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In human uveal melanoma (UM), tumor enlargement is associated with increases in

aqueous humor vascular endothelial growth factor-A (VEGF-A) content that induce

neovascularization. 3-Iodothyronamine (3-T1AM), an endogenous thyroid hormone

metabolite, activates TRP melastatin 8 (TRPM8), which blunts TRP vanilloid 1 (TRPV1)

activation by capsaicin (CAP) in human corneal, conjunctival epithelial cells, and stromal

cells. We compare here the effects of TRPM8 activation on VEGF-induced transactivation

of TRPV1 in an UM cell line (92.1) with those in normal primary porcine melanocytes

(PM) since TRPM8 is upregulated in melanoma. Fluorescence Ca2+-imaging and planar

patch-clamping characterized functional channel activities. CAP (20µM) induced Ca2+

transients and increased whole-cell currents in both the UM cell line and PM whereas

TRPM8 agonists, 100µM menthol and 20µM icilin, blunted such responses in the UM

cells. VEGF (10 ng/ml) elicited Ca2+ transients and augmented whole-cell currents, which

were blocked by capsazepine (CPZ; 20µM) but not by a highly selective TRPM8 blocker,

AMTB (20µM). The VEGF-induced current increases were not augmented by CAP.

Both 3-T1AM (1µM) and menthol (100µM) increased the whole-cell currents, whereas

20µM AMTB blocked them. 3-T1AM exposure suppressed both VEGF-induced Ca2+

transients and increases in underlying whole-cell currents. Taken together, functional

TRPM8 upregulation in UM 92.1 cells suggests that TRPM8 is a potential drug target

for suppressing VEGF induced increases in neovascularization and UM tumor growth

since TRPM8 activation blocked VEGF transactivation of TRPV1.

Keywords: uveal melanoma, 3-iodothyronamine, vascular endothelial growth factor, Intracellular Ca2+, transient

receptor potential vanilloid 1 channel, transient receptor potential melastatin 8
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INTRODUCTION

Among all cancers of the eye, uveal melanoma (UM) is the most
frequent form in adults. Notably, UM is mostly found in the
choroid (65% of all cases) and in ciliary body (15%), but it rarely
occurs in the retina (1.4%; Singh et al., 2011). About 50% of the
patients with primary UM will finally develop distant metastases
predominantly in the liver (90%) (Spagnolo et al., 2012). To date,
the etiology of UM is not fully understood and neither metastatic
properties nor patient survival has significantly improved over
the last decades (Tran et al., 2013). Accordingly, there is a
pressing need for developing alternative approaches to treat
this disease especially since there are no FDA approved drugs
available for suppressing metastatic melanoma.

A preclinical approach targeting angiogenesis in combination
with irradiation has been reported using bevacizumab, a
monoclonal antibody binding and inhibiting vascular endothelial
growth factor (VEGF; Sudaka et al., 2013). Nevertheless, the
advantage of this combination therapy is unclear because this
VEGF trap did not have a dramatic impact on any of the
functional activities in UM cell lines (Logan et al., 2013). As
a matter of fact, such treatment is reported to even promote
expansion of melanoma cells in vitro (Dithmer et al., 2017).
Furthermore, neoadjuvant intravitreous injection of this VEGF
trap failed to shrink large size melanoma and is even counter
indicated in these cases because it may instead even promote
melanoma growth (Francis et al., 2017).

Increases in VEGF receptor activity induce rises in
intracellular calcium levels [Ca2+]i in endothelial cells exposed
to serum-free conditioned medium of human malignant
gliomas (Criscuolo et al., 1989). The bioactive factor is an
angiogenic factor named vascular permeability factor (VPF)—
more recently characterized as VEGF, which promotes various
diseases including eye tumor diseases (e.g., retinoblastoma)
(Jia et al., 2007). It stimulates angiogenesis through activating
non-voltage-gated Ca2+ channels such as transient-receptor-
potential-channels (TRPs) namely the canonical receptor type
4 or 6 (TRPC4 or TRPC6) in human microvascular endothelial
cells (Qin et al., 2016). Dysfunctional TRPs are implicated in
cancer formation (reviewed in Bödding, 2007; Prevarskaya et al.,
2007). Tumor and normal cells both express TRPs, but certain
TRPs are either upregulated or downregulated in a cancerous

