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Checkpoint inhibitor (CPI) based immunotherapy (i.e., anit-CTLA-4/PD-1/PD-L1
antibodies) can effectively prolong overall survival of patients across several cancer
types at the advanced stage. However, only part of patients experience objective
responses from such treatments, illustrating large individual differences in terms of
both efficacy and adverse drug reactions. Through the observation on a series
of CPI based clinical trials in independent patient cohorts, associations of multiple
clinical and molecular characteristics with CPI response rate have been determined,
including microenvironment, genomic alterations of the cancer cells, and even gut
microbiota. A broad interest has been drawn to the question whether and how these
prognostic factors can be used as biomarkers for optimal usage of CPIs in precision
immunotherapy. Therefore, we reviewed the candidate prognostic factors identified by
multiple trials and the experimental investigations, especially those reported in the recent
2 years, and described the possibilities and problems of them in routine clinical usage
of cancer treatment as biomarkers.
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INTRODUCTION

Existence of immune checkpoints is essential for modulating duration and magnitude of T cell
responses and maintaining self-tolerance (Pardoll, 2012), while suppression of antitumor immune
responses facilitates harmful tumor growth. With a constantly deepening understanding of the
immune system and its role on cancer development, the field of cancer immunotherapy has
been explored with great enthusiasm, aimed at harnessing immune system to induce or restore
antitumor activities (Topalian et al., 2011). Among complicated pathways of immune system,
interactions of cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) with CD80/CD86, and
programmed cell death 1 (PD-1) with programmed cell death ligand 1 (PD-L1) has been considered
to act as “brakes” on the immune system (Linsley et al., 1991; Freeman et al., 2000; Schildberg
et al., 2016). CTLA-4 has a much stronger affinity with CD80/86 than CD28, thus inhibiting
crucial CD28/CD80 and CD28/CD86 based T cell activation (Manson et al., 2016), while PD-
1/PD-L1 interaction induces imbalanced activation of signaling pathways which results in altered
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T-cell metabolism and subsequent abnormal differentiation,
leading to reduced T effector cells and increased T regulatory
cells (Tregs) as well as T exhausted cells (Boussiotis, 2016).
Therefore, CTLA-4 and PD-1/PD-L1 have been considered as the
“star” candidate targets to immune-checkpoint blockade (ICB)
based immunotherapy. Unprecedented success of anti-CTLA-4
and anti-PD-1/PD-L1 ICBs have been achieved in various tumor
types that were previously sentenced to gloomy prognosis under
traditional treatments (Thomas and Hassan, 2012; Gogas et al.,
2013; Lee et al., 2015; Restifo et al., 2016), significantly prolonging
overall survival with acceptable toxicity in patients with advanced
melanoma (Hodi et al., 2010; Wolchok et al., 2013; D’Angelo
et al., 2017), non-small-cell lung cancer (NSCLC) (Gettinger
et al., 2015, 2016; Hellmann et al., 2017), and other tumor types
(Hamanishi et al., 2015; Morris et al., 2017; Overman et al., 2017).

Until recently, six CPIs have been approved by the U.S. Food
and Drug Administration (FDA), and all of them are monoclonal
antibodies against the targets, including one for CTLA-4
(i.e., Ipilimumab), two for PD-1 (i.e., Pembrolizumab and
Nivolumab), and three for PD-L1 (i.e., Avelumab, Atezolizumab,
and Durvalumab) (Table 1). Ipilimumab was firstly approved
for advanced melanoma in 2011 (Ma et al., 2016), which
symbolizes the remarkable clinical success of anti-CTLA-4 and
thus elicits further investigations into PD-1/PD-L1 pathway.
Pembrolizumab was the first inhibitor for PD-1, which was
approved as the second-line treatment for unresectable or
metastatic melanoma, followed by Nivolumab (for unresectable
metastatic melanoma, advanced metastatic NSCLC and
advanced metastatic renal cell carcinoma), Atezolizumab (for
urothelial carcinoma following platinum-based chemotherapy),
Avelumab (for metastatic Merkel-cell carcinoma, and
Durvalumab for urothelial carcinoma following platinum-
based chemotherapy) (Manson et al., 2016; Pitt et al., 2016).
Afterward, indications of these CPIs have been largely expanded
after clinical trials, and exhibits remarkable disease responses
in a wide range of histological types of carcinomas, such as
hematologic malignancies, head and neck cancer, and bladder
cancer (Armand et al., 2013; Postow et al., 2015a; Table 1).
Recently, Nivolumab has been successfully used as a neoadjuvant
therapy before surgery in patients with early untreated NSCLC,
and preoperative usage of Nivolumab can induce augmentation
of neoantigen-specific T cells (Forde et al., 2018). Noteworthily,
though sharing almost similar mechanisms, anti-PD-L1 therapy
may render distinct effect from anti-PD-1. The subtle difference
lies in that the PD-L1 antibody does not block the interaction
between PD-1 and PD-L2, while PD-1 blockade cannot block
the interaction of PD-L1 with CD80, which is expressed on
T cells and deliver inhibitory signals of antitumor activities
(Butte et al., 2007). Actually, a meta-analysis has shown that
anti-PD-1 achieves higher overall survival and response rate
than anti-PD-L1 in NSCLC, which reveals anti-PD-1 as a better
choice for patients with NSCLC (You et al., 2018). Moreover,
accumulated evidence has indicated that combined usage of
anti-PD and anti-CTLA-4 antibodies can synergetically improve
clinical outcome compared with either agent alone (Larkin et al.,
2015; Hodi et al., 2016; Hellmann et al., 2017; Wolchok et al.,
2017), probably due to their different function mechanisms.

Although great success has been achieved with CPI based
immunotherapy, large individual differences were noticed in
terms of treatment outcomes (Gibney et al., 2016; Manson
et al., 2016; Pitt et al., 2016; Topalian et al., 2016; Zou et al.,
2016; Nishino et al., 2017), which varied among different cancer
types. For instance, the response rate for patients treated with
Ipilimumab is only 10–15% in metastatic melanoma (Hodi
et al., 2010), and rarely exceeds 40% for PD-1 blockade therapy,
even a large proportion of partial responders were included
(Brahmer et al., 2012; Hamid et al., 2013), indicating that the
majority of patients treated with PD-1/PD-L1 blockade fail
to respond sufficiently. In addition, PD-1/PD-L1 blockade can
induce immune-related adverse drug reaction events (ADR)
deriving from non-specific immunologic activation, which are
reported to be much less than those induced by anti-CTLA-4,
though (Larkin et al., 2015; Robert et al., 2015). The toxicities
observed in CPI treatment include the most frequent fatigue
and possibly fatal inflammatory pneumonitis, and high grade
adverse events may lead to forced abortion of the treatment
(Zou et al., 2016). Worse still, some patients even demonstrate
disease hyperprogression following treatment, which is defined as
<2 months of time-to-treatment failure (TTF), >50% increase in
tumor burden compared with preimmunotherapy imaging, and
>2-fold increase in progression pace (Champiat et al., 2017; Kato
et al., 2017). In this case, effective biomarkers for the indication of
treatment outcomes are largely required. Indeed, some biomarker
candidates have been put into practice, and recommended to be
determined before CPI treatments.

