
fphar-09-01114 October 16, 2018 Time: 9:15 # 1

REVIEW
published: 17 October 2018

doi: 10.3389/fphar.2018.01114

Edited by:
Agata Copani,

Università degli Studi di Catania, Italy

Reviewed by:
Ola Awad,

University of Maryland, Baltimore,
United States

Yong He,
National Institutes of Health (NIH),

United States
Valeria Bruno,

Sapienza Università di Roma, Italy

*Correspondence:
Xuqiang Nie

niexuqiang@126.com

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 23 May 2018
Accepted: 10 September 2018

Published: 17 October 2018

Citation:
Zhang H, Nie X, Shi X, Zhao J,

Chen Y, Yao Q, Sun C and Yang J
(2018) Regulatory Mechanisms of the

Wnt/β-Catenin Pathway in Diabetic
Cutaneous Ulcers.

Front. Pharmacol. 9:1114.
doi: 10.3389/fphar.2018.01114

Regulatory Mechanisms of the
Wnt/β-Catenin Pathway in Diabetic
Cutaneous Ulcers
Han Zhang1, Xuqiang Nie1,2* , Xiujun Shi1, Jiufeng Zhao1, Yu Chen1, Qiuyang Yao1,
Chengxin Sun1 and Jianwen Yang3

1 College of Pharmacy, Zunyi Medical University, Zunyi, China, 2 College of Pharmacy, Institute of Materia Medica, Army
Medical University, Chongqing, China, 3 Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China

Skin ulcers are a serious complication of diabetes. Diabetic patients suffer from vascular
lesions and complications such as peripheral neuritis, peripheral vascular lesions, and
collagen abnormalities, which result in skin wounds that are refractory and often develop
into chronic ulcers. The healing of skin ulcers requires an inflammatory reaction, wound
proliferation, remodeling regulation, and control of stem cells. Studies investigating
diabetic cutaneous ulcers have focused on cellular and molecular levels. Diabetes can
cause nerve and blood vessel damage, and persistent high blood sugar levels can
cause systemic multisite nerve damage based on peripheral neuropathy. The long-term
hyperglycemia state enables the polyol glucose metabolism pathway to be activated,
increasing the accumulation of toxic substances in the vascular injured nerve tissue cells.
Sustained hyperglycemia leads to dysfunction of epithelial cells, leading to a decrease
in pro-angiogenic signaling and nitric oxide production. In addition, due to impaired
leukocyte function in hyperglycemia, immune function is impaired and the immune
response at relevant sites is insufficient, making diabetic foot more difficult to heal. The
Wnt/β-catenin pathway is a highly conserved signal transduction pathway involved in a
variety of biological processes, such as cell proliferation, apoptosis, and differentiation.
It is considered an important pathway involved in the healing of skin wounds. This
article summarizes the mechanism of action of the Wnt/β-catenin pathway involved in
the inflammatory responses to diabetic ulcers, wound proliferation, wound remodeling,
and stem cells. The interactions between the Wnt signal pathway and other metabolic
pathways are also discussed.

Keywords: diabetic cutaneous ulcers, diabetic foot, Wnt/β-catenin, healing, signaling pathway