Abbreviations: 3-T1AM, 3-Iodothyronamine (endogenous thyroid hormone

(TH)-derived metabolite) (Scanlan et al., 2004); 92.1, human uveal melanoma

cell line 92.1 (De Waard-Siebinga et al., 1995); AMTB, N-(3-Aminopropyl)-

2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride

[TRPM8 blocker (Lashinger et al., 2008)]; BCTC, N-(4- tertiarybutyl-phenyl)-4-

(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carboxamide; CAP, Capsaicin

[TRPV1 agonist (Vriens et al., 2009)]; CB1, Cannabinoid receptor 1; CZP,

Capsazepine [TRPV1 antagonist (Vriens et al., 2009)]; EGFR, Epidermal growth

factor receptor; FDA, Food and Drug Administration; hTAAR1, Human trace

amine-associated receptor; PM, Porcine melanocytes; RPE, Retinal pigment

epithelium; TRPA, Transient receptor potential ankyrin; TRPC, Transient

receptor potential canonical; TRPM, Transient receptor potential melastatin;

TRPs, Transient receptor potential channels; TRPV, Transient receptor potential

vanilloid; UM, Uveal melanoma; VEGF, Vascular endothelial growth factor;

VEGFR, Vascular endothelial growth factor receptor; VPF, Vascular permeability

factor.

condition. For example, TRP vanilloid receptor type 1 (TRPV1;
capsaicin receptor) is overexpressed in some carcinomas (Miao
et al., 2008; Marincsák et al., 2009) and neuroendocrine tumors
(Mergler et al., 2012b). In addition, the highly Ca2+ selective
TRPV6 and TRP melastatin receptor type 8 (TRPM8; menthol
receptor) are overexpressed in prostate tumor cells (Fixemer
et al., 2003; Bidaux et al., 2005; Bai et al., 2010; Gkika et al., 2010).
The functional relevance of TRPM8 upregulation in prostatic
cancer cells as a target for suppressing their proliferation was
documented by showing that inhibition of TRPM8 upregulation
with highly specific blockers, AMTB, JNJ41876666, and RNAi
suppressed increased proliferation rates in all tumor cells but not
in non-tumor prostate cells (Valero et al., 2012). We found that
TRPM8 is also overexpressed in highly malignant retinoblastoma
and uveal melanoma along with TRPV1 compared to their levels
in healthy human uvea or retina (Mergler et al., 2012a, 2014).
Even in benign pterygial eye tumor cells, functional TRPV1
expression is upregulated (Garreis et al., 2016). Such increases
are associated with larger mitogenic responses to VEGF that are
induced by its cognate receptor, VEGFR, transactivating TRPV1
(Garreis et al., 2016).

3-iodothyronamine (3-T1AM) is a decarboxylated thyroid
hormone (T3 and T4) metabolite, which activates G protein-
coupled receptors (GPCRs) especially the trace amine associated
receptor 1 (TAAR1). It also induces a dose-dependent reversible
10◦C decrease in mice body temperature (Scanlan et al., 2004;
Braulke et al., 2008; Panas et al., 2010) and hypothermia in
rodents (Cichero et al., 2014; Hoefig et al., 2016). Likewise, 3-
T1AM is a multi-target ligand modulating β-adrenergic receptor
2 signaling in ocular epithelial cells (Dinter et al., 2015a). In
corneal epithelial and endothelial cells as well as thyroid cells,
3-T1AM acts as a selective TRPM8 agonist (Khajavi et al.,
2015, 2017; Lucius et al., 2016; Schanze et al., 2017). Since
blocking increases in VEGF levels suppress both angiogenesis
and expansion of tumorous pathology, it is relevant to identify
novel targets to inhibit endothelial cell proliferation. We
hypothesized that TRPM8 is one such target because icilin-
induced TRPM8 activation suppressed TRPV1 activity in cornea
and conjunctiva epithelial cells (Khajavi et al., 2015; Lucius et al.,
2016). The notion that TRPM8 activation also inhibits VEGF-
induced TRPV1 activation required for increasing angiogenesis
was tenable because VEGF-induced activation of its cognate
receptor transactivates TRPV1 (Khajavi et al., 2015; Lucius et al.,
2016).

We show here that crosstalk betweenmembers of this receptor
triad affects Ca2+ signaling responses induced by VEGFR
transactivation of TRPV1 in UM 92.1 melanoma cells. Therefore,
selective targeting of TRPM8 control of TRPV1 responsiveness
to transactivation by VEGFmay ultimately provide an alternative
approach to reduce tumor growth in a clinical setting.