In precision medicine era, understanding the mechanisms,
by which patients lack response/produce resistance to CPI
treatments or suffer from severe ADR, is of utmost importance
for selecting the patients specifically suitable for the treatment.
In this review, we will focus on current knowledge of
factors that influence the sensitivity and resistance to CPI-
based immunotherapy (e.g., clinical characteristics, genomic
alterations, tumor microenvironment (TME), host immune
functions, and gut microbiota), and highlight the potential
biomarkers for CPI treatments, especially the new evidences
reported lately (Table 2 and Figure 1).

CLINICALLY RELEVANT FACTORS

Age, Gender, and Diet
Aging is commonly correlated with limited and dysfunctional
immune activities characterized by reduced lymphocyte
proliferation and increased exhausted T cells, resulting in
susceptibility to various diseases and increased cancer incidence
(Fulop et al., 2010; Lee et al., 2016). In vivo studies have shown
upregulation of PD-1 expression on T cells of aged animals,
indicating the potentially critical role of PD-1 blockades in
the old (Mirza et al., 2010; Lim et al., 2015). Consistent with
the decreased activity of immune system in elders, current
evidence exhibited that ICB therapy can significantly benefit
all age of patients with NSCLC with the exception of patients
≥75 years (Landre et al., 2016; Nishijima et al., 2016; Ferrara
et al., 2017). In another hand, anti-PD-1/PD-L1 is found
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TABLE 1 | FDA-approved immune checkpoint inhibitors in cancer treatment.

Target Antibody Trade name Company Indication (approval date)

CTLA-4 Ipilimumab YERVOY Bristol-Myers
Squibb (BMS)

Unresectable or metastatic melanoma (2011)

PD-1 Pembrolizumab KEYTRUDA Merck Sharp &
Dohme (MSD)

Unresectable or metastatic melanoma (approved for patients with
disease progression after ipilimumab and, if BRAF V600 mutation
positive in 2014, and expanded to initial treatment in 2015)

Metastatic NSCLC whose tumors express PD-L1 as determined by
an FDA-approved test and who have disease progression on or
after platinum-containing chemotherapy (2015)

Nivolumab OPDIVO Bristol-Myers
Squibb (BMS)

Metastatic melanoma (2014, approved for BRAF V600 wild-type
tumor in 2015)

Squamous NSCLC with progression or after platinum-based drugs
(2015, and expanded to non-squamous NSCLC later in 2015)

Advanced metastatic renal cell carcinoma after angiogenic therapy
(2015)

Classical Hodgkin lymphoma that has relapsed or progressed after
autologous hematopoietic stem cell transplantation and
post-transplantation brentuximab vedotin (2016)

Locally advanced or metastatic urothelial carcinoma which have
progression during or following platinum-containing chemotherapy
or have progression within 12 months of neoadjuvant or adjuvant
treatment with platinum-containing chemotherapy (2017)

PD-L1 Atezolizumab TECENTRIQ Roche and
Genentech

Locally advanced or metastatic urothelial carcinoma after failure of
cisplatin-based chemotherapy (2016), but the confirmatory trial
failed

Metastatic NSCLC whose disease progressed during or following
platinum-containing chemotherapy (2016)

Avelumab BAVENCIO Merck and Pfizer Metastatic Merkel-cell carcinoma (2017)

TABLE 2 | Factors related to the efficacy of ICBs.

Classification Biomarkers Influence

Clinical-relevant factors Age The elderly patients lack response to ICBs.

Gender Male patients respond better to ICBs.

Diet Obesity and improved FA catabolism improve anti-PD therapy.

Viral infection MCV and EBV infected patients respond better to anti-PD therapy.

Tumor autonomous mechanisms Tumor mutational/neoantigen load High mutational/neoantigen loads improve efficacy of ICBs

PD-L1 expression High PD-L1 expression improves anti-PD therapy

Tumor microenvironment Cells Increased TILs improve response to ICBs, while Tregs and MDSCs
impair the efficacy.

Immunoregulatory pathways Inhibition of TH1 chemokines, CD28/B7, IFN and activation of
TGFβ, TIM3 lead to resistance to PD blockades.

Host-related factors Peripheral blood markers Increased eosinophils, lymphocytes, monocytes and low LDH levels
improve response to PD blockades.

MHC class I Impaired MHC class I molecules lead to resistance to anti-PD
therapy

TCR repertoire Less diverse T cell repertoire improves response to anti-PD

The gut microbiota Bacteroides species facilitate anti-CTLA, more diversified bacteria,
such as Bifidobacterium, Akkermansia muciniphila,
Ruminococcaceae bacteria, facilitate anti-PD.

to be capable of inducing hyperprogressive disease during
the treatment, which is more frequent in elderly patients
(Champiat et al., 2017). Therefore, the age at diagnosis may
influence the efficacy and side ADR rate of CPI treatments,
although more confirmation investigations with larger samples
and less heterogeneity are warranted to settle this debated
topic.

Substantial sex-dependent diversities in innate and adaptive
immunity have been noticed for a long time, resulting in different
susceptibility and immune functions in response to infections
and autoimmune diseases between males and females (Fischer
et al., 2015; Klein and Flanagan, 2016). Interestingly, accumulated
evidence has highlighted that gender plays a considerable role
in response to CPIs. A systematic review on the relationship
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FIGURE 1 | Factors associated with response to anti-PD-1/PD-L1 therapy.

between efficacy and sex of patients indicates that the efficacy of
CPI based treatments is sex-dependent, with significantly greater
benefit in male patients in all studied cancer types (Conforti et al.,
2018). Likewise, another study shows that more improvement of
survival resulting from CPI treatment is observed in males than
females, and the survival of patients treated with anti-CTLA-4
is more influenced by sex compared with those receiving anti-
PD-1 (Wu et al., 2018). Though the current conclusions are not
confirmed and clinical trials including more female patients are
needed, the gender of patients should be taken into consideration
in CPI based treatments.

Healthy diet including sufficient nutrient intake is of great
significance for maintaining powerful immune defense against
invading pathogens, especially for patients combating tumor
progression. It is well reported that unbalanced diet may lead
to impaired immunity and accelerate disease development, and
obesity is associated with chronic inflammation and cancer
development (Fang et al., 2017; Quail et al., 2017). Paradoxically,
a meta-analysis of patients with metastatic melanoma indicates
that obesity is correlated with improved benefit of anti-
PD therapy compared with normal body-mass index (BMI)

(McQuade et al., 2018). Interestingly, this association is only
observed in males without any clear mechanisms clarified.
Moreover, dysregulated metabolism may contribute to the
exhaustion of lymphocyte infiltration within the TME. For
example, it has been recently discovered that CD8 + T cells
enhance peroxisome proliferator-activated receptor (PPAR)-α
signaling and catabolism of fatty acids when simultaneously
subjected to hypoglycemia and hypoxia. Promoting fatty acid
catabolism obviously improves the capacity of tumor infiltrating
lymphocytes (TILs) to delay tumor growth and synergizes with
PD-1 blockade to efficiently boost the efficacy of melanoma
immunotherapy (Zhang Y. et al., 2017). Through influencing
multiple immune components and functions, diet and metabolic
factors might be related to clinical effect of PD-1 blockade,
though direct evidence is currently lacked.

