0.78

Run 2 69.70 86.87 78.28 0.57 0.87 70.83 79.17 75.00 0.50 0.85

Run 3 69.19 87.37 78.28 0.58 0.86 72.92 83.33 78.12 0.57 0.81

Run 4 64.65 80.30 72.47 0.46 0.82 62.50 83.33 72.92 0.47 0.82

Run 5 71.21 87.88 79.55 0.60 0.86 77.08 85.42 81.25 0.63 0.89

Average 68.79 86.16 77.47 0.56 0.85 69.17 82.08 75.62 0.52 0.83

TABLE 4 | The SVM based on hybrid features of AAC and N5C5 binary pattern on AntiTb_RD on five different training and validation datasets along with average results.

Training Validation

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Run 1 78.28 83.84 81.06 0.62 0.88 70.83 87.50 79.17 0.59 0.85

Run 2 78.28 86.36 82.32 0.65 0.88 70.83 79.17 75.0 0.50 0.82

Run 3 80.81 83.84 82.32 0.65 0.87 77.08 81.25 79.17 0.58 0.86

Run 4 74.24 82.32 78.28 0.57 0.85 70.83 81.25 76.04 0.52 0.84

Run 5 81.82 86.87 84.34 0.69 0.88 77.08 89.58 83.33 0.67 0.92

Average 78.68 84.64 81.66 0.64 0.87 73.33 83.75 78.54 0.57 0.86

TABLE 5 | The performance of different machine learning techniques based

models on AntiTb_MD dataset developed using AAC of peptides.

Technique Sen Spc Acc MCC AUROC

SVM Train 78.39 70.35 74.37 0.49 0.78

Valid 83.33 77.08 80.21 0.61 0.86

RF Train 75.88 77.39 76.63 0.53 0.84

Valid 72.92 72.92 72.92 0.46 0.78

SMO Train 74.37 74.37 74.37 0.49 0.74

Valid 83.33 87.50 85.42 0.71 0.85

NB Train 58.79 77.39 68.09 0.37 0.74

Valid 50.00 85.42 67.71 0.38 0.73

J48 Train 74.37 73.37 73.87 0.48 0.76

Valid 70.83 70.83 70.83 0.42 0.74

is comparable to ensemble classifier (Table 4). The average Acc
achieved is 81.66% with 0.87 AUROC on training dataset while
78.54% with 0.86 AUROC on validation dataset.

Models for Discriminating AntiTbP From ABP
The main aim of the study is to differentiate AntiTbP from
general ABP. To accomplish this, various machine learning
approaches on range of input features, as AAC, DPC, terminal
amino acid composition and binary patterns have been
implemented. AAC as input features gives 74.37, 76.63, 74.37,
68.09, and 73.87% Acc with 0.78, 0.84, 0.74, 0.74, and 0.76
AUROC on independent dataset by SVM, RF, SMO, Naïve-
Bayes, and J48 respectively. While on validation dataset, 80.21,
72.92, 85.42, 67.71, and 70.83% Acc with 0.86, 0.78, 0.85, 0.73,

TABLE 6 | The performance of different machine learning techniques based

models on AntiTb_MD dataset developed using binary pattern of peptide

segments obtained from N and C terminals.

Technique Sensitivity Specificity Acc MCC AUROC

SVM Train 69.85 76.88 73.37 0.47 0.81

Valid 75.00 72.92 73.96 0.48 0.80

RF Train 80.00 72.36 72.36 0.45 0.78

Valid 77.08 66.67 71.88 0.44 0.75

SMO Train 67.34 72.36 69.85 0.40 0.70

Valid 72.92 81.25 77.08 0.54 0.77

NB Train 56.28 78.89 67.59 0.36 0.73

Valid 53.27 84.42 68.84 0.40 0.73

J48 Train 66.33 63.82 65.08 0.30 0.68

Valid 68.75 70.83 69.79 0.40 0.72

and 0.74 MCC is achieved by SVM, RF, SMO, Naïve- Bayes, and
J48 respectively (Table 5).

DPC is also used as input features to develop models based
on SVM, RF, SMO, Naïve- Bayes, and J48 techniques and gives
0.82, 0.76, 0.72, 0.66, and 0.69 AUROC respectively on validation
dataset (Supplementary Table S8). When AAC of N5 terminus
of peptide is used as input feature, 0.79, 0.78, 0.73, 0.69, and 0.69
AUROC is achieved on training dataset, while 0.67, 0.65, 0.63,
0.71, and 0.53 AUROC on validation dataset by SVM, RF, SMO,
Naïve- Bayes, and J48 respectively (Supplementary Table S9).
Similarly, C5 terminal AAC gives 0.76, 0.74, 0.70, 0.71, and 0.65
AUROC by SVM, RF, SMO, Naïve- Bayes, and J48 respectively on
validation dataset (Supplementary Table S10), Beside this, N5C5
catenated features gives 0.79, 0.77, 0.73, 0.73, and 0.64 AUROC
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TABLE 7 | The SVM based ensemble of AAC and N5C5 binary pattern on AntiTb_MD on five different training and validation datasets along with average results.