MATERIALS AND METHODS

Materials
BCTC, AMTB, and fura-2AM were purchased from TOCRIS
Bioscience (Bristol, United Kingdom). CPZ and icilin were
procured from Cayman Chemical Company (Ann Arbor,
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Michigan, U.S.A.). Medium and supplements for cell culture
were ordered from Life Technologies Invitrogen (Karlsruhe,
Germany) or Biochrom AG (Berlin, Germany). Melanocyte
Growth Medium M2 was obtained from Promocell (Heidelberg,
Germany). Dispase II was ordered from Boehringer (Ingelheim,
Germany) and accutase was provided by PAA Laboratories
(Pasching, Austria). Unless otherwise stated, all other reagents
were procured from Sigma (Deisenhofen, Germany).

Cell Culture
Uveal melanoma cell line 92.1 (UM 92.1) was kindly provided
byMartine Jager and colleagues (Leiden University; Netherlands)
(De Waard-Siebinga et al., 1995). In brief, UM cells were grown
in RPMI-1640 supplemented with 10% fetal bovine serum (FBS),
4mM L-glutamine, penicillin/streptomycin at 37◦C under 10%
CO2 atmosphere and 80% humidity (Mergler et al., 2014).

Melanocyte Primary Cell Cultivation
PM were isolated from porcine eyes provided by a
slaughterhouse. The preparation and primary cell cultivation
were performed as described (Valtink and Engelmann, 2007).
In brief, eyeballs were cut into two pieces. The choroid with the
connected retinal pigment epithelium (RPE) layer was separated
from the sclera and incubated in collagenase IV for several hours
at 37◦C in order to release RPE cells from melanocytes. After a
second treatment with dispase II, the choroids were put into a
shaking device in order to better isolate the cells from the tissue.
Finally, the cell suspension was passed through a cell strainer.
After centrifugation, cells were washed in RPMI medium and
seeded in tissue culture flasks. After 24 h, the medium was
changed and cells were cultivated under the same conditions as
those described for the UM 92.1 cells (Mergler et al., 2014). To
avoid contamination with RPE cells or fibroblasts, the culture
medium was supplemented with geneticin for about 5–7 days
prior to subcultivation. Melanocyte cell cultivation was limited
to no longer than 2 weeks to avoid cell dedifferentiation.

Intracellular Calcium Fluorescence
Imaging
Semi confluent cells (≈80%) were loaded with fura-2/AM (2µM)
at 37◦C. After about 40min, the cells were washed with a Ringer-
like (control) solution containing (mM): 150 NaCl, 6 CsCl, 1
MgCl2, 10 glucose, 10 HEPES, and 1.5 CaCl2 at pH 7.4 and 317
mOsM (Mergler et al., 2014). KCl was replaced with CsCl to
characterize TRP channel activity (Voets et al., 2004). Following
dye loading, the cells were exposed to this solution on the
stage of an inverted microscope (Olympus BW50WI, Olympus
Europa Holding GmbH, Hamburg, Germany), connected with
a digital imaging system (TILL Photonics, Munich, Germany).
Fura-2/AM fluorescence was consecutively excited at 340 and
380 nm for different times (Grynkiewicz et al., 1985). The 510 nm
emission ratio (f340nm/f380nm) is an index of relative intracellular
Ca2+ ([Ca2+]i) levels (Grynkiewicz et al., 1985). The 340 and
380 nm response signals were continuously detectable and did
not distort the ratio. The changes in ratios were overall small
because of the presetting of the single fluorescence signals at
340 and 380 nm, respectively. A control where TRPM8 was
heterologously expressed and activated by their agonists is

provided (Lucius et al., 2016). Before starting a measuring
session, baseline stability was established for 8–20min. All
experiments were performed at a constant room temperature
(≈23◦C). In addition, the fura-2-induced fluorescence signals
were alternatively evaluated in a bath chamber using a Life
Science fluorescence cell imaging software in conjunction with
a high-resolution digital camera (Olympus XM-10) (Figures 9–
11). Cutoff filters isolated alternative fluorescence excitation
at 340 and 380 nm every 5 s wavelengths provided by a LED
light source (LED-Hub by Omikron, Rodgau-Dudenhoven,
Germany). Fura-2 fluorescence was alternately excited at 340
and 380 nm and emission was detected at 510 nm (250 ms−3.8 s
exposure time). For image acquisition and data evaluation, the
Life Science imaging software cellSens was used (Olympus,
Hamburg, Germany). Results are shown as mean traces of the
f340nm/f380nm ratio ± SEM (error bars in both directions) with
n-values indicating the number of experiments per data point.
The Ca2+ data presented from many cells in several experiments
were normalized (control set to 1.2 and 0.2, respectively) and
averaged (with error bars). The time delay of 1–2min in inducing
a Ca2+ transient stems from exposing the cells to a stationary
bath rather than a flow through superfusion. When drugs were
solubilized in dimethyl sulfoxide (DMSO) solution, their working
concentration did not exceed 0.1%, which did not alter the Ca2+

base line.