Viral Infections
Disorders of the immune system and failure in tumor eradication
can result from viral infections, which may also impact the
ICB treatment response. For instance, a clinical observation
regarding advanced Merkel-cell carcinoma exerts significantly
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high level of clinical response, providing a novel perspective
that virus-positive status may contribute to success of anti-
PD-1 therapy (Nghiem et al., 2016). Theoretically, oncogenic
viruses may serve as strong tumor-specific antigens, and cancer
cells should escape from the immune monitoring through
inducing immune inhibition. In fact, overexpression of PD-L1 is
commonly observed in Merkel-cell carcinoma cells (Wong et al.,
2015). Similarly, Epstein-Barr virus (EBV)-positive gastric cancer
has been recently reported to have low mutation burden but
high expression of immune checkpoint pathways and abundant
lymphocytic infiltration, thus demonstrating meaningful clinical
response to PD-1/PD-L1 inhibitors (Janjigian et al., 2017; Panda
et al., 2017). It has been further discovered that part of
CD8 + TILs can recognize tumor unrelated epitopes, such as
those from EBV, human cytomegalovirus and influenza virus,
which may explain the mechanism by which virus-positivity
facilitates host immunity. Moreover, these CD8 + TILs lack the
expression of CD39, suggesting that measuring CD39 expression
could be an effective approach to select the patients with high
possibility of virus infection (Simoni et al., 2018). Although
more virus related ICB treatment trials with larger sample size
are warranted, current evidence implies oncogenic viruses may
be considered as a potential biomarker for predicting effect of
anti-PD therapies.

TUMOR AUTONOMOUS MECHANISMS

Tumor Mutational Loads, Mismatch
Repair Deficiency, and Microsatellite
Instability
Tumor mutational burden (TMB), which is mostly determined
by next generation sequencing, has been broadly found to be
associated with the response to CPIs. Evidence from clinical trials
suggests the positive correlation between high tumor mutational
loads and improved clinical efficacy of ICB-based therapies
(including anti-PD-1, anti-PD-L1, and anti-CTLA-4) in NSCLC
and melanoma (Snyder et al., 2014; Rizvi et al., 2015; Van
Allen et al., 2015; Hugo et al., 2016; Forde et al., 2018), which
have the highest mutation burdens as well as response rates
(Lee et al., 2010; Berger et al., 2012; Topalian et al., 2012).
Actually, a pooled analysis across 27 tumor types or subtypes
illustrated a significantly strong positive correlation between
the TMB and the objective response rate to PD-1 inhibition
(Yarchoan et al., 2017), indicating the biomarker potential of
TMB for PD-1 blockade efficacy. Besides, TMB also predicts
clinical efficacy in the combination of anti-PD-1 and anti-CTLA-
4 (Hellmann et al., 2018). Loss-of-function of alterations in
genes involved in DNA repair can largely induce high TMB,
and lack of the ability to repair DNA errors is closely related
to microsatellite instability (MSI). Therefore, remarkable clinical
benefit from ICB therapy are significantly enriched in patients
with MSI status (Le et al., 2015) or specific alterations in
DNA repair genes, such as BRCA2, POLD1, POLE, and MSH2
(Rizvi et al., 2015; Hugo et al., 2016). Due to the stronger
practicality, clinical examination of MSI status, deficiency of
mismatch repair genes (through immunohistochemistry), or

Lynch Syndrome (inherited mutations in mismatch repair genes
with family history) can efficiently predict the good responders,
although some patients with negative signals of these potential
biomarkers may still get benefit from ICB treatments (Dudley
et al., 2016).

It is considered that better response of patients with high
TMB to ICB response is attributed to immunogenicity of
tumor cells, somatic mutations of which can be translated to
antigens and recognized as tags of “foreign” by the immune
system (Gibney et al., 2016). These tumor-specific antigens are
named as “neoantigens,” and thereby provide highly specific
targets for anti-tumor activities of the immune system (Hacohen
et al., 2013; van Rooij et al., 2013). The process of neoantigen
recognition is attenuated by expression of PD-L1 and some
other immunosuppressive ligands (Pages et al., 2005; Llosa
et al., 2015). Hence, blockade of immune checkpoints will
release inhibition of immune system and reinvigorate pre-
existing neoantigen recognition. Not surprisingly, neoantigen
burden is closely correlated to TMB, and can be also induced by
mismatch repair deficiency (Le et al., 2015). Quite a few patients
with advanced mismatch repair-deficient cancers demonstrate
significantly durable responses to PD-1 blockade with expanded
neoantigen-specific T cell clones (Le et al., 2017). Additionally,
neoantigens are mostly predicted by bioinformatic approaches
with computational algorithms, which is highly imperfect in
terms of low validation rate (e.g., 1–3 mutation-associated
neoantigens out of top 30–50 predicted candidates validated
by T cell responses) (Kvistborg et al., 2014; Tran et al., 2015),
while it is complicated and time-consuming to determinate
the functional neoantigens with a series of immunologic
experimental investigations, making it improper for neoantigens
as an effective clinical biomarkers so far.

Few but important exceptions rejecting the predictive role
of tumor mutational status exist in the aforementioned studies
(Rizvi et al., 2015; Hugo et al., 2016), consistent with a finding that
tumor infiltration is not weakened under the circumstance of low
mutational loads in gastrointestinal cancers (Tran et al., 2015),
indicating other equally considerable mechanisms contributing
to treatment resistance. Neoantigen intratumour heterogeneity
may play an important role, and patients with both high TMB
and low neoantigen intratumour heterogeneity (<1%) have
significantly longer progress-free survival and overall survival
compared to patients with high TMB alone (McGranahan et al.,
2016). Moreover, strong antigens may disobey the correlation
of neoantigen and TMB. For instance, Merkel cell polyomavirus
(MCV)-associated Merkel-cell carcinomas have a 100 times lower
mutational load than ultraviolet-induced virus-negative Merkel-
cell carcinomas (Wong et al., 2015; Goh et al., 2016), but exhibit
better response to ICB therapy, which can be explained by its
presentation of strong viral antigens (Yarchoan et al., 2017).

PD-L1 Expression
Increased PD-1 ligands and their ligation to PD-1 on tumor-
specific CD8 + T cells is a pivotal strategy adopted by
tumors to contend with host immune responses. In certain
cancer types (e.g., melanoma, NSCLC, pancreatic cancer, breast
cancer, and gastrointestinal stromal tumors), PD-L1 expression
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is upregulated and associated with poor prognosis (Konishi et al.,
2004; Bertucci et al., 2015; Sabatier et al., 2015; Birnbaum et al.,
2016). Tumor PD-L1 upregulation reflects negative dynamic
immune activities in the TME (Taube et al., 2012; Spranger
et al., 2013) and is the premise of anti-PD-1/PD-L1 therapy.
So far, PD-L1 is one of the best-studied as well as widely used
biomarkers.