Diabetes mellitus (DM) is a systemic chronic metabolic disease with elevated blood glucose levels.
The DM can cause multiple complications, including diabetic nephropathy, diabetic retinopathy,
and diabetic cutaneous ulcers (DCUs). The DCU is one of the most common and serious
complications of diabetes, with a quarter of patients developing a foot or skin ulcer. Each year,
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50–70% of patients requiring amputations due to non-traumatic
injuries are patients with DM (Lin et al., 2018). The prevalence of
diabetic ulcers in Asia, Europe, and Africa is 5.5, 5.1, and 7.2%,
respectively (Boulton et al., 2005). Persistent high blood sugar
levels in DM patients can cause systemic multisite nerve damage
based on peripheral neuropathy, leading to damage of nerves
and blood vessels. A long-term hyperglycemic state activates the
polyol glucose metabolism pathway, causing toxic metabolites to
increase in injured vascular nerve tissue cells (Brem et al., 2007).
Sustained hyperglycemia results in the dysfunction of epithelial
cells, leading to a decrease in pro-angiogenic signaling and nitric
oxide (NO) production (Förstermann and Münzel, 2006). In
addition, hyperglycemia impairs leukocyte function causing the
impairment of the immune function and an insufficient immune
response, creating difficulties in the healing of foot injuries and
ulcers (Gary Sibbald and Woo, 2008). The DM patients have
a 15 to 28% risk of developing DCU, and 50 to 70% of these
patients relapse within 5 years (Ricco et al., 2013). The average
prevalence of diabetic foot in China is 5.7%, which is close
to the Asian level, but lower than the global average (Reiber,
1996). The DCU is mainly associated with peripheral nerve injury
and arterial disease. Clinical manifestations are grouped across
three categories: 1. Skin manifestations: itchy skin, dry with no
sweat, cold limbs, edema or dryness, darkening of the color,
pigmentation spots, and hair loss dry skin of the extremities
or blisters, blood gas bubbles, erosion, ulcers, gangrene, and
necrosis. 2. Paresthesia: stinging, burning, and numbness in the
extremities. Feeling slow or lost. 3. Others: development of claw
foot and pulse in the dorsal artery weak or absent (Zhou and
Ling, 2015). These complications of DM result in high medical
costs and overcrowding of clinics. Insufficient blood supply to
the limbs causes DCU patients to have vascular and peripheral
neuritis complications and abnormal collagen, which lead to skin
wounds that are refractory and which often ulcerate.

The increasing age of China’s population has caused the
prevalence of DCU to increase annually. Treatment of DCU
is one of the most critical health issues that needs to
be resolved urgently in clinical practice. In recent years,
DCU studies have focused on treatment at the molecular
level. It has been reported that in type 2 DM, nucleotide
polymorphisms (SNPs) exist for TCF7L2 of the Wnt pathway
(Grant et al., 2006). The Wnt signaling pathway is reported
to have a role in metabolic homeostasis (Jin, 2016). Earlier
studies have discussed the role of specific steps of the
Wnt signaling pathway in pancreatic β-cell proliferation.
In patients with DM, this production and/or release of
insulin is absent (i.e., Type 1 DM) or inefficient/exhausted
(i.e., Type 2 DM), and blood glucose levels are elevated
without treatment. The Wnt proteins regulate the growth
factors involved in many processes, such as cell proliferation,
differentiation, migration, and polarity (Chevalier et al., 2017;
Nusse and Clevers, 2017; Xu et al., 2017). The role of the
Wnt/β-catenin pathway in the regulation of DCU, however,
has not been reported in the literature. This review examines
the interplay that exists between DCU and the Wnt/β-catenin
pathway. Numerous reported studies have proposed possible
factors affecting the healing process. Multiple signaling paths,

including Wnt signaling pathways, have become the focus of
research.

THE Wnt/β-CATENIN SIGNALING
PATHWAY

The first Wnt gene to be described, “int-1,” was discovered by
Nusse and Varmus (1982). Mice infected with mouse mammary
tumor virus (MMTV) were found to overexpress int-1, which
is similar to MMTV gene sequences in tumors at integration
sites. The wingless gene (Wg) of the Drosophila melanogaster is a
homolog of int-1 and both together are known as Wnt (Dawson
et al., 2013). The Wnt signaling pathway has a high degree of
conservation across species, with a high degree of homology
across lower organisms, such as the Drosophila species, and
higher organisms, such as monkeys and humans. The Wnt
family consists of at least 19 genes, including Wnt-1, Wnt-3a,
Wnt-10b, and Wnt-7a (Janda et al., 2017). The β-catenin is a
cytoplasm/nuclear protein that is pivotal for transcription of cell
adhesion factors and the Wnt pathway, promoting cell adhesion
(Kretzschmar and Clevers, 2017).

The Wnt/β-catenin pathway is one of the main processes
in the regulation of wound healing and improves wound
angiogenesis and epithelial remodeling. A large number of
experimental studies have reported that the Wnt family is
involved in many biological processes (Igota et al., 2013),
including cell proliferation, apoptosis, differentiation, and the
maintenance of pluripotency in stem cells (Clevers, 2006).
The Wnt/β-catenin signaling can be divided into classical and
non-canonical Wnt signaling. The Wnt/β-catenin signaling is
activated when the Wnt ligand binds to the receptor/coreceptor
(Herr and Basler, 2012). Some synthetically made Wnt proteins
transfer to the Golgi apparatus, where they first bind to Wls, a
transmembrane protein secreted by Wnt (van den Heuvel et al.,
1993; Bänziger et al., 2006) and then are escorted from the Golgi
apparatus to the cell membrane. The secreted Wnt ligand binds
to the Frizzled protein (Frz) family of receptors and coreceptors,
including LRP-5/6, which activates different signaling pathways
(Yang H.L. et al., 2017; Figure 1). The interaction between
the Wnt protein and its cognate receptor can be blocked by
numerous soluble metabolites, including the Dickkopf protein
(Dkk) or the Wnt inhibitor (WIF) (Veltri et al., 2018).

