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MicroRNAs (miRNAs) have been proved to be targeted by the small molecules recently,
which made using small molecules to target miRNAs become a possible therapy
for human diseases. Therefore, it is very meaningful to investigate the relationships
between small molecules and miRNAs, which is still yet in the newly-developing
stage. In this paper, we presented a prediction model of Graphlet Interaction based
inference for Small Molecule-MiRNA Association prediction (GISMMA) by combining
small molecule similarity network, miRNA similarity network and known small molecule-
miRNA association network. This model described the complex relationship between
two small molecules or between two miRNAs using graphlet interaction which consists
of 28 isomers. The association score between a small molecule and a miRNA was
calculated based on counting the numbers of graphlet interaction throughout the small
molecule similarity network and the miRNA similarity network, respectively. Global and
two types of local leave-one-out cross validation (LOOCV) as well as five-fold cross
validation were implemented in two datasets to evaluate GISMMA. For Dataset 1,
the AUCs are 0.9291 for global LOOCV, 0.9505, and 0.7702 for two local LOOCVs,
0.9263 ± 0.0026 for five-fold cross validation; for Dataset 2, the AUCs are 0.8203,
0.8640, 0.6591, and 0.8554 ± 0.0063, in turn. In case study for small molecules, 5-
Fluorouracil, 17β-Estradiol and 5-Aza-2′-deoxycytidine, the numbers of top 50 miRNAs
predicted by GISMMA and validated to be related to these three small molecules by
experimental literatures are in turn 30, 29, and 25. Based on the results from cross
validations and case studies, it is easy to realize the excellent performance of GISMMA.

Keywords: small molecule, microRNA, association prediction, graphlet interaction, similarity calculation

INTRODUCTION

MicroRNAs (miRNAs) are a family of small non-coding RNAs, having about 22 nucleotides in
length, which regulate gene expression at a post-transcriptional level (Ambros, 2003). The first
miRNA was discovered over 30 years ago in the Caenorhabditis elegans. Subsequently, thousands
of miRNAs have been discovered in many organisms, and there are currently 2588 annotated
miRNAs in the human genome (Kozomara and Griffiths-Jones, 2014). MiRNAs can simultaneously
regulate the expression of hundreds of genes due to the fact that their nucleotide pairing by
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complementarity is imperfect (He and Hannon, 2004). In this
manner, they play a critical role in a variety of crucial processes
such as tissue development, morphogenesis, apoptosis, signal
transduction pathways, etc., (Esquela-Kerscher and Slack, 2006;
Spizzo et al., 2009; Wang and Lee, 2009). This additionally
implicates them in an array of disease associated processes. The
development of large-expression screens has been proven useful
in identifying novel miRNAs involved in diseases, which could
potentially become an attractive therapeutic target (Monroig and
Calin, 2013; Chen et al., 2017a, 2018a,b,c; Matsui and Corey,
2017).

Regulation of miRNAs by small molecules is an efficient
mean to modulate endogenous miRNA function and to treat
miRNA-related diseases (Xia et al., 2015). Small molecules have
been thoroughly used with clinical applications for numerous
diseases (Zhang et al., 2009). However, drug discovery and
development are currently an extremely long process, which takes
approximately 10–15 years (Monroig Pdel et al., 2015). Also, drug
production results in an incredible economic burden and patients
end up having to pay exaggerated prices for their treatments
(Chen et al., 2015; Monroig Pdel et al., 2015). The use of chemical
compounds that are already FDA approved to treat a specific
disease would accelerate the process of completing toxicological
studies and clinical trials in order to apply them to other diseases.
It would shorten both money expenses and time consuming
processes.

As miRNAs have been associated with many diseases (Chen
et al., 2017b), the development of small-molecule drugs targeting
specific miRNAs seems to be a promising approach to meet
the challenge (Monroig Pdel et al., 2015). Small molecule may
modulate the expression of miRNAs by either activating or
repressing their transcription (Xia et al., 2015). Transcriptional
inhibitors were identified by completing a small molecule screen
in which a 3′ UTR complementary to miR-21 was inserted
into a luciferase mRNA reporter (Gumireddy et al., 2008). This
study identified a type of diazobenzene as miR-21 transcriptional
inhibitors (Gumireddy et al., 2008). Small molecules were also
discovered to modulate transcription of miR-122, a highly
expressed and liver-specific miRNA whose aberrant expression is
associated with hepatocellular carcinoma (Thomas and Deiters,
2013). Two small molecules that inhibit transcription and
another small molecule that promotes transcription of pri-
miR-122 were identified using a luciferase reporter system
(Thomas and Deiters, 2013). The examples above show that
miRNA expression can be altered with small molecules, providing
promise to expand miRNAs from diagnostic signatures of disease
to therapeutic targets. Therefore, the prediction of associations
between small molecules and miRNAs could promote the drug
repurposing for miRNA-related diseases. Besides, since the
regulation of miRNA expression can be caused by targeting
miRNAs directly (Zhang et al., 2010) or by targeting the relative
proteins (Lim et al., 2016), identifying the small molecule-miRNA
associations would be conductive to the drug discovery. However,
experimental methods to study the small molecular-miRNA
association are expensive and time-consuming, which makes it
urgent to develop computational approaches to provide reliable
predictions that can give some guidance to experiments.