Studies on NSCLC have shown that patients with high
expression of PD-L1 on the surface of tumor cells have
significantly better clinical responses to PD-1/PD-L1 inhibitors
(Passiglia et al., 2016; Muller et al., 2017). Likewise, patients
treated with the anti-PD-1 antibody BMS-936558 (also known
as MDX-1106) respond differently according to their PD-L1
status (Brahmer et al., 2010; Topalian et al., 2012). In a meta-
analysis of patients treated with Nivolumab, Pembrolizumab
or MPDL3280A (an engineered anti-PD-L1 antibody), response
rates are significantly higher in PD-L1-positive tumors, and
the predictive role of PD-L1 on tumor cells is stronger
for Pembrolizumab and Nivolumab (Carbognin et al., 2015).
Samples from several cancer types demonstrate that response
to anti-PD-1 blockade is most closely correlated with the
expression of tumor cell PD-L1 in comparison with that of other
immunosuppressive molecules such as PD-1 and PD-L2 (Taube
et al., 2014). On the other hand, in addition to PD-L1 expressed
on tumor cells, PD-L1 expression on tumor infiltrating cells
also displays noteworthy connections with clinical outcome of
MPDL3280A (Herbst et al., 2014; Powles et al., 2014).

PD-L1 immunohistochemistry (IHC) has been approved
by FDA as a companion diagnostic to select patients with
NSCLC suitable for Pembrolizumab treatment. Nevertheless,
absence of PD-L1 does not necessarily imply poor response
to anti-PD-1/PD-L1 blockades. Some patients with low PD-
L1 expression still demonstrate impressive clinical effect. The
paradoxical predictive value of PD-L1 expression may partly
be explained by different standards of analyzing, including
different staining techniques or assessed range (tumor or both
tumor and cells in microenvironment). The different threshold
of PD-L1 expression is also important. A good example is
the clinical trials of Nivolumab vs. Pembrolizumab as first-line
treatment. Nivolumab was the firstly emerged anti-PD-1 CPI,
however, failed in clinical trials probably because of the low
setting of PD-L1 expression threshold at >1%. On the contrary,
Pembrolizumab was later developed and precisely applied to
the patients with PD-L1 expression >50% in clinical trials,
which made it successfully become the first-line treatment for
NSCLC. Besides, dynamic and inducible characteristic of PD-L1
expression also contributes to the contradictory results. PD-L1
can be up-regulated by IFNγ, hence patients with low baseline
PD-L1 level may gradually become strong PD-L1 positive under
an inflammatory circumstance as the treatment proceeds, and
the response to anti-PD blockade also changes as PD-L1 is
upregulated (Manson et al., 2016; Zou et al., 2016). Therefore,
the application of PD-L1 expression assessment is endowed with
useful but not definitive predictive value.

In another hand, further efforts are still needed to refine
the clinical use of PD-L1 expression as biomarkers, especially
detected by immunohistochemistry. Firstly, PD-L1 expression

may be checked in multiple sites of tumor at multiple time points,
because PD-L1 expresses dynamically and thus can be influenced
by different mechanisms; secondly, standardized determination
of PD-L1 expression is largely needed to exclude the possible
variation induced by different PD-L1 antibodies (Gibney et al.,
2016).

Gene Mutations and Genomic
Alterations in Tumor
Cancer cell genetic alterations in pivotal signaling pathways
might be responsible for suppressed T cell activities and
deficient antitumor immunity, consequently impacting response
to anti-PD therapies (Table 3). Tumor-intrinsic activation of
WNT/β-catenin signaling pathway results in subdued CCL4
expression and subsequent precluded dendritic cell (DC)
recruitment and DC-mediated T-cell activities, thus leading to
resistance to anti-PD-L1 and anti-CTLA-4 therapies (Spranger
et al., 2015). Loss of phosphatase and tensin homolog (PTEN)
as well as activation of PI3K-AKT pathway in tumor cells brings
about increased immunosuppressive cytokines and attenuated
T-cell infiltration and activity, thereby promoting resistance
to PD-1 inhibitor therapy (Peng et al., 2016). Similarly,
EGFR pathway activation has been found to be correlated
with development of immunosuppressive microenvironment
represented by upregulation of PD-1, PD-L1, CTLA-4, and
multiple tumor-promoting inflammatory cytokines (Akbay et al.,
2013). Patients with EGFR mutation even receive less benefit from
ICB therapy compared to chemotherapy (Borghaei et al., 2015;
Rittmeyer et al., 2017). Clinical data of patients with NSCLC
shows that mutations in EGFR are associated with low overall
response rate to PD-1/PD-L1 inhibitors due to decreased PD-L1
expression and CD8 + TILs. However, T790M-negative EGFR-
mutant patients are more likely to benefit from anti-PD-L1 after
previous treatment (Gainor et al., 2016; Haratani et al., 2017). In
addition to poor outcome, patients with EGFR alterations tend to
be hyperprogressors with significantly increased tumor growth
rate after receiving PD-1/PD-L1 inhibitors (Kato et al., 2017).
In the other hand, recent evidence indicates that inhibitors of
the receptor tyrosine kinase c-MET impair reactive mobilization
and recruitment of neutrophils into tumors and draining lymph
nodes, and thus increase effector T cell infiltration, suggesting
c-MET pathway inhibition may improve responses to checkpoint
immunotherapies including anti-PD (Glodde et al., 2017).

Relapse specific mutations were investigated and identified in
four patients with required resistance to PD-1 blockade therapy
in melanoma, including loss of function of JAK1, JAK2, and
B2M, which induces either lack of response to interferon gamma
(IFNγ), or loss of surface expression of major histocompatibility
complex I (MHC I) (Zaretsky et al., 2016). Afterward, multiple
clinical reports and subsequent experiments have confirmed that
B2M alterations in tumor cells (i.e., mutations, deletions, and
down-regulation) can largely induce acquired CPI resistance
(Gettinger et al., 2017; Janjigian et al., 2017; Grasso et al.,
2018). Importantly, high frequency of initial B2M mutations were
found in patient-derived xenografts for lung cancer, suggesting
patients with this gene mutation may experience primary
resistance to CPIs (Pereira et al., 2017). With CRISPR screening,
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TABLE 3 | Alterations of genes associated with effect of anti-PD therapy.

Gene Change of the response caused by mutations Mechanism

BRCA2 Better Mismatch repair deficiency (Hugo et al., 2016)

POLD1, POLE, MSH2 Better Mismatch repair deficiency (Rizvi et al., 2015)

PTEN Worse Increased immunosuppressive cytokines and attenuated T-cell infiltration and
activity (Peng et al., 2016)

EGFR Worse Decreased PD-L1 expression and CD8 + TILs (Gainor et al., 2016; Haratani
et al., 2017)

JAK1, JAK2 Worse Insensitivity to IFNγ and its antiproliferative effects on cancer cells (Zaretsky
et al., 2016)

CALR, PDIA3, TAP1 Worse Impaired HLA-1 complex (Pereira et al., 2017)

B2M Worse Impaired MHC type I and HLA-1 molecules (Zaretsky et al., 2016; Janjigian
et al., 2017; Pereira et al., 2017)

PBRM1 Better Activation of JAK-STAT signaling pathway and elevated sensitivity to IFNγ

(Miao et al., 2018; Pan et al., 2018)

ARID2, BRD7 Better Enhanced sensitivity to T-cell-mediated cytotoxicity (Miao et al., 2018)

MDM2/MDM4, DNMT3A Worse Inhibition of p53 tumor suppressor (Kato et al., 2017)

TERT, NF1, NOTCH1 Better Unclear (Kato et al., 2017)

APLNR Worse Attenuated IFNγ responses in tumors (Patel et al., 2017)

multiple genes were also identified to be essential for cancer
immunotherapy, including APLNR, which can interact with JAK1
(Patel et al., 2017). Therefore, alterations of these genes may also
induce primary or acquired resistance. Clinically, it will be helpful
to predict the poor responders and relapse risk by examining the
alterations status of these resistance-related genes, which can be
further considered as biomarkers.