The stable conduction of Wnt/β-catenin signaling pathway
is dependent on the stabilization of β-catenin. Without the
Wnt signal, free cytosolic β-catenin is phosphorylated by a
complex of Axin, casein kinase 1α (CK1α), and glycogen synthase
kinase 3β (GSK3β). Phosphorylated β-catenin is ubiquitinated
by β-transduced repetitive protein (β-TrCP) for proteasome-
dependent degradation (Hurlstone and Clevers, 2002; Ahmad
et al., 2017; Zhang et al., 2017). When Wnt binds to this
complex, disheveled (Dvl) proteins aggregate and the expression
of the degradation complex is inhibited, thus stabilizing β-catenin
in cells. The β-catenin is recruited by the cytoplasm and
enters the nucleus where it activates the T-cell factor/lymphoid
enhancer-binding factor (LEF/TCF) protein (Yamagami et al.,
2018). Interactions between β-catenin and LEF/TCF involve
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FIGURE 1 | (Left) In the “off” state, β-catenin binds with glycogen synthase kinase 3β (GSK3β), axin2, adenomatous colon polyposis protein (APC), and casein
kinase-1 (CK- 1). The kinase in this complex phosphorylates-catenin, thereby targeting it to the degradation of the ubiquitin proteasome system. (Right) In the “on”
state, the receptor complex consisting of Frizzled and LRP5/6 binds to Wnt, which recruits Disheveled Protein (DVL) to the plasma membrane. Subsequently, several
components of the β-catenin destruction complex are recruited to the membrane, which prevents the phosphorylation of β-catenin. Therefore, this protein can now
accumulate in the cytoplasm and transfer to the nucleus and bind to transcription factors, thereby, stimulating the transcription of Wnt target genes such as cyclin
D1, c-myc, and Axin2.

transcriptional regulators and histone-modification factors,
which, in turn, mediate excessive developmental and homeostasis
processes.

When a Wnt ligand binds to the Frz receptor and coreceptors
ROR2 or RYK, β-catenin-independent Wnt signaling is triggered.
These non-canonical Wnt signaling cascades are divided
between Wnt/Ca2+ and Wnt/planar cell polarity (PCP) signaling
pathways (Foulquier et al., 2018).

The Wnt/Ca2+ pathway, mainly activated by Wnt5a and
Wnt11, causes an increase in intracellular calcium concentration
and calcium activation of ion-sensitive signal components by
activating G protein phospholipase C (PLC) and protein kinase
C (PKC) and regulates cell motility and cell adhesion. In
Wnt/Ca2+ signaling, Wnt ligand-receptor interactions result in
the release of intracellular calcium, which acts as a secondary
messenger to activate calmodulin-dependent protein kinase
II (CaMKII). The CaMKII triggers the phosphorylation of
transforming growth factor (TGF)-β-activated kinase 1 (TAK1),
increasing the activity of lipoprotein kinase (LK), resulting in the
dissociation of LEF1–β-catenin/DNA. This inhibits transcription
of Wnt/β-catenin signaling activity (García-Velázquez and Arias,
2017). Simultaneously, the activated CaM induces the nuclear
translocation of effectors downstream the activated T cell (NFAT)
protein family, which act as a transcriptional regulators. The
transcriptional activity of NFAT transcriptional is increased by
mitogen-activated protein kinase p38 during Wnt stimulation
(Matsumoto et al., 2017; Tan et al., 2018). In addition to the Ca2+-
mediated signaling cascade, the induction of non-canonical

Wnt signaling activates Rho-family small GTPases, including
Cdc42, Rac, and RhoA, by recruiting the receptor/coreceptor/Dvl
complex (Brown et al., 2017).