Recently, several computational models have been proposed
to investigate the relations between small molecules and
miRNAs. For example, Jiang et al. (2012) proposed a high-
throughput method to investigate the biological connections
between small molecules and miRNAs in 23 human cancers
based on transcriptional responses, which was the first model
to systematically study the associations between bioactive small
molecules and miRNAs. They constructed a complex Small
molecule and MiRNA Network (SMirN) for each cancer and
explored the molecular and functional features for small molecule
modules, as well as miRNA modules for each cancer type. Each
module of small molecular was linked to a miRNA, and each
module of miRNA was connected with one small molecular. One
of the advantages of this method is that it does not need to know
the information of small molecule structure or miRNA structure
in advance. However, the reliability of the approach was limited
due to the small data of transcriptional response to genome-
wide miRNA perturbations. Furthermore, Meng et al. (2014)
built a bioactive Small molecule and miRNA association Network
in Alzheimer’s Disease (SmiRN-AD) through comparing the
gene expression profiles after bioactive small molecule treating
with the AD-related miRNA (ADM) regulating expressions,
to get the scores of associations between small molecules
and ADMs. Besides, the positive and negative associations
were identified to investigate the biological insights of the
SimRN-AD. Recently, Wang et al. (2016) developed another
method to identify small molecule-miRNA associations based
on their functional similarity. They searched the functional
link of each small molecule-miRNA pair by calculating Gene
Ontology enrichment after identifying differentially expressed
genes for small molecules and miRNAs. Compared with previous
models based on transcriptional responses, this method is more
repeatable by using functional associations. Additionally, Lv
et al. (2015) presented a novel computational model to predict
potential associations between small molecules and miRNAs.
They implemented the random walk with restart algorithm on
an comprehensive network, which was established by combining
small molecule similarity, miRNA similarity, as well as known
small molecule-miRNA associations. Especially, this model can
predict the novel related miRNAs for small molecules without
any known associated miRNAs. However, it has too many
adjustable parameters that need to be affirmed. Moreover, Li et al.
(2016) developed a network based framework called predictive
Small Molecule-miRNA Network-Based Inference (SMiR-NBI),
to investigate the underlying regulations of anticancer drugs
on miRNAs. This model constructed a heterogeneous network
that was composed of drugs, miRNAs and genes to conduct a
network based algorithm. It is mentionable that the accuracy
of this method is quite high even it only depended on the
network topology information. However, SMiR-NBI could not
be applied to prediction of isolated miRNAs that have no
interlinked small molecules. Besides, it failed to predict potential
miRNAs associated with small molecules that had different dose-
responses, due to lack of known data.

So far, the number of computational models is still not
satisfying for the prediction of novel associations between small
molecules and miRNAs. Moreover, there are still some limitations
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existing in the previous models. In order to predict potential
small molecule-miRNA associations more effectively and reliably,
in this paper, we presented the Graphlet Interaction based
inference for Small Molecule-MiRNA Association prediction
(GISMMA). In this model, the similarity of small molecules
and the similarity of miRNAs were combined with known
associations between small molecules and miRNAs in two
different datasets, which were labeled with Dataset 1 and Dataset
2. In Dataset 1, only a fraction of small molecules and miRNAs
were involved in known small molecule-miRNA associations,
whereas in Dataset 2 all small molecules and miRNAs were
implicated in known small molecule-miRNA associations. Based
on the measuring of graphlet interaction between any two nodes
on the network of small molecules and on the network of
miRNAs, respectively, we can compute the correlation scores
of small molecule-miRNA pairs. We have implemented leave-
one-out cross validation (LOOCV) and five-fold cross validation
to evaluate the performance of GISMMA. The AUCs of global
LOOCV are 0.9291 and 0.8203 for Dataset 1 and Dataset 2,
respectively; the AUCs of local LOOCV by ranking the small
molecules for each fixed miRNA are, respectively 0.9505 and
0.8640 for the two datasets; the AUCs of local LOOCV by ranking
the miRNAs for each fixed small molecule are, respectively
0.7702 and 0.6591 for the two datasets. And the average
AUCs and standard deviations of five-fold cross validations are
0.9263 ± 0.0026 and 0.8088 ± 0.0044 for the two datasets,
respectively. In case study, small molecule was set as a new one by
turning all known related miRNAs into unknown ones. GISMMA
was then applied to predicting latent related miRNAs for each
small molecule based on the Dataset 1. For the small molecules,
5-Fluorouracil, 17β-Estradiol and 5-Aza-2′-deoxycytidine, there
were in turn 30, 29, and 25 out of top 50 predicted miRNAs, which
were validated to be associated with these three small molecules
by experimental literatures, respectively. The results both in cross
validations and case studies have suggested that GISMMA is a
powerful and reliable model to predict novel associations between
small molecules and miRNAs.