Planar Patch-Clamp Recordings
Whole-cell currents were measured with a planar patch-clamp

setup (Port-a-Patch©; Nanion, Munich, Germany) in connection
with an EPC 10 patch-clamp amplifier (HEKA, Lamprecht,
Germany) and the PatchMaster software (Version 2.6; HEKA,
Lamprecht, Germany) (Mergler et al., 2012a, 2014; Garreis et al.,
2016). A standard intracellular solution containing (mM): 50
CsCl, 10 NaCl, 60 CsF, 20 EGTA, and 10 HEPES-acid at pH
≈ 7.2 and ≈ 288 mOsM was applied to the microchip (both

provided by Port-a-Patch©, Nanion, Munich, Germany). The
external solution contained (mM): 140 NaCl, 4 KCl, 1 MgCl2,
2 CaCl2, 5 D-glucose monohydrate and 10 HEPES, pH ≈ 7.4,
and osmolarity ≈ 298 mOsM. At first, 5–10 µl of a single
cell suspension were placed onto a microchip containing the
aforementioned external solution. A software-controlled pump
(Nanion) provided a connection between a single cell and the
electrical system (sealing). The mean membrane capacitance was
10 pF± 1 pF (n= 88) andmean access resistance was 25± 3M�

(n = 88). Series resistances as well as fast and slow capacitative
transients were compensated by the PatchMaster software. The
liquid junction potential was calculated (≈3.8mV; Barry, 1994)
and offset by the software. Notably, current recordings were
all leak-subtracted and cells with leak currents above 100 pA
were excluded from analysis. All experiments were performed
at 21–23◦C room temperature. The holding potential (HP) was
set to 0mV in order to eliminate any possible contribution of
voltage-dependent Ca2+ channel activity. Cells were kept in the
whole-cell configuration for ∼10min for control recordings and
the compensation proceedings before starting the experiments
(Pusch and Neher, 1988). Whole-cell currents were recorded
over a voltage range of −60 to +130mV for 500ms each
and measured every 5 s. The current densities (pA/pF) were
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FIGURE 1 | Larger functional TRPM8 expression in UM 92.1 than PM cells. Drug additions were made at the indicated time points (arrows). Data are mean ± SEM of

4–8 experiments. (A) CAP (20µM) induced an irreversible Ca2+ influx (n = 4) whereas non-treated control cells showed a constant Ca2+ baseline (n = 4). (B) The

same effect could be observed in normal porcine melanocytes but with a time lag (n = 7; controls n = 11). (C) Summary of the experiments with CAP (n = 4–7). The

asterisks (*) show significant differences between control and CAP (n = 4; 350s; *p < 0.05; n = 7; 590 s; **p < 0.01; paired tested). The hashtag shows a significant

difference of the CAP effect at 350 s between UM 92.1 cells and melanocytes (n = 4-7; 590 s; #p < 0.05; unpaired tested). (D–F) Same experiments as shown in

(A–C), but with icilin (20µM) (n = 4–8). The icilin effect was markedly reduced in porcine melanocytes. The asterisks (*) show significant differences between control

and icilin (n = 4; 350 s; *p < 0.05; paired tested). The hashtags (#) shows a significant difference of the icilin effect at 350 s and 590 s between UM 92.1 cells and

melanocytes (n = 4–8; 350 s; ###p < 0.005; 590 s; ##p < 0.01; unpaired tested).

calculated by dividing the current (pA) by the cell membrane
capacitance (pF). For purposes of comparison, the currents were
normalized to control currents (set to 100%).

Statistical Analysis
The paired two-tailed Student’s t-test was applied in conjunction
with several normality tests (KS normality test, D’Agostino &
Pearson omnibus normality test, and Shapiro-Wilk normality
test). If these tests failed, non-parametric Wilcoxon matched
pairs were used. The Student’s t-test was also used for unpaired
data, if the data also passed the aforementioned normality
tests. If these tests failed, the non-parametric Mann-Whitney-
U test was performed. Welch’s correction was applied if data
variance of the two groups were too different. Probabilities of
p < 0.05 [indicated by asterisks (∗) and hash tags (#)] were
considered to be significant. The number of repeats is shown
in each case in brackets, near the traces or bars. All values are

means ± SEM (error bars in both directions). All plots were
generated with SigmaPlot software version 12.5 for Windows
(Systat Software, San Jose, California, United States) and with
GraphPad Prism version 5.00 for Windows (GraphPad Software,
San Diego California USA), respectively.