The PCP components interact with several signaling
pathways, including the activation of the FZD/DVL PCP
pathway through the PDZ and DIX moieties of the FZD/DVL
complex, which induces cytoskeletal reorganization and
regulates gene transcription. However, PCP signaling can also
induce transcriptional responses through the c-Jun N-terminal
kinase (JNK)/p38 microtubule-associated protein (MAP) kinase
signaling pathway.

THE REGULATORY MECHANISM OF
THE Wnt/β-CATENIN SIGNALING
PATHWAY IN DCU

There are four overlapping processes in DCU, including
hemostasis, inflammatory reaction, an increase in wound surface,
and remodeling of the wound surface (Mendonça and Coutinho-
Netto, 2009). The main challenges in treating DCU include a lack
of new vessels in the wounds; persistent infection of the wounds;
and skin dermal cell neovascularization, or poor differentiation.
Lin et al. (2006) reported that upregulation of Wnt/β-catenin
signaling increases the activity of high glucose-suppressed
mesangial cells. The Wnt/β-catenin pathway influences the
thickness and pigmentation of the skin during DCU healing
(Yamaguchi et al., 2008). Effectors of the Wnt/β-catenin pathway
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are involved in the expression of vascular endothelial cells when
glucose levels are high over a long period (Chong et al., 2007).
Downregulation of the Wnt/β-catenin pathway is one of the
reasons for the unpredictability of DCU, and may be due to
a decrease in R-spondin 3 (Rspo-3) proteins caused by DM
(Zhao et al., 2015). The Rspo family of proteins consists of
four members (Rspo-1-4), which are closely related to the Wnt
signaling pathway. It has been demonstrated that Rspo proteins
can activate the Wnt signaling pathway, and some studies have
suggested that Rspo proteins are a new class of signaling ligands
that induce the canonical Wnt signaling pathway (Kim et al.,
2006). However, although all Rspo proteins can activate the Wnt
pathway, Rspo-3 and Rspo-2 are more effective than Rspo-1, and
Rspo-4 is ineffective as an activator.

THE MECHANISM OF DCU

Previous studies have suggested that wound healing in patients
with DM is reduced due to the following factors: 1. Glucose
metabolism disorder and advanced glycation end products,
which can interfere with the interaction between endothelial
cells and leukocytes, and the inhibition of the function of
mononuclear macrophages and endothelial cell proliferation (Lin
et al., 2003). 2. Microvascular changes: manifest as extensive
small vascular endothelial proliferation and capillary basement
membrane thickening, causing a reduction in blood flow, local
ischemia, hypoxia (Schramm et al., 2006). 3. The abnormal
expression of matrix metalloproteinases (MMPs) before and
after injury in DM patients: in the early stage of injury,
insufficient MMPs cannot clear foreign bodies in the wound.
In the later stages, overexpression of MMPs does not support
collagen and matrix formation (Dasu et al., 2003). 4. Changes
in epidermal growth factor receptors (EGFR): EGFR activation
can promote mitosis or induce apoptosis, increase cell activity,
promote protein secretion, induce cell differentiation and/or
cell differentiation (Zhang et al., 2003). 5. Epidermal cell
proliferation disorder: during wound healing, re-epithelialization
of wounds depends on the proliferation of epidermal cells,
etc. (Bickenbach and Grinnel, 2004). Today, pharmaceuticals
targeting the earlier-mentioned mechanisms for treating DCU
have not been successful. A recombinant platelet-derived growth
factor (PDGF) has been shown to improve healing of DCU
(Bhansali et al., 2009).

The healing of DCU wounds is a complex process, involving
multiple cells and molecules. The processes are intertwined
and the interaction between molecules and cells is mutually
restrictive.

THE Wnt/β-CATENIN PATHWAY AND
DCU WOUND INFLAMMATION

Inflammation is an important protective response that has a
key role in the regeneration of damaged tissue and elimination
of the trigger (exogenous organisms, dead cells, or physical
stimuli). For example, in the wound-healing stage of ulcers, the

wound is invaded by numerous inflammatory cells. Phagocytic
cell fragments and the release of growth factors aid in
the prevention of infection by microorganisms and have an
important role in wound healing (Pekshev et al., 2017).
Poor inflammatory response could increase harmful triggers,
particularly the destruction of tissue by bacteria, while chronic
unresolved inflammation can result in pathology, including DCU
wounds and other types of wound healing. Self-limiting acute
inflammation is crucial for an effective restorative response by
the body. The DCU healing and injury repair promote problem
solving by restoring barrier function. Inflammation is the first
stage of wound repair, followed by organization formation and
remodeling. Conventional inflammatory cytokines and Wnt
factors control the cellular and molecular levels of mammalian
tissue repair and regeneration.