MATERIALS AND METHODS

Small Molecule-miRNA Associations
In this paper, we obtained the known small molecule-miRNA
associations from SM2miR (Version 1) (Liu et al., 2013). The
total number of known associations is 664. For comparison of
model performance on different datasets, we have constructed
two datasets. Dataset 1 consists of 831 small molecules extracted
and integrated from SM2miR, DrugBank (Knox et al., 2011)
and PubChem (Wang et al., 2009), and 541 miRNAs that were
collected from SM2miR, HMDD (Lu et al., 2008), miR2Disease
(Jiang et al., 2009) and PhenomiR (Jiang et al., 2009; Ruepp
et al., 2010). In Dataset 1, there are only 39 small molecules and
286 miRNAs implicated in the 664 known associations, while
792 small molecules and 255 miRNAs are completely new ones
without any known associations. Dataset 2 is only composed of
those 39 small molecules and 286 miRNAs, which are involved in
the known associations. Based on the known data, an adjacency

matrixAwas constructed to represent the relations between small
molecules and miRNAs, in which A(i, j) was set to be 1 if there is
an association between small molecule s(i) and miRNA m(j), 0
otherwise.

Small Molecule Similarity
In this paper, according to the method proposed in (Lv et al.,
2015), the small molecule similarity was calculated by integrating
four usual small molecule similarities which were side effect
based similarity that was computed by Jaccard score using small
molecule side effect dataset (Gottlieb et al., 2011), functional
consistency based similarity that was obtained by comparing the
function of small molecule target genes (Lv et al., 2012), chemical
structure based similarity that was calculated with the method of
chemical structure comparison between any two small molecules
(Hattori et al., 2003), and indication phenotype based similarity
that was constructed through identifying phenotype similarity
between small molecule related diseases (Gottlieb et al., 2011).
Therefore, the integrated similarity of small molecules can be
computed with the following formula:

SS =
β1SDS + β2STS + β3SCS + β4SSS∑4

i=1 βi
(1)

where, SDS, STS, SCS, and SSS denote the four different similarity
types, respectively, i.e., indication phenotype based similarity,
functional consistency based similarity, chemical structure based
similarity and side effect based similarity, and βi (i= 1, 2, 3, 4) are
the weighs used to balance the different similarity contributions,
whose default values were all set as 1.

MiRNA Similarity
The miRNA similarity we used in this paper was established
using the method in (Lv et al., 2015), by combining functional
consistency based similarity that was calculated by comparing the
function of miRNA target genes (Lv et al., 2012) and indication
phenotype based similarity that was computed by measuring
phenotype similarity between diseases associated with miRNAs
(Gottlieb et al., 2011). Similarly, to reduce the bias of each
similarity measurement, the integrated similarity of miRNAs was
defined as follows:

SM =
α1SDM + α2STM∑2

j=1 αj
(2)

where, SDM is the indication phenotype based similarity and
STM represents the functional consistency based similarity, and
αj (j= 1, 2) are the weighs of each similarity measurement, which
were both set as 1.

GISMMA
In this study, by integrating small molecule similarity, miRNA
similarity and known associations between small molecules
and miRNAs, we developed a graphlet interaction based
method to predict the potential associations between small
molecules and miRNAs, which is motivated by the study of
Wang et al. (2014). Prediction code of our model is available
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FIGURE 1 | Flowchart of GISMMA model based on graphlet interaction for the prediction of potential small molecule-miRNA associations.

at: https://github.com/AnnaGuan/GISMMA/tree/AnnaGuan-
patch-1. The concept of graphlet interaction is traced to the
definition in (Wang et al., 2014), which describes the relationship
between any two nodes in a graphlet that is a type of subgraph in
a large network. As was done in (Wang et al., 2014), in GISMMA
only those graphlets that have 1 to 4 nodes were used, based on
which 28 graphlet interaction isomers were constructed, denoted
by labels I1 to I28 in Figure 1. The graphlet interaction isomer
depends on the positions of the two involved nodes, which
means that the graphlet interaction between two nodes have two
different set of isomers. Through counting the number of each
isomer, we can represent the graphlet interaction between any

two nodes in a network with a vector that contains 28 numbers
(Przulj, 2007; Wang et al., 2014).