Training Validation

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Run 1 82.83 76.14 79.49 0.59 0.85 72.92 67.35 70.10 0.40 0.78

Run 2 80.30 73.60 76.96 0.54 0.85 77.08 77.55 77.32 0.55 0.82

Run 3 78.79 73.60 76.20 0.52 0.84 85.42 51.02 68.04 0.39 0.72

Run 4 80.81 70.56 75.70 0.52 0.83 75.00 73.47 74.23 0.48 0.82

Run 5 78.28 70.56 74.43 0.49 0.81 83.33 69.39 76.29 0.53 0.84

Average 80.20 72.89 76.56 0.53 0.83 78.75 67.76 73.20 0.47 0.80

TABLE 8 | The SVM based on hybrid features of AAC and N5C5 binary pattern on AntiTb_MD on five different training and validation datasets along with average results.

Training Validation

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Run 1 79.29 73.68 78.99 0.58 0.85 70.83 71.43 71.13 0.42 0.81

Run 2 77.78 79.70 78.17 0.57 0.82 60.42 91.84 76.29 0.55 0.82

Run 3 75.76 78.17 76.96 0.54 0.83 85.42 61.22 73.20 0.48 0.80

Run 4 75.76 77.16 76.46 0.53 0.81 72.92 83.67 78.35 0.57 0.85

Run 5 74.24 77.66 75.95 0.52 0.79 85.42 75.51 80.41 0.61 0.88

Average 76.76 77.27 77.48 0.55 0.82 75.02 76.73 75.87 0.52 0.83

values on validation by SVM, RF, SMO, Naïve- Bayes, and J48
respectively (Supplementary Table S11).

The binary patterns of N5 terminal gives 0.73, 0.67, 0.70, 0.71,
and 0.58 AUROC values while binary pattern of C5 terminal
gives 0.72, 0.74, 0.73, 0.69, and 0.66 AUROC with the help of
SVM, RF, SMO, Naïve- Bayes, and J48 respectively on validation
(Supplementary Tables S12, 13). To encapsulate the maximum
information about order of amino acid, the catenated N5C5
binary patterns were also used to develop model. In case of
SVM, 73.37% Acc with 0.81 AUROC and 73.96% Acc with
0.80 AUROC is obtained on training and validation dataset
respectively. RF gives 80.00% Sen and both Spc andAcc as 72.36%
with 0.78 AUROC on training dataset, whereas on validation
dataset 71.88% Acc with 0.75 AUROC is obtained. Similarly on
validation, SMO, Naïve Bayes and J48 gives 0.77, 0.73 and 0.72
AUROC respectively (Table 6).

In case of SVM based ensemble approach, AAC with N5C5

binary patterns were used as input features to classify AntiTbP
from ABP. In this case, the negative dataset is reshuffled in five
different runs, to check the impact of reshuffling of folds on the
performance of model. The average Sen, Spc, Acc, and AUROC
were 80.20, 72.89, 76.56% and 0.83 respectively were achieved

on five different training datasets. In case of validation, 78.75%
sensitivity, 67.76% specificity, 73.20% Acc with 0.80 AUROC
were obtained (Table 7).

Beside this, a hybrid model combining AAC and N5C5 binary

pattern features were also constructed and the same dataset used
in each run of ensemble approach is used here, and the average
performance is comparable to ensemble classifier (Table 8). The
average Acc achieved is 77.48% with 0.82 AUROC on training
dataset while 75.87% with 0.83 AUROC on validation dataset.

Implementation of Webserver
One of the major goals of the study is to provide service to
the scientific community. Thus, we developed a user-friendly
webserver (http://webs.iiitd.edu.in/raghava/antitbpred/) which
will assist to know, whether a peptide has antitubercular activity.
In addition to this, analogs of peptide can also be generated,
with the possibility of being it as an AntiTbP or not, based on
prediction score. Possibility of antitubercular peptide segments in
a protein sequence can also be checked by using our webserver.
We believe that, this webserver will be very useful to design newer
AntiTbP as well as to know whether a known ABP can also have
bactericidal activity againstMycobacterium.

DISCUSSION

Emergence of drug resistance, provoke the requirement of
developing newer therapeutic strategies to combat tuberculosis.
Last decade witnessed the advancement of several promising
therapeutic entities. Antitubercular peptides emerged as
promising anti-TB drugs, due to their selective affinity toward
cell envelope and low immunogenicity and diverse mode
of action (Teng et al., 2015). Beside, trans-membrane pore
formation which is the common bactericidal mechanism, most
of the AntiTbP tend to have intracellular targets such as both
ecumicin and lassomycin act on ClpC1 ATPase complex (Gavrish
et al., 2014; Gao et al., 2015). Most of the current AntiTbP are
derived from bacterial extraction, mycobacteriophages or host
immune cells; which is a tedious and costly process.