Interferon-γ (IFN-γ) and lipopolysaccharides (LPS) can
effectively stimulate inflammatory factors, which lead to the
significant upregulation of Wnt5a (Yang X. et al., 2017). The
relationship between macrophages and Wnt/β-catenin pathways
has shown that macrophages and the Wnt/β-catenin pathway are
closely related (Redente, 2017; Russell and Monga, 2017; Feng
et al., 2018). Macrophage secretion produces the Wnt7b protein,
one of the key proteins in DCU wound vascular remodeling.
A close relationship between macrophages and the Wnt signaling
pathway has been suggested, and Wnt5a may be the major
regulator of macrophage phenotype (Newman and Hughes,
2012). In addition, there is a lot of evidence that macrophages
and Wnt signaling pathways play a synergistic role in promoting
angiogenesis and are involved in the process of wound repair.
For example, Wnt signaling can promote angiogenesis when
macrophage cells are regulated (Newman and Hughes, 2012).
It has been reported that Wnt5a can promote macrophage
production of pro-inflammatory factors, such as IL-6 and IL-8
(Rosell et al., 2009).

THE Wnt/β-CATENIN PATHWAY AND THE
PROLIFERATION PERIOD OF DCU
WOUND

After inflammation of the DCU wound, the tissue forms a
proliferative phase by secreting fibroblasts, vascular endothelial
cells, and keratinocytes. Fibroblast growth factors (FGFs),
epidermal growth factors (EGFs), nerve growth factors (NGFs),
and PDGFs regulate the activation and proliferation of the repair
cells (Tiaka et al., 2012). The formation of a large number
of capillaries, collagen, and extracellular matrix secreted by
fibroblasts constitute granulation tissue, and the proliferation of
keratinocytes covers the wound surface to achieve repairing of the
DCU wound (Liu et al., 2002).

The contribution of Wnt5a to vascular endothelial cell
dysfunction in DM has been emphasized on recently. Endothelial
cells from DM patients have a higher expression of Wnt5a
expression compared to non-diabetic patients, which is
associated with higher levels of activated JNK (Nusse et al., 2008).
In DCU patients, this is associated with lower flow-mediated
dilation (an indicator of endothelial function). In vitro, the
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inhibition of Wnt5a in endothelial cells of DM patients restores
insulin-induced eNOS phosphorylation and NO production,
mediated by JNK. This suggests that the Wnt5a/JNK signaling
pathway is involved in the endothelial dysfunction of DM
(Bretón-Romero et al., 2016).

Recent studies suggest that when Wnt and β-catenin are
increased, epidermal cell proliferation, differentiation, and
migration are enhanced, and wound healing is accelerated
(Cheon et al., 2006; Fathke et al., 2006); the Wnt signaling
pathway in skin keratinocytes affects post-traumatic skin
thickness and pigmentation (Yamaguchi et al., 2008) and Wnt
protects against vascular endothelial cell damage caused by
high glucose levels. An abnormal regulation of β-catenin can
promote or inhibit apoptosis (Chong et al., 2007) and the
upregulation of Wnt/β-catenin signaling can increase the activity
of high glucose-suppressed mesangial cells (Lin et al., 2006). High
glucose levels inhibit endothelial cell migration and proliferation
and angiogenesis through the P13K-Akt signaling pathway, and
can also upregulate E-cadherin, an adhesion molecule. This
work initially suggests that in high glucose-treated endothelial
progenitor cells, the expression of β-catenin, EGFR and cyclin
D1 is inhibited (Sun, 2012). Wnt3a stimulates the increase of
H2O2 and endothelial-dependent vasodilatation in endothelial
cells (Foulquier et al., 2018).

Regulating the movement of fibroblasts causes β-catenin
to participate in the proliferative phase of wound repair and
proliferation of dermal fibroblasts. Abnormal β-catenin can result
in excessive fibrous tissue and scar formation (Mullin et al.,
2017; Pérez-García et al., 2017). Phosphorylation of β-catenin
and its accumulation in the cytoplasm, migration into the
nucleus, and regulation of target gene transcription can result
in the proliferation, migration, and accumulation in collagen of
fibroblasts (Mullin et al., 2017). The size of the ulcer wound
is closely related to the level of β-catenin protein expression.
β-catenin influences wound healing indirectly by influencing
TGF-β expression (Telerman et al., 2017).