We have created a network NS to represent the small
molecule similarity and a network NM to represent the miRNA
similarity, where each node in the network denotes a small
molecule or a miRNA. The edge with similarity value as
its weight exists to link any two nodes that have similarity.
The associations between small molecules and miRNAs were
investigated in the two similarity networks NS and NM,
respectively.

In the miRNA network NM, the number of isomer Ik for
graphlet interaction from node m(i) to node m(j) can be
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calculated as follows (Wang et al., 2014):

Nij (Ik) =
∑

l∈V(NM)

∑
m∈V(NM)

bijbilbjlbimbjmblm (3)

where V(NM) denotes the node set of all nodes in network NM,
l, and m are two nodes different with node m(i) and m(j), and b is
defined as:

bst =
{

ast s and t has a link in Ik
1− ast s and t has no link in Ik

(4)

where, ast is the edge weight assigned with the similarity value of
m(s) and m(t). Especially, ast is 0 when nodes m(s) and m(t) have
no connection. Then we normalized the graphlet interaction as
follows:

norm
(
Nij (Ik)

)
=

Nij (Ik)∑
m∈M Nim (Ik)

(5)

where M contains all other nodes but m(i). Based on the
normalized form in equation (5), we can compute the association
score of a small molecule-miRNA pair as follows:

Sm
(
i, j
)
=

∑28

k=1
vk
∑
p∈P(i)

norm
(
Npj (Ik)

)
(6)

where i denotes a small molecule s(i) and j denotes a miRNA
m(j), vk is the weight of the kth isomer, P(i) is the set of miRNAs
with known associations with small molecule s(i). By defining the
summation of norm in equation (6) as following:

Xm
(
k, j
)
=

∑
p∈P(i)

norm
(
Npj (Ik)

)
(7)

we can modify equation (6) into the matrix form as following:

Sm = XT
mVm (8)

The weight coefficientsVm can be learnt from known associations
by performing a simple linear regression (Wang et al., 2014),
which is given as following:

Vm =
(
XmXT

m

)−1
XmSm (9)

We computed the number of graphlet interaction isomer between
two small molecules in the similar way as described in equations
(3–5). Then the association score between small molecule s(i) and
miRNA m(j) can be calculated in the small molecule network NS
as follows:

Ss
(
i, j
)
=

∑28

k=1
vk

∑
q∈Q(j)

norm
(
Nqi (Ik)

)
(10)

where Q(j) is the set of small molecules that have known
associations with miRNA m(j). Also, the term of summation of
norm in equation (10) can be defined with the matrix:

Xs
(
k, j
)
=

∑
q∈Q(j)

norm
(
Nqi (Ik)

)
(11)

Thus equation (10) was rewritten as:SS = XT
SVS, and the

undetermined matrix Vs can be obtained by training the model
with known association scores:

Vs =
(
XsXT

s

)−1
XsSs (12)

Finally, we calculated the association score between small
molecule s(i) and miRNA m(j) by combining the scores from NM
and NS in a simple average form as following:

S
(
i, j
)
=

Sm
(
i, j
)
+ Ss

(
i, j
)

2
(13)

RESULTS

Performance Evaluation
In this work, two commonly used methods, LOOCV and
five-fold cross validation, were implemented to evaluate the
performance of GISMMA based on Dataset 1 and Dataset 2,
respectively. The LOOCV has three different types including
global LOOCV, local LOOCV of ranking small molecules for
fixed miRNA and local LOOCV of ranking miRNAs for fixed
small molecule. Each confirmed association we collected was
taken as the test sample one by one and the rest of known
associations were considered as the training samples in LOOCV.
Candidate samples in global LOOCV consist of all the small
molecule-miRNA pairs that have no known associations. In the
case of local, we only consider those small molecules that do
not relate to the fixed miRNA or those miRNAs unconnected
to the fixed small molecule in the test sample as candidates.
The scores as association probabilities were computed using
the GISMMA method for both test sample and all candidate
samples. Then we ranked them for the corresponding type
of LOOCV. The five-fold cross validation was performed in
the following steps. Firstly, all the known small molecule-
miRNA associations were randomly split into five parts with
equal size. Secondly, the five parts take turns to act as the
test sample set one after another and the other four parts
as the training sample sets; similarly, all small molecule-
miRNA pairs that have no known associations play the roles
of candidate samples. Thirdly, the test samples as well as the
candidate samples were endowed with association scores by
GISMMA. Finally, each test sample was picked out in turn
to be compared with candidate samples according to their
scores. The model was considered to be successfully predict
the test sample only when its rank exceeded the given rank
threshold.

