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Neurosteroids and the endocannabinoid system are increasing in relevance as themes in the
studies of many disorders and diseases (Berardi et al., 2016; Basavarajappa et al., 2017; Rasmusson
et al., 2017). Correspondingly, psychiatric disorders, like post-traumatic stress disorder (PTSD),
correlate with changes in endogenous neurosteroid and endocannabinoid availability, which may
be related to the cause of its comorbidity with general cognitive decline (Qureshi et al., 2011;
Schuitevoerder et al., 2013), neuroinflammation (Jeon and Kim, 2016; Mendoza et al., 2016),
and neurodegenerative disorders (Cummings, 1992; Chi et al., 2014). These neuropathologies also
reduce the quality of life and increase the socioeconomic burden.

Furthermore, increasing evidence shows an association of chronic maladaptive brain changes
with neuroinflammation in PTSD (Jones and Thomsen, 2013). It is marked by the upregulation of
pro-inflammatory cytokines such as IL−1β, IL−6, IL−10, and TNF–α in the CNS (Minami et al.,
1991; Cunningham et al., 1992; Mogi et al., 1994, 1996). Particularly, IL−1β plays a critical role in
the activation of the HPA axis (Shintani et al., 1995), and in the hippocampal formation where
it regulates stress-enhanced fear learning (Jones et al., 2015). As such, the association between
neurosteroids and neuroinflammation is unsurprising (Purdy et al., 1991; Webster et al., 2015;
Villa et al., 2016). Indeed, neuroactive steroids, allopregnanolone and deoxycorticosterone have
also been shown to increase during acute stress to levels that activate the GABAA receptor, and
thereby influence the behavioral responses (Purdy et al., 1991). The chronic stress response has also
been found to coincide with decreased cognitive function, especially learning and memory deficits
(McEwen and Sapolsky, 1995), in episodic memory (Payne et al., 2006), and spatial learning and
memory (Conrad, 2010). Chronic stress also negatively alters sleep patterns, social behavior, mood
(Opp et al., 1988; Pinna et al., 2003, 2008; Hall et al., 2015; Olini et al., 2017 reviewed in Locci and
Pinna, 2017), as well as decreases neurosteroids (Pinna et al., 2006, 2009; Bortolato et al., 2011),
which affect synaptic plasticity (Serra et al., 2008; Fester and Rune, 2015) and neurogenesis (Wang,
2014).

The high prevalence of PTSD in the US makes it a high priority research topic. Approximately
7–12% of US adults are affected by mood and anxiety related disorders (Anxiety Depression
Association of America, 2010-2016), while 4% of US adults (HarvardMedical School, 2007) and 20–
30% of US veterans are affected by PTSD specifically (US Department of Veterans Affairs, 2015a).
There are currently no reliable mechanisms or biomarkers to predict the onset or progression of
PTSD, nor are there treatments that can consistently reduce the symptoms of PTSD. Currently,
the only approved pharmacotherapies for PTSD are the selective serotonin reuptake inhibitors
(SSRIs), however, these treatments have low response rates and only treat a small subset of patients
(Hertzberg et al., 2000). The neurosteroid system is emerging as novel neuronal substrates in the
pathogenesis of PTSD and its regulation may facilitate recovery (Yu et al., 2011; Zanettini et al.,
2011; Litvin et al., 2013; Locci and Pinna, 2017; Pineles et al., 2018).

The goal of this opinion article is to examine the relationship between the endogenous fatty acid
amides, including palmitoylethanolamide (PEA) and the biosynthesis of neurosteroids, particularly
allopregnanolone, and their role in emotional and cognitive dysfunction in PTSD. Specifically,
we focus on the function of the peroxisome proliferator–activated receptor (PPAR)–α, a target
for PEA, which is best known for its role in reducing inflammation by decreasing cytokines,
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pro-inflammatory enzymes and oxidative stress. For this, PPAR–
α agonists act as neuroprotectants in various neurological
disorders like Alzheimer’s disease, Parkinson’s disease, multiple
sclerosis, and cerebral ischemia (Zolezzi et al., 2017). However,
recent literature in the field suggest that PPAR–α has emerged
as a new target that is useful as a novel approach to treat mood
disorders by engaging neurosteroid biosynthesis.