The Wnt signaling pathway is a significant adult mammalian
stem cell (ASC) regulator in mammalian epithelial cells and
hair follicles (HFs). The Wnt signaling pathways appear to
have a central role in the regeneration of stem cell activity,
although further study on this is required. The Wnt target gene
products, Lgr5 and Axin2, have become common markers used
to determine constitutive and damage activation of Wnt-driven
ASCs.

THE Wnt/β-CATENIN PATHWAY AND
WOUND REMODELING PERIOD

Optimal wound healing models the process of epidermal
development, including wound remodeling, trauma to the
epidermis, disruption of the epidermal barrier, and activation of
the immune cells. The wound remodeling period is an important
period in wound healing. After the early extracellular wound
matrix is formed, the collagen skeleton and proteoglycan filling in
the matrix create scar tension, through apoptosis and maturation
of the cells.

On the 7th day after wound formation, fibroblasts show
the contractile phenotype (terminal phenotype) myofibroblasts,
resulting in shrinkage of the wound surface (Clark, 1993). During
the late stages of tissue repair, fibroblasts enter apoptosis. Studies
have shown that high glucose levels affect the proliferation
of human fibroblasts through the Wnt/β-catenin signaling
pathways. Activation of the Wnt/β-catenin signaling pathway
promotes the proliferation of human fibroblasts.

The Wnt/β-catenin is one of the most critical activation
initiation signals for HF development. During the second stage, a
large number of keratinocytes begin to proliferate and form “hair
buds” on the epidermis. At this time, cyclin D1 is upregulated
and plays a regulatory role in the cell cycle (Xing et al.,
2018).

THE Wnt/β-CATENIN PATHWAY AND
STEM CELL REGULATION

Skin epidermal stem cells are regularly regenerated and
differentiated, providing the body with an unlimited source of
cells. The re-epithelialization of wounds is dependent on the
proliferation of skin stem cells (SSCs) during DCU healing.
Porcine adult bone marrow mesenchymal stem cells have been
used to generate skin (Liu et al., 2002). This enabled the
clinical application of stem cells in wound healing and organ
construction (Koo, 2017). Autologous stem cell transplantation
for the treatment of lower extremity DCU has been reported
(Guo et al., 2017). In Dubský (2014) has suggested that
autologous stem cell implantation is a better treatment for DCU,
compared to percutaneous transluminal angioplasty. Placental
stem cells for the treatment of DCU have also been reported on
(Fischkoff et al., 2017).

The advantage of self-sourced induced pluripotent stem
cells (IPSCs) compared to other types of stem cells lies in
that immune rejection can be minimized. Narazaki et al.
(2008) studied the differentiation of IPSC into cardiovascular
endothelial cells. Arteries, veins, and lymphatic endothelial cells
were also successfully induced in the experiment. Recent studies
have found that these cells derived from the transplantation of
human-induced pluripotent stem cells (hIPSCs) can promote the
regeneration of blood vessels and muscles (Hanna et al., 2007;
Okita et al., 2007; Dimos et al., 2008). Tateishi et al. (2008)
successful use of fibroblast-induced IPSCs in cultured insulin-
producing islet cells has brought new hope for the treatment
of diabetes. Chinese researchers have also tried to protect the
lower limb ischemia-reperfusion injury by using IPSC (Wang,
2013). Studies have confirmed that IPSCs enter the injury site
with blood flow, after the tail vein is injected into the acute
lower limb ischemia-reperfusion injury, it quickly enters the
damaged muscle tissue. It can be seen that the tail vein injection
of IPSCs can selectively aggregate to the injury site, which
has a certain therapeutic effect on acute lower limb ischemia-
reperfusion injury. However, there are not much of experimental
data on the treatment of diabetic foot using IPSCs, and further
research is needed on the possibility of utilizing IPSCs in the
treatment of diabetic foot (Tateishi et al., 2008).
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The Wnt/β-catenin pathway has a role in the homeostasis of
ASCs and is a focus in the regeneration of inflammatory tissue.
Wnt signaling enhances the proliferation of epithelial cells (Karin
and Clevers, 2016).