Peptidoglycan is the major component ofMycobacterium cell
wall. A branched polysaccharide; named as Arabinogalactan,
connects the peptidoglycan with the outer layer of mycolic acid.
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TABLE 9 | p-values between AUROC of different methods obtained by

implementing Wilcoxon rank sum test.

S. No Method 1 Method 2 p-value

1 AntiTb_RD

dataset

Ensemble SVM based on AAC 0.73

2 Ensemble SVM based on N5C5

binary patterns

0.01

3 Ensemble SVM based on hybrid

features

0.1

4 AntiTb_MD

dataset

Ensemble SVM based on AAC 0.03

5 Ensemble SVM based on N5C5

binary patterns

0.01

6 Ensemble SVM based on hybrid

features

0.52

Some unique glycosyltransferases are involved in the cell wall
assembly (Bhat et al., 2017). The unique structure of the cell
wall plays an important role in the survival of Mycobacterium,
while it enters into non-replicative growth throughout dormancy
(Alderwick et al., 2015). This hydrophobic, waxy and thicker
cell wall distinguish the Mycobacterium with other bacteria.
Therefore, we believe that universal in silico tools, which were
developed to predict AMP or ABP needs to be scrutinized
thoroughly. To verify our concern, we have predicted the activity
of experimentally validated AntiTbP by general prediction
method incorporated in DBAASP as well as more improved
method, iAMPpred; a recently developed tool to predict
antimicrobial peptides (Meher et al., 2017). iAMPpred predicts
170 peptide as antibacterial whereas only 116 out of 246
experimentally validated AntiTbP are predicted as antimicrobial
by DBAASP (Supplementary Table S14). These results clearly
suggest that, it is need of an hour to develop, an exclusive method
to design AntiTbP.

The amino acid compositional analysis reveals the preference
of certain specific amino acid, such as K, L, R, and W in
AntiTbP, whereas negatively charged D and E amino acid is less
preferred. Analysis of positional preference of terminal residues,
also emphasizes on the preference of R and L at N-terminal,
and R, L, and W at C-terminal of the AntiTbP. The percentage
of C, G, L, and W seems to be important while deciding the
nature of peptides, to be ABP or AntiTbP. As the cell wall of
Mycobacterium is highly negative charged, more cationic amino
acids (K, L, and R) are required to perform the bactericidal
activity. The difference in the composition of non-ABP, ABP,
and AntiTbP, motivate us to develop methods to differentiate
between AntiTbP with other peptides. In this study, we have used
different input features such as AAC, DPC, terminal amino acid
composition and binary pattern to develop several prediction
models based on various machine learning techniques like SVM,
RF, SMO, J48, and Naïve- Bayes. To avoid the false prediction
of AAC based SVM model, (as two different peptide may have
the same composition) and to consider the order of amino acids,
we have implemented SVM based ensemble approach, in which
five different training and validation sets have been used to
construct set of SVM classifiers with the help of AAC and N5C5

binary patterns as input features, since they produced the best
performance in real SVM. In case of antitubercular (positive) and
antibacterial (negative) peptide- training dataset (AntiTb_MD),
average Sen, Spc, Acc, MCC, and AUROC obtained are 80.20,
72.89, 76.56%, 0.53 and 0.83 respectively while on validation
dataset, 78.75, 67.76, 73.20%, 0.47 and 0.80 corresponding values
have been achieved. In the same way, 75.62% Acc with 0.83
AUROC has been achieved on validation dataset, comprising
of antitubercular and non-antibacterial peptides (AntiTb_RD).
There is a significant difference in performance of SVM based
ensemble models and N5C5 binary pattern based model (p =

0.01), while the performance of hybrid model is almost same as
ensemble (p = 0.52) (Table 9). Moreover, to assist the biologist,
we have implemented our SVM based ensemble as well as hybrid
models in a user-friendly web server to discriminate and design
AntiTbP.

The non-availability of negative data remains a major problem
while developing prediction tools. We have tried to overcome
this as much as possible while generating the negative data,
with our assumptions, but availability of experimentally verified
non-AntiTbP would have ensured more accurate performance.
Similarly, the random peptide considered as non-ABP, might
have bactericidal or even antitubercular activity, but this could
only be confirmed after experimental verification. These are the
flaws, which can only be overcome, when negative results (or
negative peptide) will be reported as well as stored in a repository.
The dataset is limited and consist of natural amino acids only.
Inclusion of other novel natural as well modified AntiTbP will
certainly provide a chance to improve the method.

In conclusion, the study bring about in silico models,
to design AntiTbP (http://webs.iiitd.edu.in/raghava/antitbpred/).
The models have advantages over general AMP and ABP
prediction methods while predicting the bactericidal activity of
peptides, specifically against Mycobacterium. The small dataset
may be the limitation of the study, but we believe that with more
characterization of AntiTbP, the field will grow significantly in the
coming years.
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