THE ENDOCANNABINOID SYSTEM AND
THE ROLE OF PPARS IN COGNITION AND
EMOTIONS

The endocannabinoid system was curiously discovered in the
1990s because of the psychotropic effects that resulted from the
use of cannabis sativa in medicinal and recreational settings (Di
Marzo et al., 2004). The goal of early research was to elucidate
the active agents, but, with time, research turned from the study
of the psychotropic effects of the endocannabinoid system to the
study of its medicinal properties. Eventually, treatment-oriented
research revealed that the endocannabinoid system plays an
important physiological role in homeostasis, pathogenesis and
recovery in healthy and ill brain states (De Petrocellis et al.,
2004), and is heavily involved in the regulation of emotions,
cognition and stress (Viveros et al., 2005; Zanettini et al., 2011).
The typical target of endocannabinoids in the CNS is the G-
protein coupled, type-1, cannabinoid receptor (CB−1). Its role
in pathogenesis and recovery is well investigated (Manzanares
et al., 2004). However, much more recently, PPARs have
emerged as new targets for cannabinoids and fatty acid amides
for the regulation of pathophysiological functions, including
inflammation, oxidative stress, alcohol addiction, and behavioral
deficits (Le Foll et al., 2013; Mandrekar-Colucci et al., 2013;
Rolland et al., 2013; Locci and Pinna, 2017; Rivera-Meza et al.,
2017).

The PPAR family is a ligand-dependent, nuclear hormone
receptor, transcription factor family of three isotypes: PPAR–α,
PPAR–β/δ, and PPAR–γ (Fidaleo et al., 2014). Of the family,
PPAR–β/δ is the least understood, yet it is known to have a
role in the development of the CNS and cell survival (Berger
and Moller, 2002; Abbott, 2009). PPAR–α and PPAR–γ have
similar neurophysiological functions that include regulation of
the redox response, neuroinflammation, neurogenesis, cellular
differentiation, as well as secondary functions in the regulation
of cognition, anxiety, and emotional behavior (Bordet et al.,
2006; Bright et al., 2008; Panlilio et al., 2012; Fidaleo et al.,
2014). PPAR–α and PPAR–γ are localized in brain regions
that are selectively involved in the regulation of emotions and
the stress response (Moreno et al., 2004). PPAR–α is most
highly expressed in the basal ganglia, amygdala, prefrontal cortex
and thalamic nuclei of healthy adults, with lower levels in
the hippocampal formation (Warden et al., 2016). PPAR–γ is
also highly expressed in the basal ganglia and amygdala, with
lower levels in the hippocampal formation, and the thalamic
nuclei (Moreno et al., 2004). The significance in the relationship
between these regions and emotions has been extensively
studied (Shin et al., 2006; Shin and Liberzon, 2010). Together,

the basal ganglia, prefrontal cortex, amygdala, thalamus and
hippocampus are all key components of the neuronal circuit
for fear and anxiety (Shin and Liberzon, 2010), while the
basal ganglia, prefrontal cortex and thalamus are critical to
mediation of emotional drive and the planning of goal-directed
behaviors—which are either exaggerated or depressed during
a threat (Haber and Calzavara, 2009). The amygdala is crucial
to learning threat-stimuli relationships and the expression of
cue-specific fear (Davis, 1992). Its activity is heightened in
PTSD, social phobias and related disorders (Shin and Liberzon,
2010). This hyperresponsivity of the amygdala likely dampens
the responsivity of the prefrontal cortex, which manifests as
hyporesponsivity in PTSD patients (Garcia et al., 1999; Shin
and Liberzon, 2010). Additionally, the hippocampus which plays
a fundamental role in memory acquisition, consolidation and
retrieval, is likely influenced by the amygdala, especially in
relation to threatening contexts (McGaugh, 2004).

PPAR–α activation has been shown as a natural response to
stress, having the ability to mediate and modulate the stress
response (Hillard, 2018). In healthy adults, PEA, an endogenous
PPAR–α agonist, significantly increase after clinical stress tests,
corresponding with increased cortisol levels (Dlugos et al., 2012).
PEA levels increase when healthy individuals experience pain or
a depressed mood transiently (Darmani et al., 2005). However,
the levels of PEA in PTSD are low (Wilker et al., 2016),
suggesting a significant role in emotion regulation. As such,
endogenous and synthetic PPAR–α ligands have predictably and
successfully stabilized emotions in preclinical models (Locci et al.,
2017).