In contrast to a continuously regenerating epidermis, mature
HFs progress through growth (growth phase), degeneration
(degeneration phase), and rest (resting phase) cycles throughout
their life. During the hair development cycle, the upper part of
HF is permanent, while the lower part undergoes degeneration
and is then regenerated by stem cells. Stem cells in HF can
be divided into two groups: a set of outer layers located in
the ridge, called the hair follicle stem cells (HFSCs), and the
other is located in the secondary root below the bulge (sHG)
(Estronca and Ferreira, 2017). The HFSCs originate from the
upper region of the germinal cells in the hair base, which have
an attenuated Wnt/β-catenin signal. Elevation of Wnt/β-catenin
signaling in embryonic epidermal cells abrogates the specification
of HFSCs and inhibits the expression of SC markers (Xu et al.,
2015).

In the developing epidermis, Wnt/β-catenin signaling induces
the expression of HF, and the constitutive attenuation of
epidermal Wnt/β-catenin signaling impairs the formation of
HF, but does not affect the integrity of the interfollicular
epidermis (IFE) (Si et al., 2018). It is important to note
that the consumption of β-catenin driven by K14Cre in the
development of IFE creates excessive epidermal proliferation
(Leirós et al., 2017). Axin2-labeled basal cells are the precursors
of IFE. When β-catenin is depleted in these cells, the epidermal
proliferation is poor (Adam et al., 2018). Differing epidermal
hyperplasia could explain the difference between hair and

glabrous epidermis. That is, the epidermis hyperproliferation of
the hair skin may be caused by an inflammatory reaction of HF
decomposition (Veltri et al., 2018). The β-catenin-null stem cells
can differentiate into epidermis when transplanted (Kretzschmar
and Clevers, 2017). However, the role of Wnt/β-catenin
signaling for this to occur and maintenance of IFE is not yet
known.

INTERACTIONS BETWEEN THE
Wnt/β-CATENIN SIGNALING PATHWAY
AND OTHER SIGNALING PATHWAYS

During the DCU healing process, the Wnt/β-catenin signaling
pathways work independently or together with other pathways to
elicit an appropriate cellular response. It is becoming increasingly
clear that signaling pathways do not operate in isolation, but
are strongly intertwined. Although many signaling pathways
have been studied extensively, the role of some signaling
pathways in DCU is unknown and requires investigation
(Figure 2).

THE Wnt/β-CATENIN SIGNALING
PATHWAY AND THE NOTCH SIGNALING
PATHWAY

The Wnt/β-catenin pathway cooperates with the Notch
pathway, to promote DCU healing. During the DCU
healing process, both Wnt/β-catenin and Notch signaling

FIGURE 2 | The Wnt/β-catenin signaling pathway and DCU regulatory mechanisms (left) interactions between the Wnt/β-catenin signaling pathway and the Notch
signaling pathway, which regulate HF together. (Middle) Wnt/β-catenin signaling pathway and Hippo signaling interaction diagram. Regulate SSC. (Right) Interaction
plots of Wnt/β-catenin signaling pathway and TGF-β signaling pathway. It is related to the production of fibroblasts. Wnt/β-catenin participates in the proliferation of
fibroblasts, epidermal stem cells, and hair follicle stem cells and promotes DCU healing.
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TABLE 1 | The function of Wnt signaling in molecular biology of DCU.

Wnt pathway-associated protein Function

Wnt3a Promotes fibroblast proliferation

β-catenin Promote epidermal cell proliferation,
differentiation, and migration

Wnt7b Stimulating macrophages

Wnt10b Stimulate hair follicle development

Wnt5a Proinflammatory factor

GSK-3β Inhibition of apoptotic nuclear DNA

C-myc Stimulating epidermal stem cells

pathways are involved in the proliferative phase of wound
healing, and, therefore, synergistic effects may occur in
DCU regulation (Kim et al., 2017a,b). The Wnt and Notch
signaling pathways regulate HF expression. Loss of Jagged1,
which is the Ligand of Notch or treatment of Notch signaling
with γ-secretase inhibitors can suppress new HFs in adult
epidermis regulated by β-catenin. The Notch pathway is
downstream of the Wnt/β-catenin signal and thus determines
the destiny of HF. In addition, in cell culture, where HFSCs
differentiate into hair and the Lef1 gene is upregulated, the
Wnt transcriptional target genes activate the target gene
Jagged1 and directly activate Wnt/β-catenin and Notch
signaling pathways (Bai et al., 2017). In contrast, in stratified
IFE, β-catenin is detected in proliferating basal cells, and
Notch1 is primarily expressed in the differentiated basal
layer. The loss of Notch1 results in β-catenin-mediated
signaling upregulation in multilayer hyperproliferating IFE,
suggesting that Notch1 inhibits the Wnt/β-catenin signaling
pathway to limit its activation in the basal layer (Wang et al.,
2017). The synergy and antagonism between Wnt and Notch
signaling appear to influence the rate of wound healing in
skin.