Despite of point mutations, somatic copy number alterations
(SCNAs) and structure variations (SVs) are also key hallmarks
and driver events of tumorigenesis. Interestingly, most of the
gene expression signatures exhibit down-regulation in high level
of SCNAs tumors (also named aneuploidy tumors), including
CD8 + T cell receptors and IFNγ pathways. Consistently,
SCNA level is negatively related to the CPI treatment outcomes.
Although paradoxically, SCNAs levels are positively correlated
with the number of TMBs in 8 out of 12 tumor types, especially
with passenger mutations. Combination of aneuploidy and TMB
can increase the prediction efficiency to separate good and poor
responders, indicating the potential of SCNAs as independent
biomarkers (Davoli et al., 2017).

TUMOR MICROENVIRONMENT

Cells Contributing to Tumor Immunity
The TME includes not only tumor cells, but also extracellular
matrix, stromal cells and immune cells, which closely interact
with tumor itself. As the main force in anticancer immunity, the
presence of TILs has been commonly considered as a favorable
predictor for prognosis of cancers (Ruffini et al., 2009; Reissfelder
et al., 2015; Brambilla et al., 2016). High baseline level of pre-
existing CD8 + T cells as well as increase in tumor infiltrating
CD8 + T cells during treatment has been found to be associated
with better response of patients treated with anti-PD-1 therapy
(Tumeh et al., 2014; Daud et al., 2016). In turn, anti-PD blockades
also increase the number and restore the function of effector T

cells during the treatment (Wei et al., 2017; Zhou et al., 2017).
Interestingly, TMB and PD-L1 overexpression is correlated to
presence of TILs (Herbst et al., 2014; Nishino et al., 2017).
Also, DNA repair gene mutation is companied by prominent
lymphocyte infiltrates, especially activated cytotoxic T cells.

Nonetheless, a recent study on gastric adenocarcinoma
indicates that increasing CD8+T cells are surprisingly correlated
with impaired survival as well as higher PD-L1 expression,
which marks an adaptive immune resistant microenvironment
(Thompson et al., 2017). In some clinical studies, increased TIL
density after the second dose of CPI instead of the baseline
of TIL status was significantly associated with clinical CPI
activities (Hamid et al., 2011; Tumeh et al., 2014). Moreover,
an approach to systematically assessing intra- and peri-tumoral
T cell infiltration, namely immunoscore, has been considered
as a stronger predictor of prognosis as well as response to
ICB therapies due to its integrated evaluation of immune
features (Mlecnik et al., 2016; Voong et al., 2017). Both
Tregs and myeloid derived suppressor cells (MDSCs) contribute
to T cell dysfunction and TME immunosuppression, thus
presenting profound impact on resistance to PD blockades
(Kalathil et al., 2013). The comparison of anti-PD-1 sensitive
and resistant patients reveals that Tregs partly preclude the
efficacy of anti-PD-1 (Ngiow et al., 2015), and that depletion of
Tregs can potentiate checkpoint inhibitors (Taylor et al., 2017).
Nevertheless, it is reported that apoptotic Tregs sustain and even
amplify their immunosuppressive function via the adenosine
and A2A pathways under oxidative stress, which highlights
oxidative pathway as a metabolic checkpoint controlling Tregs
and thus affecting the effect of anti-PD (Maj et al., 2017).
Moreover, it has been newly discovered that a canonical
nuclear factor κB (NF-κB) subunit c-Rel plays an essential role
in Treg function, and chemical inhibition of c-Rel impairs
Treg-mediated immunosuppression and potentiates the effect
of anti-PD-1 therapy (Grinberg-Bleyer et al., 2017). MDSCs
proliferate during cancer, inflammation and infection, and
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perform the immunosuppressive function through restraining
T-cell response. Reducing the number of MDSCs has been
proved to be capable of enhancing antitumor effect of anti-PD-
1 blockade (Orillion et al., 2017). Indoleamine-2, 3-dioxygenase
(IDO) is a rate-limiting enzyme that controls tryptophan
catabolism in tumor cells and MDSCs within the TME, which
is recognized as an important microenvironmental factor that
impairs cytotoxic T cell responses and survival (Schafer et al.,
2016). The microsatellite instable subset of colorectal cancer,
distinguished by high expression of IDO, poorly responds to
anti-PD-1 therapy (Xiao and Freeman, 2015). On the contrary,
IDO-knockout mice treated with anti-CTLA-4 or anti-PD-
1/PD-L1 demonstrate significant tumor growth regression and
prolonged survival, and combination treatment of IDO inhibitors
and CTLA-4 blockade has achieved remarkable tumor rejection
(Holmgaard et al., 2013). Importantly, combination of anti-
PD-1 CPI and IDO inhibitor (e.g., epacadostat) can increase
the objective response rate and prolong the overall survival in
clinical trial phase I/II, however, surprisingly failed in phase III
recently in 2018, with no benefit but increased ADR rate, possibly
requiring a biomarker to distinguish the precious responders.

Immunoregulatory Pathways Within TME
In addition to alterations in signaling pathways in tumor itself, a
series of pathways within TME also regulate immune activities
and thus impact on effect of anti-PD therapies. Epigenetic
silencing of T helper 1 (TH1)-type chemokines, CXCL9 and
CXCL10, precludes effector T cells from trafficking to the TME
and directly interacting with tumor cells. And it has been proved
that epigenetic modulators can restore T cell activities and
increase T cell infiltration, thus strengthening the therapeutic
efficacy of PD-L1 blockade (Peng et al., 2015). Moreover, the lack
of response to PD-1 blockade has also been found related to a
signature of TGFβ signaling, which renders T cell exclusion and
blocked acquisition of TH1-effector phenotype. And inhibition
of TGFβ signaling provokes antitumor activities and promotes
tumor susceptibility to anti-PD therapies in colorectal cancer
as well as urothelial cancer (Mariathasan et al., 2018; Tauriello
et al., 2018). CD28/B7 costimulatory pathway is commonly
known to be required for T cell proliferation and activation. It
is newly discovered that PD-1/PD-L1 interaction suppresses T
cell function primarily by CD28 inactivation, and the rescue of
exhausted CD8 + T cells by PD blockades is strongly dependent
on CD28 expression, which elucidates the important role of
CD28/B7 costimulatory pathway as a response indicator for
anti-PD therapies (Hui et al., 2017; Kamphorst et al., 2017).
Interestingly, contrary to that elevated PD-L1 expression benefits
the response to anti-PD therapy, upregulation of alternative
immune checkpoints, notably T-cell immunoglobulin mucin-
3 (TIM-3), is related to adaptive resistance. And subsequent
addition of TIM-3 blocking antibody can significantly reverse the
treatment failure of PD-1 blockade (Koyama et al., 2016).

Particularly, another important pathway is IFN signaling,
including IFN type I and II. IFNγ, produced primarily by Th1
cells, NKT cells and NK cells (Farrar and Schreiber, 1993; Boehm
et al., 1997), is abundantly generated and activated when ICBs
enhance T cell responses (Liakou et al., 2008; Peng et al., 2012).