Enhanced fear memory, depressive-like behavior, and
aggressive behavior are common characteristics of chronically
stressed animals in murine models of PTSD that resemble
human symptomology. PPAR–α activation has been assessed
regarding its effect on this behavior. PPAR–α agonism rescued
rodent behavior in response to stress induced fear. When
PPAR–α was activated by exogenous PEA in socially isolated
mice, a mouse model of PTSD, fear memory acquisition
was reduced, and impaired fear extinction was rescued
(Locci and Pinna, 2017; Locci et al., 2017). Similarly, PEA
induced a dose-dependent anti-depressant effect (Yu et al.,
2011), and reduced aggressive behavior that was blocked
by pretreatment with antagonists (Locci et al., 2017). The
relationship between PPAR activation and emotional regulation
is further supported by its activity in neuroinflammation
(O’Leary, 1990; Racke and Drew, 2008; Rolland et al., 2013;
Esmaeili et al., 2015; Jeon and Kim, 2016), but even more so, by
the localization of PPAR–α in brain areas that regulate mood and
emotions.

In an analogous manner, the downregulation of PPAR–γ
has been reported to exaggerate basal anxiety, enhance stress
sensitivity and produce substantially different stress-induced
neuronal activity in the amygdala and hippocampus (Domi et al.,
2016). PPAR–γ antagonist, GW9662, produced an anxiogenic-
like response, while PPAR–γ agonists did not affect basal anxiety-
like behavior (Rosa et al., 2008). Similarly, treatment of rats with
the PPAR–γ agonist, rosiglitazone, reduced the systemic response
to acute stress, and reduced the heart rate in response to an
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acute restraint stress (Ryan et al., 2012). In this study, treated
rats also showed a blunted hormonal response (corticosterone
levels). However, in contrast to the above, young, unstressed rats
treated with rosiglitazone showed an improved response in the
hippocampal-dependent fear conditioning task in comparison to
control rats (Gemma et al., 2004). This may point to an analogous
role for PPAR–γ activation in the treatment of anxiety and/or
depression.

ROLE OF ALLOPREGNANOLONE IN
COGNITION AND EMOTIONS

3α,5α-tetrahydroprogesterone, also known as allopregnanolone,
is a neurosteroid that can be synthesized de novo from
cholesterol, or from its precursors, pregnenolone and
progesterone (Pinna et al., 2006; Schüle et al., 2014). In the
CNS, allopregnanolone can function to rapidly alter neuronal

excitability by acting as a potent and positive allosteric modulator
at post- and extra-synaptic GABAA receptors, which are highly
abundant in glutamatergic neurons (Pinna et al., 2000). These
neurons participate in the circuit of fear, and are therefore
involved in emotion and anxiety regulation (Möhler, 2012).
As such, an imbalance of GABAergic neurotransmission, or
endogenous neuromodulators results in abnormal regulation of
emotion and abnormal stress responses (Möhler, 2012; Locci
and Pinna, 2017). This inhibitory deficit is a known hallmark in
anxiety and emotional disorders. Given that allopregnanolone
directly binds this receptor, a reduction of allopregnanolone
levels correlate to reduced GABAA receptor activity and
dysfunctional behavior (Pinna et al., 2008, 2009).

Intriguingly, the allopregnanolone level in the blood and
CSF are reduced in patients of MDD, impulsive aggression,
premenstrual dysphoric disorder, PTSD and other disorders of
mood and emotions (Rasmusson et al., 2006, 2016; Schüle et al.,
2014; Šrámková et al., 2017; Pineles et al., 2018; Rasmusson