Based on the ranking, the receiver operating characteristic
(ROC) curves were used to illustrate the results of the three
types of LOOCV described above, in which the abscissa axis
is true positive rate (TPR, sensitivity) and the ordinate axis
represents false positive rate (FPR, 1-specificity) for different
thresholds given in advance. The sensitivity means the ratio
that the positive samples rank above the given threshold,
while the specificity is defined as the percentage of candidate
samples whose ranks are below the set threshold. The area
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FIGURE 2 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of global LOOCV for Dataset 1 (left) and Dataset 2 (right). As is
shown, GISMMA achieves AUCs of 0.9291 and 0.8203 for Dataset 1 and Dataset 2, respectively, significantly superior to the previous model SMiR-NBI.

under the ROC curve (AUC) was correspondingly calculated
to estimate the reliability of the GISMMA. When the model
correctly predicts all test samples, AUC = 1; but if the model
has a random prediction, AUC = 0.5. To make comparison
with previous method, we implemented SMiR-NBI (Li et al.,
2016) for global and two types of local LOOCVs, 5-fold cross
validation based on the same datasets. The global AUCs of
GISMMA for Dataset 1 and Dataset 2 are 0.9291 and 0.8203,
respectively, which are shown in Figure 2 in comparison with
previous model SMiR-NBI whose results are 0.8843 and 0.7264,
respectively. In the case of local LOOCV of ranking small
molecules for fixed miRNA, the AUCs of GISMMA for Dataset
1 and Dataset 2 are 0.9505 and 0.8640, respectively, compared
with 0.8837 and 0.7846 of SMiR-NBI, which can be seen in
Figure 3. The results of local LOOCV of ranking miRNAs
for fixed small molecule are shown in Figure 4, from which
we can see that the AUCs of GISMMA and SMiR-NBI are
0.7702, 0.7497 for Dataset 1, and 0.6591, 0.6100 for Dataset 2,
respectively. Besides, in five-fold cross validation, the average
AUCs with standard deviations of GISMMA and SMiR-NBI
are 0.9263 ± 0.0026, 0.8554 ± 0.0063 for Dataset 1, and
0.8088 ± 0.0044, 0.7104 ± 0.0087 for Dataset 2. The Table 1
lists the comparison of GISMMA and SMiR-NBI for all AUC
results of the four types of cross validations on two datasets.
We can make a conclusion from the comparisons that the novel
method proposed in this work is more reliable and more effective
in predicting potential associations between small molecules and
miRNAs.

Case Study
Based on the known database and published references in
PubMed database, we studied three common small molecules to
further evaluate the predictive ability of GISMMA, in which the
small molecule in study was set as a new one by taking away its
known associations. We ulteriorly observed the number of the
experimentally verified miRNAs in the top 50 ones predicted to
be related to the three small molecules, respectively.

The small molecular 5-Fluorouracil (5-FU) is a widely used
chemotherapeutic drug in colorectal cancer (Windle et al.,
1987). For a long time, the 5-FU-induced cytotoxic effects
were thought to result exclusively from its impact on DNA
metabolism (Andreuccetti et al., 1996; Airley, 2009). However,
several evidences indicated that the cytotoxic effect of 5-FU also
results from its capacity to alter RNA metabolism and mRNA
expression (Longley et al., 2003). Exposure to 5-FU promotes a
profound transcriptional reprogramming leading to modification
of mRNA and miRNAs expression profiles that contributes in
modifying cell fate (Hernandez-Vargas et al., 2006; Rossi et al.,
2007; Shah et al., 2011). After implementing GISMMA, we got
the total ranking of potential miRNAs associated with 5-FU.
As the result shown, among the top 10 and 50 potential 5-FU-
related miRNAs, there were 8 and 30 miRNAs confirmed by
experiments, respectively (See Table 2). For instance, miR-21
and miR-23a were predicted as the first and fifth candidates for
5-FU, respectively, which were significantly down regulated in
comparison between 5-FU treated and control samples in miRNA
microarray analysis of 5-FU treated MCF-7 cells (Shah et al.,
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FIGURE 3 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of local LOOCV of ranking small molecules for fixed miRNA on
Dataset 1 (left) and Dataset 2 (right). As is shown, GISMMA achieves AUCs of 0.9505 and 0.8640 for Dataset 1 and Dataset 2, respectively, significantly superior to
the previous model SMiR-NBI.

FIGURE 4 | Performance of GISMMA was compared with SMiR-NBI in terms of ROC curve and AUC of local LOOCV of ranking miRNAs for fixed small molecule on
Dataset 1 (left) and Dataset 2 (right). As is shown, GISMMA achieves AUCs of 0.7702 and 0.6591 for Dataset 1 and Dataset 2, respectively, significantly superior to
the previous model SMiR-NBI.

2011). Besides, miR-24-1, the third candidate in the ranking list,
showed a significantly down regulation in HCT-8 colon cancer
cell after exposure to 5-FU (Zhou et al., 2010). In addition, MiR-
27b that ranked the fourth in the prediction list of 5-FU was

found to be consistently up regulated in human colon cancer cells
HC.21 following exposure to 5-FU in vitro (Rossi et al., 2007).