As a pleiotropic and critical cytokine in host immune activities
and tumor rejection (Dighe et al., 1994; Kaplan et al., 1998), IFNγ

exerts its effects through a complex and orderly signaling pathway
(Ikeda et al., 2002). Loss or deficiency of IFNγ signaling pathway
may render disorders of host immune behavior and consequent
insensitivity to immunotherapy (Kaplan et al., 1998; Dunn et al.,
2005). In a study on metastatic melanoma described above, loss-
of-function mutations in genes involved in IFNγ pathway (e.g.,
JAK1 and JAK2) are found associated with relapse of patients who
have shown initial response to anti-PD-1 therapy. And in vitro
truncating mutations of JAK1 and JAK2 results in insensitivity
to IFNγ and its antiproliferative effects on cancer cells (Zaretsky
et al., 2016). IFNγ functions as an important inducer of PD-
L1 on the surface of tumor cells (Taube et al., 2012), and
patients who have a better response to PD-L1 blockade also
have increased IFNγ and IFNγ-inducible chemokines (Herbst
et al., 2014; Powles et al., 2014). These researches shed light on
the vital role of defective IFNγ pathway in the clinical effect
or prognosis of anti-PD therapies. Distinct from IFNγ, type I
IFN within innate immune system is critical for T cell priming
and tumor elimination through signaling on DCs and lack of
type I IFN will result in limited useful T cells for reactivating of
antitumor activities (Diamond et al., 2011; Fuertes et al., 2011).
This is in consistence with the effect of type I IFN induced by
radiotherapy (Lim et al., 2014). Moreover, radiation-induced type
I IFN has been proved to increase expression of MHC class I and
antigen recognition (Burnette et al., 2011; Deng et al., 2014b).
Peritumoral injection of immunostimulatory RNA into immune-
cell-poor melanomas has been observed to initiate a cytotoxic
inflammatory response and tumor inhibition mediated by type
I IFN. More importantly, the activation of type I IFN upregulates
the expression of both PD-1 and PD-L1 and consequently leads to
prolonged survival when PD-1 blockade is combined (Bald et al.,
2014).

HOST-RELATED FACTORS

Peripheral Blood Markers
Great interest has also been aroused in exploring biomarkers
within serum or plasma due to the convenience of sample
acquirement. In terms of immune cells, relatively high eosinophil
count and lymphocyte count indicate favorable overall survival
in patients with melanoma treated with Pembrolizumab (Weide
et al., 2016). A pretreatment neutrophil-to-lymphocyte ratio
(NLR) < 5 has been reported to be associated with improved
survival of patients with NSCLC treated with Nivolumab (Bagley
et al., 2017). The baseline frequency of CD14 + CD16-HLA-
DRhi monocytes has also been found to strongly predict
the response to anti-PD-1 of patients with melanoma (Krieg
et al., 2018). Moreover, low lactate dehydrogenase (LDH) is
related to the prognosis of patients receiving anti-PD-1 therapy.
Studies on patients with melanoma reveal that patients with
an elevated baseline LDH have a significantly shorter overall
survival compared to patients with normal LDH, and the extent
of increase in LDH during treatment is also correlated with
the outcome of anti-PD-1 (Diem et al., 2016; Weide et al.,
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2016). Notably, a peripheral blood profiling reveals that clinical
failure of anti-PD-1 therapy does not only result from insufficient
host immune activation, but also depends on the ratio between
circulating Ki-67-positive cytotoxic T cells and pretreatment
tumor burden. Patients with higher ratio are more likely to
exhibit improved response rate and survival (Huang et al.,
2017), indicating that decreasing tumor burden by previously
appropriate topical treatment may facilitate the effect of anti-PD
therapy.

MHC Class I and T-Cell Receptor (TCR)
MHC class I presenting antigen to cytotoxic T cells is an
essential prerequisite for immune recognition and elimination
of transformed cells (Aptsiauri et al., 2007). Downregulation of
MHC class I has been acknowledged as a common mechanism
of tumor immune escape and a potential determinant of
clinical success of many immunotherapies (Haworth et al.,
2015). Therefore, impaired MHC class I molecules have also
been proposed as a candidate mechanism of resistance to anti-
PD therapies, which has been reported to mainly result from
deficiency in β2-microglobulin (B2M), a critical component of
human MHC class I molecules (also named as HLA in human)
required for CD8 + T cell recognition (Restifo et al., 1996;
Wang et al., 2016; Zaretsky et al., 2016; Patel et al., 2017).
Likewise, a study on lung cancer confirms that the loss of
B2M is correlated with disrupted HLA-1 antigen processing and
presentation, which leads to acquired resistance to PD-1 blockade
(Gettinger et al., 2017). Another study also shows that factors
which impair HLA-1 complex, including not only inactivation of
B2M but also mutations at genes involved in maturation of HLA-
1 complex (e.g., CALR, PDIA3, and TAP1), can affect the response
to anti-PD-1/PD-L1 therapies (Pereira et al., 2017). In addition,
the diversity of HLA-1 genotype also contributes to the outcome
of anti-PD. It has been recently found that patients with maximal
heterozygosity at HLA-I loci (A, B, and C) demonstrate improved
overall survival compared to those who are homozygous for at
least one HLA locus. Moreover, patients with HLA-B44 supertype
have extended survival whereas HLA-B62 or somatic loss of
heterozygosity in HLA-1 is related to poor outcome in melanoma
cohorts (Chowell et al., 2017). Interestingly, loss of heterozygosity
in HLA is revealed to be associated with a high neoantigen
burden, upregulation of cytolytic activities and PD-L1 positivity,
indicating the significance of combining multiple biomarkers to
predict the response to PD-1/PD-L1 therapy (McGranahan et al.,
2017).

Additionally, the variety of TCR repertoire is also related to
clinical response. A more clonal and less diverse T cell repertoire
is found in responding patients treated with anti-PD-1 (Tumeh
et al., 2014), which is opposite to anti-CTLA-4 blockade (Postow
et al., 2015b).

Immune-Related Genetic Signatures
Mutations or altered expression of certain genes involved in
host immune activities may reduce lymphocyte infiltration
within tumors or compromise T cell functions (Table 3). As
abovementioned, loss-of-function mutations in B2M gene lead
to impaired MHC I molecules, and have been reported to