FIGURE 1 | Schematic representation of the proposed PPAR–α-allopregnanolone biomarker axis. PPAR–α, following its activation by an endogenous (e.g., PEA) or a

synthetic agonist, heterodimerizes with a PPAR–α-specific retinoid X receptor (RXR). The PPAR-RXR dimer then binds the PPAR response element (PPRE) in specific

promoter regions that up- or down-regulate gene expression. PPAR–α activation would therefore normalize the stress-induced downregulation of neurosteroidogenic

proteins, StAR and p450scc. StAR, is crucial to the translocation of cholesterol into the inner mitochondrial membrane. There, cholesterol is metabolized by the action

of the P450scc into pregnenolone (the precursors of all neurosteroids). Pregnenolone can be further converted to progesterone and 5α-dihydroprogesterone (5α-DHP)

by the action of 5α-reductase type I. 5α-DHP can then be converted by 3α-hydroxysteroid dehydrogenase into allopregnanolone (Allo) and its equipotent isomer,

pregnanolone (PA), which allows for potent, positive, allosteric potentiation of the GABAA receptors located in the post-synaptic membrane of pyramidal neurons of

the frontal cortex and hippocampus, and pyramidal-like neurons of the basolateral amygdala (Agís-Balboa et al., 2006, 2007; Pinna et al., 2008).
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and Pineles, 2018). Another interesting phenomenon is the
observation that females are twice as likely to experience
PTSD as males; 10% of women who experience trauma
develop PTSD, compared to only 4% of men (US Department
of Veteran Affairs, 2015b). The gender difference in PTSD
patients further indicates that neurosteroids may play a large
role in the progression and recovery of these disorders, as
the difference in neurosteroid concentration contribute to the
biological distinction of the sexes (Mendoza et al., 2016). As
a specific example, the allopregnanolone level in the CSF of
female PTSD patients were 40% lower than in controls, and
the allopregnanolone/dehydroepiandrosterone (DHEA) ratio
negatively correlates with PTSD re-experiencing (Rasmusson
et al., 2006). To this end, studies are being pursued to verify
lower levels of allopregnanolone during pregnancy as a predictor
of postpartum depression (PPD) (Osborne et al., 2016; Kanes S.
et al., 2017).

Early studies have shown that allopregnanolone levels in
the brain increase to levels that can activate the GABA
receptors, during acute stressful events (Purdy et al., 1991).
Subsequently, it has been further hypothesized that the
enhancement of GABAergic transmission decreases HPA activity
and contributes to the behavioral stress response (Cullinan
et al., 2008). Protracted stress, on the other hand, downregulates
allopregnanolone biosynthesis (Pinna et al., 2003; Matsumoto
et al., 2005, 2007). Indeed, preclinical studies demonstrate that
socially isolated mice, known to exhibit enhanced contextual
fear responses and impaired fear extinction, also exhibit time-
related decreases in allopregnanolone levels in neurons of the
medial prefrontal cortex, hippocampus and basolateral amygdala
(Agís-Balboa et al., 2006, 2007; Pibiri et al., 2008). The decrease
of allopregnanolone was the result of reduced levels of 5α-
reductase type I mRNA and protein following social isolation
(Dong et al., 2001; Matsumoto et al., 2005, 2007). Hence,
these findings suggest that allopregnanolone, its precursors,
and analogs of allopregnanolone are suitable treatments for
emotional regulation (Pinna and Rasmusson, 2014; Locci et al.,
2017). For example, exogenous allopregnanolone attenuated
the contextual fear response in a dose-dependent manner. In
a similar murine social isolation model of PTSD, researchers
showed that allopregnanolone treatment normalized HPA
responsiveness and interrupted depressive- and anxiety-like
behavior, which are hallmarks of clinical PTSD (Evans et al.,
2012). Allopregnanolone analogs, BR351 and BR297, effectively
decreased aggression in socially isolated mice, with a lower non-
response rate than SSRI-treated mice (Locci et al., 2017). Given
preclinical successes, allopregnanolone, its precursors and its
analogs are currently being sort after and tested as treatments
in psychiatric and related disorders. Recently, allopregnanolone
(brexanolone) was evaluated in phase 3 clinical trials for its
efficacy against PPD, and successfully achieved primary endpoint
(Kanes S. J. et al., 2017). For the phase 2 clinical trial, women
were given an intravenous infusion of allopregnanolone, and
outcomes were measured using HAM–D (Kanes S. et al.,
2017). Of 21 enrolled patients, 70% of treated vs. only 9%
of placebo-receiving patients exhibited remission of depressive
symptoms. Researchers hypothesize that the action of this drug

includes the potentiation of GABAA receptors (Kose and Cetin,
2017).