The small molecular 17β-Estradiol (E2) is the principal
intracellular human estrogen that exerts important effects on
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TABLE 1 | The comparison results between GISMMA and SMiR-NBI on AUC values of four cross validations based on two datasets.

DATASET MODEL GLOBAL LOOCV LOCAL LOOCV (fix miRNA) LOCAL LOOCV (fix SM) 5-FOLD CV

Dataset 1 GISMMA 0.9291 0.9505 0.7702 0.9263 ± 0.0026

SMiR-NBI 0.8843 0.8837 0.7497 0.8554 ± 0.0063

Dataset 2 GISMMA 0.8203 0.8640 0.6591 0.8088 ± 0.0044

SMiR-NBI 0.7264 0.7846 0.6100 0.7104 ± 0.0087

the reproductive as well as many other organ systems in both
men and women (Simpson and Santen, 2015). The analogs of
estradiol exhibit significant anticancer activity against human
breast cancer cell lines (Sathish Kumar et al., 2014). Estrogens
have associations with cancer in target tissues, which is because
they have a phenolic ring structure in common with the
carcinogenic hydrocarbons (Ryan, 1982). After implementing
GISMMA, we got the total ranking of the E2-associated miRNAs.
As the result shown, among the top 10 and 50 potential E2-related
miRNAs, there were 5 and 29 miRNAs confirmed by experiments,
respectively (See Table 3). For example, miR-21, miR-27b, and
miR-23a dominated in turn the first, fourth, and fifth places of
the ranking list predicted for E2, which were all down regulated
after treatment of MCF-7 cells with E2 (Bhat-Nakshatri et al.,
2009; Tilghman et al., 2012). Besides, E2 showed a capacity to

TABLE 2 | Top 50 miRNAs associated with 5-Fluorouracil were predicted by
GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-22 25449431

hsa-mir-324 unconfirmed hsa-mir-409 unconfirmed

hsa-mir-24-1 26198104 hsa-mir-337 unconfirmed

hsa-mir-27b 26198104 hsa-let-7a-3 26198104

hsa-mir-23a 26198104 hsa-let-7a-2 26198104

hsa-mir-638 26198104 hsa-mir-155 28347920

hsa-mir-27a 26198104 hsa-mir-181b-2 unconfirmed

hsa-let-7b 25789066 hsa-mir-181b-1 unconfirmed

hsa-mir-181a-1 unconfirmed hsa-mir-15b 26198104

hsa-mir-126 26062749 hsa-let-7i unconfirmed

hsa-mir-125b-2 unconfirmed hsa-mir-320a 26198104

hsa-mir-125b-1 unconfirmed hsa-mir-26a-2 unconfirmed

hsa-mir-124-3 unconfirmed hsa-mir-328 unconfirmed

hsa-mir-124-2 unconfirmed hsa-mir-16-2 26198104

hsa-mir-124-1 unconfirmed hsa-let-7e 26198104

hsa-let-7a-1 26198104 hsa-mir-34b unconfirmed

hsa-mir-181a-2 24462870 hsa-mir-145 24447928

hsa-mir-24-2 26198104 hsa-mir-200b 26198104

hsa-mir-17 26198104 hsa-let-7c 25951903

hsa-mir-26a-1 unconfirmed hsa-mir-874 27221209

hsa-mir-16-1 26198104 hsa-mir-650 unconfirmed

hsa-mir-518c unconfirmed hsa-mir-501 26198104

hsa-mir-99b unconfirmed hsa-mir-500a unconfirmed

hsa-mir-18a 26198104 hsa-mir-1226 26198104

hsa-mir-663a 26198104 hsa-mir-200c 26198104

The top 1-25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 8 and 30 out of top 10 and top 50 were confirmed by the
known experimental literatures, respectively.

down regulate the expression level of miR-21 in breast cancer cells
(Selcuklu et al., 2012).

The small molecular 5-Aza-2′-deoxycytidine (5-Aza-CdR) is a
nucleoside analog inhibitor of DNA methyltransferase (DNMT).
It has been used to reverse methylation and reactivate the
expression of silenced genes (Patra and Bettuzzi, 2009). 5-Aza-
CdR is able to suppress the growth of various tumors in vitro,
animal models, and clinical trials including prostate cancer
(Hurtubise and Momparler, 2004; Issa et al., 2004; McCabe et al.,
2006). We performed GISMMA on 5-Aza-CdR, and got the total
ranking of the predicted miRNAs. As the result shown, among
the top 10 and 50 potential 5-Aza-CdR related miRNAs, there
were 7 and 25 miRNA-5-Aza-CdR associations confirmed by
experiments (See Table 4). For example, in the ranking list of
miRNAs predicted for 5-Aza-CdR, miR-21, and miR-27b were