THE Wnt/β-CATENIN SIGNALING
PATHWAY AND THE HIPPO SIGNALING
PATHWAY

Recently, the Hippo pathway has been reported to be
connected to Wnt/β-catenin signaling. The Hippo signal
transducer YAP/TAZ is part of the β-catenin disruption
complex, which can coordinate the Wnt/β-catenin response
regulating stem cell self-renewal and tissue homeostasis
(Deng et al., 2018). In cancer cells, the downregulation
of Hippo signaling is linked to the upregulation of
β-catenin activity. The mechanism has been proposed
as a negative correlation, where Wnt/β-catenin signaling
is inhibited due to phosphorylated YAP/TAZ inhibiting
the phosphorylation of Dvl and nuclear translation of
β-catenin (Andl and Zhang, 2017). Due to the Hippo
signal being involved in the regulation of epidermal
proliferation, the interaction of the Hippo and Wnt signals
could have an important role in the regulation of skin

regeneration and HF regeneration and requires further
investigation.

THE Wnt/β-CATENIN SIGNALING
PATHWAY AND THE TGF-β PATHWAYS

The TGF-β and Smad signaling pathways and Wnt/β-catenin
signaling pathway have some synergistic effects. Several studies
have confirmed the mutual regulation of Wnt/β-catenin and
TGF-β expression (Carlson et al., 2009; Kim et al., 2013; Telerman
et al., 2017). The Smad3 promotes the rapid nuclear translocation
of β-catenin under TGF-β stimulation in mesenchymal stem
cells (Blyszczuk et al., 2016). The TGF-β-activated kinase-
1 induction enables tissues to rapidly secrete Wnt proteins,
promoting fibroblast differentiation (Beljaars et al., 2017).
Interaction between Wnt and TGF-β follows the opposite
direction expression, such as Wnt3a-induced expression of
TGF-β in mouse fibroblasts is reversed (Kumawat et al.,
2016).

CONCLUSION AND FUTURE RESEARCH
DIRECTION

The inflammatory responses involved in the healing of
DCU through the Wnt/β-catenin signaling pathways, the
proliferative phase, and the remodeling phase of the wound
have been discussed in this article (Table 1). The healing of
wounds is regulated at cellular and molecular levels. Although
pharmaceuticals that target the Notch and Hedgehog signaling
pathways have been tested in clinical trials, pharmaceuticals
regulating Wnt are currently untested in a clinical setting.
The Wnt clinical trials could improve the treatment of DCU
and become a new target for developing new drug treatments.
The Wnt pathway interacts with the Notch signaling, Hippo
and TGF-β signaling pathways. These interactions significantly
increase the complexity of Wnt signaling studies, which
may be a source of adverse effects in the development of
pharmaceuticals. Therefore, a comprehensive approach for the
preclinical phase of drug discovery is required. The role
of Wnt signaling in the epidermis is diverse, due to a
combination of phase and context-dependent interactions with
other signal inputs. Wound healing is a complex process,
and the high glucose environment of DM skin increases the
complexity. For effective DCU treatment, the pathogenesis
of DCU must be understood. The Wnt/β-catenin signaling
pathway is involved in the wound-healing process; however,
the specific mechanism is unknown. It has been reported
that there is a dysfunction in the Wnt/β-catenin signaling
pathway in DM refractory wounds due to a decrease in
Wntl expression in high glucose environments. However, the
details are unclear (Sun, 2012). It has been reported that
the activation of the Wnt/β-catenin signaling pathway can
promote the healing of wounds in DM rats, suggesting a
new approach for the clinical treatment and development of
DM refractory wounds (Sun, 2012). However, experimental
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drugs have adverse effects and there are limitations in their use.
Future investigation into the Wnt/β-catenin signaling pathway
and DM wound healing could provide a basis for diagnosis,
treatment, and improved prognosis of DCU.
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