THE BRIDGE BETWEEN PPAR–α
STIMULATION AND
ALLOPREGNANOLONE BIOSYNTHESIS

The summaries above suggest that the role of allopregnanolone
in the progression and recovery of psychiatric disorders is
similar to the emerging role of PPAR–α. Importantly, these
similarities are not limited to their function in emotion
regulation. Comparable actions of PPAR–α and allopregnanolone
have also been observed across cognition (Cuzzocrea et al., 2013;
Fidaleo et al., 2014; Greene-Schloesser et al., 2014), neurogenesis
(Ramanan et al., 2009; Fidaleo et al., 2014), neuroinflammation
(Daynes and Jones, 2002), neurodegeneration (Naylor et al.,
2010; Esmaeili et al., 2015), and substance use disorder (Le Foll
et al., 2013; Blednov et al., 2015; Rivera-Meza et al., 2017).
Raso et al. suggest that the PPAR–α and allopregnanolone are
different substrates of the same mechanism, whereby PEA-
induced activation of PPAR–α regulates the biogenesis of
allopregnanolone in astrocytes (Raso et al., 2011). To this end,
when astrocytes were treated with PEA in vitro, an increased
expression of enzymes that are crucial to allopregnanolone
biosynthesis [steroidogenic acute regulatory protein (StAR)
and cholesterol side-chain cleavage enzyme (P450scc)] were
reported along with increased cytoplasmic concentrations of
allopregnanolone. This interdependent relationship between
PPAR–α and allopregnanolone has also been alluded to in
studies of pain perception. In studies of acute and persistent
pain, researchers showed that the usual anti-nociceptive activity
of PEA was reduced when activity of enzyme 5α-reductase
and P450scc were blocked (Sasso et al., 2012). PEA restored
enzyme expression and increased allopregnanolone level in
the spinal cord. Further support for this relationship was
shown when PEA was used as neuroprotector and regulator
of the pentobarbital-evoked hypnotic effect (Sasso et al.,
2010). In this case, PEA increased the expression of relevant
enzymes and allopregnanolone concentrations in the spinal
cord.

These findings suggest that allopregnanolone functions
downstream of PPAR–α to mediate its therapeutic effects
(Figure 1), thus, we further hypothesize that part of the
mechanism of action of PPAR–α includes an upregulation of the
biosynthesis of neurosteroids (Raso et al., 2011), by upregulating
the expression of crucial neurosteroidogenic enzymes. A recent
study by Locci and Pinna (2017) further demonstrated the
allopregnanolone-dependent effect of PPAR–α-activation. In this
study, a single dose of a PPAR–α agonist, PEA or GW7647,
normalized the levels of allopregnanolone in socially isolated
mice, improved depressive-like and anxiolytic-like behavior, and
facilitated impaired extinction of fear memory. The therapeutic-
like effects of the PPAR–α agonists were however obstructed
by genetic ablation of PPAR–α, antagonism of PPAR–α, and
inhibition of neurosteroidogenic enzymes. This and previous
studies further support a possible PPAR–α-allopregnanolone
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biomarker axis in PTSD, and a new therapeutic target for
emotional disorders (discussed in Locci et al., 2018).

CONCLUSION

Collectively, these observations provide a relevant case for
the design of novel molecules. It suggests that activating
PPAR–α may induce a downstream increase of neurosteroid
biosynthesis, and that allopregnanolone, pregnanolone, and
their analogs can be synthesized to mimic neurosteroid actions
at GABAA receptors. These can therefore provide important
and novel steroid-based therapeutics for behavioral deficits in
PTSD and other mood disorders. With overlapping symptoms
spread across psychiatric disorders like PTSD, MDD and
anxiety spectrum disorder, established methodical biomarkers
will aid rapid differentiation, identification, prevention, and
treatment of PTSD. Given the new relationship pointed out
in this opinion article, the biochemical profile of PTSD
may include a PPAR–allopregnanolone biochemical axis such
that subpopulations of PTSD patients may display reduced

allopregnanolone levels that can be increased by PPAR–α
activation, only in allopregnanolone-deficient patients. Other
components of the profile can also include changes in GABAA

receptor subunit expression (Locci and Pinna, 2017), decreased
levels of endogenous fatty acid amides such as PEA and
OEA (Hillard, 2018), or downregulated expression of PPAR–
α. The mechanism by which stress induces changes in these
neurochemical targets may be a potential biomarker axis relevant
to diagnosis and as a novel approach to treat emotional and
cognitive impairment in PTSD.
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