be associated with acquired resistance to anti-PD therapies in
melanoma, lung cancers and esophagogastric cancers (Zaretsky
et al., 2016; Gettinger et al., 2017; Janjigian et al., 2017;
Pereira et al., 2017). Particularly, in patients with KRAS-mutant
lung adenocarcinoma, STK11/LKB1 alterations are significantly
associated with PD-L1 negativity and promote resistance to PD-
1 inhibitors (Skoulidis et al., 2018). Furthermore, a study using
a genome-scale CRISPR–Cas9 library profiles essential genes
whose loss impairs the activity of CD8 + T cells, leading to
resistance or non-responsiveness of cancer cells to T-cell-based
immunotherapies. Notably, most of these genes play crucial
roles in antigen presentation or IFNγ signaling (Patel et al.,
2017). Interestingly, studies adopting the same approach newly
discover that the loss-of-function mutations in PBRM1, which
encodes a subunit of a SWI/SNF chromatin remodeling complex
(the PBAF subtype), might improve the responsiveness to ICBs
due to activation of JAK-STAT signaling pathway and elevated
sensitivity to IFNγ in renal cell carcinoma (RCC) and melanoma,
respectively. Apart from PBRM1, mutations of additional two
genes which also encode components of the PBAF form of the
SWI/SNF chromatin remodeling complex, ARID2 and BRD7,
are also found associated with the benefit of ICBs (Miao et al.,
2018; Pan et al., 2018). Analysis of genomic alterations associated
with accelerated tumor growth has found that MDM2/MDM4
amplification is correlated with poor clinical outcome and even
hyperprogression of patients after receiving anti-PD therapies.
Besides, abnormalities of EGFR and DNMT3A also indicate a
worse outcome, while alterations of TERT, PTEN, NF1, and
NOTCH1 appear to be related to better effect of anti-PD (Kato
et al., 2017). A transcriptional signature, including up-expression
of genes implicated in regulation of mesenchymal transition,
cell adhesion, extracellular matrix remodeling, angiogenesis and
wound healing, is indicated to be related to innate anti-PD-
1 resistance (Hugo et al., 2016). Similarly, overexpression of
genes involved with extracellular matrix (e.g., LAMA3) and
neutrophil function (e.g., CXCR2) is related to progressing
metastatic melanoma treated with PD-1 blockade (Ascierto et al.,
2017). Changes in certain immune-related genes might lead to
variations in the entire immune functions, hence genetically
evaluation of the host immune status should be considered as a
potential biomarker impacting on PD blockade immunotherapy.

THE GUT MICROBIOTA

The intestinal microbiota contain a dominant part of
innumerable bacteria in human bodies and are closely linked to
host health through absorbing nutrients, degrading xenobiotics,
regulating epithelial homeostasis and defending against potential
pathogens (Eberl, 2010). Disorders in gut microbiota have
been considered to participate in the development of not only
colorectal cancer but also extraintestinal cancers (Brennan
and Garrett, 2016; Loo et al., 2017). Previous studies have
revealed the influence of gut microbiota on clinical efficacy
of cancer chemotherapy (Iida et al., 2013; Viaud et al., 2013).
Also, later investigations have found correlations between
gut microbiome community and clinical response to ICBs.
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It is firstly found that effects of CTLA-4 blockade depend on
distinct Bacteroides species, B. thetaiotaomicron or B. fragilis
(Vetizou et al., 2015). Similarly, the anticancer immunity in
mice models induced by anti-PD-L1 is reported to be associated
with Bifidobacterium, which might improve effect through
augmenting dendritic cell functions and subsequently enhancing
CD8 + T cell priming and accumulation in the TME. And oral
administration of Bifidobacterium alone generates equal effect on
tumor eliminating as anti-PD-L1 does, indicating its potentially
important role in strengthening immune functions (Sivan et al.,
2015).

Recently, the predictive value of gut microbiota has been
verified in human bodies. Routy et al. find that abnormal
intestinal microbiota composition caused by antibiotics can
lead to primary resistance to ICBs, and transplantation of
fecal microbiota from patients who respond to ICBs into
germ-free of non-responders can restore or enhance the
responsiveness. Correlation has also been revealed between
better clinical response to anti-PD-1 blockade and relative
abundance of Akkermansia muciniphila, which increases the
recruitment of CCR9 + CXCR3 + CD4 + T lymphocytes
into tumor beds in a IL-12-dependant manner (Routy et al.,
2017). A study on patients with melanoma unveils significantly
different gut microbiota constitution between responders and
non-responders treated with anti-PD-1 therapy. The gut
microbiome of responding patients shows higher diversity
and amplitude in Ruminococcaceae bacteria, while relatively
less diverse bacteria and plenty of Bacteroidales are found in
poorly responding patients. It is additionally found enrichment
of anabolic pathways as well as enhanced systemic and
anti-tumor immunity in responders (Gopalakrishnan et al.,
2017). Similarly, another study on patients with melanoma

also reveals a correlation between response to anti-PD-
1 and abundance in more diversified bacteria, including
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus
faecium (Matson et al., 2018). Moreover, a study of the
effect of pretreatment gut microbiota and metabolites on
response in patients treated with different ICBs provides
more diversified results. In terms of different regimens, the
responders for all therapy types are enriched for Bacteroides
caccae, the microbiota of the responders for Ipilimumab
plus Nivolumab are rich in Faecalibacterium prausnitzii,
Bacteroides thetaiotaomicron, and Holdemania filiformis, and
that of the responders for Pembrolizumab contain abundant
Dorea formicogenerans. High levels of anacardic acid are
also found in ICB responders (Frankel et al., 2017). The
findings above indicate that it is plausible to modulate gut
microbiota to strengthen clinical effect of anti-PD therapy,
yet more preclinical analyses of certain bacteria species and
metabolites as well as confirmatory clinical studies are warranted.
Moreover, gut microbiota is largely varied in terms of multiple
factors, including ethnicity, living environment, diet habit, and
etc, thus very difficult to guide the clinical practice as a
biomarker.

COMBINATION THERAPIES WITH
PD-1/PD-L1 BLOCKADE

Hitherto, the remarkable outcomes of anti-PD therapies are
merely observed in quite limited patients with certain types of
cancers, while more patients fail to respond, exhibit resistance
or relapse following treatment. Based on currently known
mechanisms impacting clinical effect of anti-PD immunotherapy,

TABLE 4 | Effective therapeutic combinations with PD-1/PD-L1 blockade.

Target Rationale Combined therapy

T cells Promoting effector T-cell trafficking into TME Epigenetic reprogramming drugs

TNF family Enforcing T-cell function Utomilumab, a human IgG2 mAb agonist of the T-cell
costimulatory receptor 4-1BB/CD137

Immunosuppressive networks Depletion of Tregs Anti-CTLA-4 antibody, ipilimumab
Anti-CCR4 antibody, mogamulizumab
CD73-specific antibody

Inhibition of B7 family members (B7-H3, PD-L1) B7-H3 blockade CDK4/6 inhibitors

Blockade of other immune checkpoint inhibitors Tim-3, LAG3 and TIGIT blockades

Triggering innate immune system to achieve tumor
destruction

Radiation therapy and chemotherapy

Cancer cells Inhibiting oxygen consumption in tumor cells Metformin

Tumor specific antigens Increasing T cell infiltration Oncolytic viral therapy

Inflammatory mediators Decreasing MDSCs COX2 inhibitors

Tumor stromal fibroblasts Reducing CXCL12 produced by fibroblasts, which
mediates immunosuppressive effect in pancreatic cancer.

CXCL12 receptor chemokine receptor 4 (CXCR4) inhibitor,
AMD3100

Blocking TGFβ signaling TGFβ blockade

BRAF signaling pathway Increasing the cross-presentation of antigens from dead
tumor cells

BRAF inhibitors

MDSC-secreted factors Inhibition of angiogenic factor VEGF VEGF-specific antibody, bevacizumab

Inhibition of cytokine receptor CSF1R, resulting in CD8 T
cell infiltration into tumors

CSF1R inhibitors
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combination therapies are required and being explored in order
to improve response rate and expand benefited populations.