TABLE 3 | Top 50 miRNAs associated with 17β-Estradiol were predicted by
GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-222 24601884

hsa-mir-324 unconfirmed hsa-mir-31 23143558

hsa-mir-24-1 unconfirmed hsa-mir-125a 21914226

hsa-mir-27b 26198104 hsa-mir-663a 26198104

hsa-mir-23a 26198104 hsa-mir-22 24715036

hsa-mir-638 26198104 hsa-mir-132 26282993

hsa-mir-27a 26198104 hsa-mir-501 unconfirmed

hsa-mir-181a-1 unconfirmed hsa-mir-1226 unconfirmed

hsa-mir-24-2 unconfirmed hsa-mir-328 unconfirmed

hsa-mir-125b-2 unconfirmed hsa-mir-155 23568502

hsa-mir-125b-1 unconfirmed hsa-let-7a-3 26198104

hsa-mir-16-1 unconfirmed hsa-let-7a-2 26198104

hsa-mir-124-3 26198104 hsa-mir-181b-2 unconfirmed

hsa-mir-124-2 26198104 hsa-mir-181b-1 unconfirmed

hsa-mir-124-1 26198104 hsa-mir-26a-2 unconfirmed

hsa-mir-18a 24245576 hsa-mir-15b 26198104

hsa-let-7b 26198104 hsa-mir-20a 21914226

hsa-mir-181a-2 unconfirmed hsa-mir-29a 22334722

hsa-let-7a-1 26198104 hsa-mir-19a unconfirmed

hsa-mir-17 26198104 hsa-mir-200b 26198104

hsa-mir-126 26198104 hsa-mir-221 21057537

hsa-mir-26a-1 unconfirmed hsa-mir-518c 26198104

hsa-mir-320a 27965096 hsa-mir-194-2 unconfirmed

hsa-mir-16-2 unconfirmed hsa-mir-181d unconfirmed

hsa-mir-99b unconfirmed hsa-mir-197 unconfirmed

The top 1–25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 5 and 29 out of top 10 and top 50 were confirmed by the
known databases or experimental literatures, respectively.
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TABLE 4 | Top 50 miRNAs associated with 5-Aza-2′-deoxycytidine were
predicted by GISMMA based on Dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-21 26198104 hsa-mir-518c unconfirmed

hsa-mir-324 unconfirmed hsa-mir-200b 23626803

hsa-mir-23a unconfirmed hsa-let-7d 26802971

hsa-mir-24-1 26198104 hsa-mir-501 unconfirmed

hsa-mir-27b 26198104 hsa-mir-1226 unconfirmed

hsa-mir-27a 26198104 hsa-mir-200c 23626803

hsa-mir-638 26198104 hsa-mir-99b unconfirmed

hsa-let-7a-1 unconfirmed hsa-mir-181a-2 26198104

hsa-mir-124-3 23200812 hsa-let-7e 22053057

hsa-mir-124-2 23200812 hsa-mir-132 unconfirmed

hsa-mir-124-1 unconfirmed hsa-mir-203a 26577858

hsa-let-7b 26708866 hsa-mir-409 unconfirmed

hsa-mir-18a unconfirmed hsa-mir-337 unconfirmed

hsa-mir-24-2 26198104 hsa-mir-1915 unconfirmed

hsa-mir-17 26198104 hsa-mir-128-2 unconfirmed

hsa-mir-181a-1 26198104 hsa-mir-128-1 unconfirmed

hsa-mir-663a unconfirmed hsa-mir-320a 26198104

hsa-let-7a-3 26227220 hsa-mir-181b-2 unconfirmed

hsa-let-7a-2 unconfirmed hsa-mir-181b-1 unconfirmed

hsa-mir-126 26198104 hsa-mir-222 unconfirmed

hsa-mir-26a-1 unconfirmed hsa-mir-26a-2 unconfirmed

hsa-mir-15b unconfirmed hsa-mir-328 unconfirmed

hsa-mir-16-1 26198104 hsa-mir-16-2 26198104

hsa-mir-125b-2 26198104 hsa-mir-29a 26198104

hsa-mir-125b-1 26198104 hsa-let-7c unconfirmed

The top 1–25 miRNAs are shown in the first column while the top 26–50 in the
second. As a result, 7 and 25 out of top 10 and top 50 were confirmed by the
known databases or experimental literatures, respectively.

ranked in the first and fifth position, respectively, both of which
showed significant down regulation after 5-Aza-CdR treatment
in breast cancer cells (Radpour et al., 2011). Moreover, miR-24-1
was the fourth miRNA predicted to be associated with 5-Aza-
CdR. Microarray analysis showed miR-24-1 were up regulated
upon 5-Aza-CdR therapy in pancreatic cancer PANC-1 cells
compared to control cells (Lee et al., 2009).