RESULTS

Functional TRPV1 Channel Expression in
UM 92.1 and Porcine Melanocytes
TRPV1 activity in all cases was documented based on the
magnitudes of the Ca2+ transients induced by the highly selective
TRPV1 agonist, capsaicin (CAP; 20µM; Caterina et al., 1997;
Pingle et al., 2007; Vriens et al., 2009) in PM. Figure 1B shows
that CAP increased f340nm/f380nm from a stable baseline value
of 1.200 ± 0.001 to 1.215 ± 0.004 after 590 s (n = 7, p <

0.05). Interestingly, CAP evoked a biphasic or delayed effect on
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FIGURE 2 | VEGF transactivates TRPV1 channels in UM 92.1 cells. VEGF (10 ng/ml) was added at the indicated time points (arrows). Data are mean ± SEM of 6–17

experiments. (A) Mean trace showing VEGF-induced Ca2+ increase (n = 17). (B) Same experiment as shown in (A), but in the presence of CPZ (20µM). CPZ clearly

suppressed the VEGF-induced Ca2+ increase (n = 6). (C) Same experiment as shown in (A), but in the presence of BCTC (20µM). BCTC partially suppressed the

VEGF-induced Ca2+ increase (n = 6). (D) Same experiment as shown in (A), but in the presence of AMTB (20µM). AMTB had no effect on the VEGF-induced Ca2+

increase (n = 10). (E) Summary of the experiments with VEGF and the TRP channel blockers. The asterisks (*) show significant Ca2+ increases with VEGF (n = 17;

300 s; ***p < 0.005; 450 s; *p < 0.05; paired tested). The hashtags (##) indicate statistically significant differences of fluorescence ratios between VEGF with and

without the TRP channel blockers CPZ and BCTC, resp. (n = 6–17; 300 s; ##p < 0.01; unpaired tested). One hashtag (#) indicates a statistically significant

difference between CPZ and BCTC effect on VEGF-induced Ca2+ increase at 300 s (n = 6; #p < 0.05).

intracellular Ca2+ increase in PM, which was absent in UM 92.1
tumorous cells. In UM 92.1 cells, CAP instead increased the
f340nm/f380nm ratio more promptly but to the same level; namely,
from 1.199 ± 0.001 (80 s) to 1.215 ± 0.002 after 590 s (n = 4, p
< 0.01; Figures 1A,C). Overall, there is a difference in the Ca2+

response pattern. While in PM, there was a large data scatter and
a delayed [Ca2+]i transient (Figure 1B), this response was both
more reproducible and prompt in UM 92.1 cells (Figure 1A).

Functional TRPM8 Channel Expression in
UM 92.1 Cells
Even though there was TRPM8 gene and functional expression
in different UM cell lines including UM 92.1 cells, it was absent

in human uveas (Mergler et al., 2014). To confirm that lack of
TRPM8 expression is indicative of normal tissue, we probed for
its presence in healthy PM. Icilin (20µM), a mixed TRPM8/
TRPA1-agonist (Andersson et al., 2004; Rawls et al., 2007)
induced a Ca2+ transient in UM 92.1 cells (n = 4; p < 0.05;
Figures 1D,F) whereas such an effect did not occur in PM (n
= 8; p > 0.05; Figures 1E,F). Therefore, detectable functional
TRPM8 and/or TRPA1 expression is a marker of UM cell line
malignancy.