Adequate proliferation, smooth migration into tumors and
complete function performing of effective T cells are fundamental
requirements for the immune system to restrain tumor
progression. Accordingly, epigenetic reprogramming drugs to
facilitate T cell trafficking (Tan et al., 2007; McCabe et al., 2012),
and targeting TNF family signaling pathways to strengthen T cell
functions (Tolcher et al., 2017) have been developed and proved
to be effective in combination with anti-PD therapy. In addition
to positive roles of T cells which help combat tumor cells,
the negative roles of immunosuppressive components which
support tumor progression, including Tregs, MDSCs, some
B7 family members, are unneglectable. Tregs express CTLA-
4, which explains improved clinical success of combination of
anti-CTLA-4 and anti-PD as abovementioned (Larkin et al.,
2015; Hodi et al., 2016; Hellmann et al., 2017; Wolchok et al.,
2017). Prostaglandin E2 (PGE2) and its key synthesizing enzyme
cyclooxygenase 2 (COX2) can induce and recruit MDSCs in
TME, and inhibition of COX2 has synergized anti-PD therapy
in pre-clinical models (Li et al., 2016). Inhibitors targeting
other immune checkpoints such as Tim-3, LAG3 and TIGIT
have also been explored their synergetic effect aligned with PD
therapy (Sakuishi et al., 2010; Li et al., 2012; Chauvin et al.,
2015). PD-L1 expression is also a primary biomarker impacting
on PD pathway blockade. Lately, it has been discovered that
CDK4/6 inhibition elevate PD-L1 expression by restraining
its degradation mediated by cyclin D-CDK4 and the SPOP
ligase, and the combination of CDK4/6 inhibitors and anti-
PD-1 therapy enhances tumor regression and dramatically
improves overall survival of murine tumor models (Zhang J.
et al., 2017). In terms of the field of vaccination, PD pathway
blockade has been noticed to increase the antitumor effect of
conventional vaccines, which can stimulate T cell activities and
induce immune responses against tumor cells (Duraiswamy et al.,
2013; Karyampudi et al., 2014). Another vaccination approach
is oncolytic viral therapy. Locally injected oncolytic viruses have
been proved to enhance systemic antitumor immunity through
multiple mechanisms, thus improving the strength of anti-PD
immunotherapy and elevating response rate of patients with
advanced melanoma, brain tumors and breast cancer (Ribas
et al., 2017; Bourgeois-Daigneault et al., 2018; Samson et al.,
2018). Based on the significant role of metabolic fitness in
immune activities, it has been reported that metformin, a broadly
prescribed type II diabetes treatment, reverses the resistance
to PD-1 blockade which results from hypoxic environments
produced by tumors (Scharping et al., 2017). Conventional
therapies targeting tumor cells, including radiotherapy and
chemotherapy, also exert enhanced antitumor activities together
with anti-PD therapy through multiple interacting mechanisms
(Deng et al., 2014a; Shalapour et al., 2015; Sharabi et al., 2015;
Twyman-Saint Victor et al., 2015; Shaverdian et al., 2017).
However, more clinical evidence is needed to further determine
appropriate doses, timing and other parameters in combination
treatment. In addition, other potential combinatorial regimens
have been considered and the confirmation trials are ongoing,
such as tumor stromal fibroblast inhibitors and antibodies

targeting innate immune signaling pathway and oncogenic
signals (Mahoney et al., 2015; Sharma and Allison, 2015;
Zou et al., 2016; Table 4).

CONCLUSION

PD-1/PD-L1 pathway blockades have elicited outstanding clinical
effect with relatively tolerable toxicities only in a minority
of populations. In order to select patients most suitable to
receive the possibly effective but costly therapy, the underlying
prognostic factors leading to heterogeneous responses of different
individuals with various cancer types have been gradually
explored. In this review, a series of tumor-autonomous,
tumor microenvironmental and host-related mechanisms were
introduced, which need to be considered in terms of reducing
ADR. With more and more prognostic factors gradually
excavated, how to select most suitable biomarkers for certain
cohorts is of great significance. Especially, the selection becomes
more difficult when biomarkers predicting opposite response
to anti-PD therapy present in one individual. For example,
attenuated immune functions in elderly patients may result in
poor clinical response of anti-PD with insufficient effector T
cells, and on the other hand, the mutational burden accumulates
with aging, which makes the outcome of anti-PD in elderly
patients elusive. Unlike the traditional target therapy, which
directly inhibit the abnormal signal in tumor itself (e.g.,
proliferation), CPI immunotherapy is more complicated and can
be influenced by many factors. It has to be noted that some
prognostic factors interact with each other instead of impacting
the response of treatments independently. As aforementioned,
virus infections and HLA heterozygosity are both associated
with PD-L1 positivity or overexpression (Wong et al., 2015),
while oppositely, genomic alterations are significantly related to
PD-L1 negativity (Skoulidis et al., 2018). Loss of heterozygosity
in HLA is additionally associated with a high neoantigen
burden and upregulation of cytolytic activities (McGranahan
et al., 2017). Besides, expression of the whole PD-1/PD-L axis,
including PD-1, PD-L1, and PD-L2, has been reported to be
connected with cytolytic activities and mutational load (Danilova
et al., 2016). Above evidence indicates that it is necessary to
exclude the impact of interactions between biomarkers and
explore the independent roles of these candidates in larger
patient cohorts with detailed information for all candidate
biomarker, which will benefit the joint application of multiple
biomarkers. Generally, sufficient infiltration and potent function
of effector T cells in TME indicate an active pre-existing
antitumor immunity and are the most elementary mechanism,
through which most of other factors essentially impact on
response of the therapy. Patients with abundant intratumoral
infiltrate, elevated PD-L1 expression level and high mutational
load have been most commonly reported to benefit from anti-
PD therapies. Among all the influential factors, some were
newly discovered and thus need to be verified and further
explored, and some have been frequently reported but lack
standard of measurement or practical application. Notably,
there are contradictory findings in certain biomarkers. In terms
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of gut microbiota, some studies indicate a positive correlation
between responses and Bacteroides species (Vetizou et al., 2015;
Frankel et al., 2017), whereas the study of Gopalakrishnan et al.
provides with an opposite finding that plenty of Bacteroidales
are related to poor response to anti-PD-1 (Gopalakrishnan
et al., 2017). The contradiction may be attributed to diversities
in ethnics, region, diet, and limited sample sizes. Besides, the
study of responding patients with RCC and NSCLC revealed
different composition of beneficial gut microbiota from that of
studies of melanoma (Routy et al., 2017), which emphasizes the
role of different bacteria species in different cancer types, and
indicates that all the biomarkers require validations in more
cancer types. Based on currently known rationales, plenty of
other therapies have been explored in combination with anti-
PD therapies to improve benefit of previously poorly responsive
populations. Although failed in some studies, precision designs
with specific markers could provide insight on the combination
therapy.

In conclusion, it is essential to comprehensively assess the
patient’s status, especially with respect to the paradoxes, for
instance, mutation loads and immunity in old patients and
differences of beneficial bacteria in the above researches, etc.
Besides, the differences in population and regions of patients

should be taken into account. Finally, to adopt appropriate
therapies, such as combination therapies, benefits the most
for patients. Therefore, it is imperative to take comprehensive
factors related to TME, host immunity, clinical factors and gut
microbiome and so on into consideration when patients are
given ICB therapies, which may shed new light on personalized
precision therapy.
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