The whole prediction list of all candidate small molecule-
miRNA pairs in Dataset 1 was provided in Supplementary
Table 1, which was ranked in a descending order according to
the association scores resulted from GISMMA. It is hoped that
the ranked list can be useful in guiding biological experiments,
and can be verified by more experimental results in the future.

DISCUSSION

This paper presented a graphlet interaction based method
GISMMA to infer the potential associations between small
molecules and miRNAs by combining small molecule similarity,
miRNA similarity and known associations between small
molecules and miRNAs. In GISMMA, we used a similarity
network to represent the small molecules and used another
similarity network to represent the miRNAs. An edge with a

weight of the similarity value between two nodes was ploted when
there was similarity between the two nodes, otherwise not. We
utilized graphlet interaction to measure the complex relationship
between two nodes in the network, where the graphlet is defined
as a type of non-isomorphic subgraph (Wang et al., 2014).
Then, we counted each graphlet interaction isomer in a special
pattern from the node having known associations to the node
which does not have known associations. Therefore, we obtained
a vector to describe the graphlet interaction between the two
nodes. The correlation score between a small molecule and
a miRNA can be computed through summing the weighted
graphlet interaction isomers, where the weighs can be learnt
from the known associations. The performance of GISMMA
on predicting novel small molecule-miRNA associations was
evaluated with four validation approaches that were global and
two types of local LOOCV, as well as five-fold cross validation.
The cross validation results were compared between GISMMA
and SMiR-NBI, which showed the superior performance of
GISMMA over SMiR-NBI. Besides, the ROC curves of SMiR-
NBI are some unusual in Figures 2, 3, which may be attribute
to that SMiR-NBI could not predict associated miRNAs (small
molecules) for new small molecules (miRNAs). When ranking
the test small molecule-miRNA pair with those candidate pairs
for SMiR-NBI, we assigned fixed rank to those pairs that contain
new small molecules (miRNAs) with an average number, which
may cause the presence of line segments in the ROC curve. We
have implemented cross validations on two datasets with different
sizes. The results showed that GISMMA performed better on
Dataset 1 than on Dataset 2, which could be resulted from two
factors. The one is the more similarity information in Dataset 1.
The other is that Dataset 1 contains those small molecules and
miRNAs without any known associations, which often get lower
association scores and lower rankings than the test sample. This
could also make the AUCs higher. And we further executed case
study for three small molecules using Dataset 1. The numbers of
miRNAs that were validated to be related to these three small
molecules by experimental literatures are in turn 30, 29 and 25
in top 50 miRNAs predicted by GISMMA. Via cross validations
together with case study, we can see that GISMMA is well-
performed and reliable in predicting new associations between
small molecules and miRNAs. Furthermore, a list of all predicted
small molecule-miRNA associations was provided, which would
be favorable for the development of miRNA-targeted therapy
and drug reposition. In detail, for a specific small molecule,
we focused on the predicted miRNAs that are most possibly
associated with this small molecule. These miRNAs might be
related to some diseases that were not confirmed to be treated by
this small molecule. Through regulating the expressions of these
miRNAs, this small molecule could be used for the treatment of
these diseases. Therefore, we believed that the prediction results
of this work could offer some guidance for the experiment of drug
reposition to some extent.

The outstanding performance of GISMMA can be attributed
to several factors. Firstly, we mapped the similarity between small
molecules and similarity between miRNAs into two networks,
in which the similarity values were fully exploited to investigate
the complex relationship between two nodes by measuring their
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graphlet interaction. Secondly, in GISMMA, not only direct but
also indirect links were considered between the nodes in the
counting of graphlet interaction isomers. Finally, the GISMMA
is a bipartite method which combines miRNA network with
small molecule network. It can be used to predict miRNAs
associated with new small molecules without any known related
miRNAs, as well as to predict small molecules associated with new
miRNAs without any known related small molecules, because
it computes the association score by combining the result
calculated in the small molecule network with that in the miRNA
network.

However, GISMMA still has some limitations. For example,
the lack of the known association data, especially the presence
of many new small molecules or new miRNAs that have
no known associations, affected the performance to a large
extent. It can be expected that the model will obtain better
performance when more experimental datasets are produced in
the future. Besides, the simple algorithm of averaging the scores
from two networks to compute the final association score may
cause bias to those pairs that can be predicted only in one
network. Furthermore, GISMMA considered 4 nodes at most
within a graphlet, which hindered it to contain more similarity
information from more distant nodes. Finally, this model cannot
be applied to the prediction of the association in which the
small molecule and the miRNA are both new. We anticipate that
more network-based methods could be developed to improve
the prediction of novel small molecule-miRNA association. For
example, Petri nets based models have been proved to be a
useful tool for many prediction problems, inspired by the work
in (Russo et al., 2017), we could construct algorithm using

Petri nets for the inference of potential small molecule-miRNA
association.
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