VEGF-Transactivates TRPV1
VEGF increased the f340nm/f380nm ratio from 1.2000 ± 0.0004 to
1.209 ± 0.001 (t = 300 s; n = 17; p < 0.01, Figures 2A,E). As
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FIGURE 3 | Comparison of the effects of CPZ and AMTB on VEGF-induced

rises in whole-cell currents in UM 92.1 cells. (A) Time course recording

showing the current increases induced by VEGF (10 ng/ml) and after

application of 20µM AMTB. (B) Original traces of VEGF-induced current

responses to voltage ramps. Current densities are shown before application

(labeled as A), during application of VEGF (labeled as B), and after addition of

AMTB (labeled as C). (C–D) Same recordings as shown in (A–B) but with

20µM CPZ instead of AMTB. CPZ clearly reduced the VEGF-induced

whole-cell increases. (E) Summary of patch-clamp experiments with VEGF,

AMTB and CPZ. The asterisks (***) indicate statistically significant differences

of in- and outward currents with VEGF without and with AMTB (n = 8–40;

***p < 0.005; paired tested). VEGF had no effect in the presence of CPZ.

VEGF induced Ca2+ transients through transactivating TRPV1
channels in corneal fibroblasts and conjunctival epithelial cells,
we determined if such an interaction occurs in UM 92.1 cell lines.
This was done by evaluating the individual effects of each of the
following inhibitors at 20 µM: (a) CPZ for TRPV1 (Vriens et al.,
2009); (b) BCTC for TRPM8/TRPV1 (Behrendt et al., 2004; Weil
et al., 2005; Vriens et al., 2009; Benko et al., 2012; Liu et al.,
2016); and (c) AMTB for TRPM8 (Lashinger et al., 2008). With
CPZ, the baseline ratio remained invariant at f340nm/f380nm ratio
= 1.2013 ± 0.0006 (n = 6; Figure 2B) whereas with AMTB
this ratio rose to 1.215 ± 0.005; p > 0.05; n = 10; Figure 2D.
This difference indicates that the VEGF-induced Ca2+ transients
mediated by VEGFR solely transactivate TRPV1. With BCTC,
the VEGF induced Ca2+ transients were only partially inhibited
(Figure 2C). In this case, VEGF induced a transient reaching
1.2030 ± 0.0005 (p < 0.01; n = 6 Figure 2C), which was larger
than the ratio induced by VEGF in the presence of CPZ (p< 0.05;
n = 6; Figures 2B,D). This difference is consistent with BCTC
being a mixed TRPM8/TRPV1 antagonist.

While AMTB did not influence the VEGF-induced increases
in whole-cell currents (20µM; n = 12; Figures 3A,B,E), this
increase was suppressed by CPZ (20µM; n = 8; p < 0.005;
Figures 3C–E). In summary, the VEGF-induced increases in
Ca2+ influx and whole-cell currents are mediated through
transactivation of TRPV1 by VEGFR.

Equivalent Activation of TRPV1 by VEGF
and CAP in UM 92.1 Cells
As VEGF induces downstream signaling through transactivating
TRPV1, we determined if CAP augmented VEGF induced
TRPV1 activation. The results shown in Figures 4A,B indicate
after application of VEGF, the maximal inward— and outward
currents were−30± 5 pA/pF and 164± 17 pA/pF respectively (n
= 7). Subsequently CAP failed to significantly enhance the whole-
cell currents, which stabilized at − 35 ± 7 pA/pF and 154 ± 14
pA/pF respectively (n= 4; p > 0.05; Figures 4A,C–E).

3-T1AM Activates TRPM8 in UM 92.1 Cells
As a positive control, the effect of 100µM menthol, a
highly selective TRPM8 agonist, was determined on whole-cell
currents since this concentration was previously used to validate
functional TRPM8 expression (Knowlton et al., 2011; Hirata and
Oshinsky, 2012; Robbins et al., 2012; Mergler et al., 2013). As
shown in Figures 5A,B, menthol increased the inward currents
from −15 ± 3 pA/pF (control) to −36 ± 5 pA/pF (p < 0.01; n
= 8; Figure 5C) whereas 20µM AMTB suppressed this rise to
−13 ± 4 pA/pF (p < 0.05; n = 8; Figure 5C). Similarly menthol
increased the currents from 166± 30 pA/pF (control) to 236± 46
pA/pF, which AMTB suppressed to 175± 31 pA/pF (Figure 5C).
The results of current normalization shown in Figures 5D,E

(control set to 100%) affirm cell membrane delimited functional
TRPM8 expression.

Irrespective of 3-T1AM ranging from 200 nM to 10µM,
its effects were essentially the same as those obtained with
menthol (Figures 6A,B). The largest increases were obtained
over a range between 1 and 5µM (Lucius et al., 2016). In
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FIGURE 4 | CAP does not augment increases in whole-cell currents in VEGF treated UM 92.1 cells. (A) Time course recording showing the current peak induced by

10 ng/ml VEGF and current peak after application of 20µM CAP. (B) Original traces of VEGF- and CAP-induced current responses to voltage ramps. Current densities

are shown before application (labeled as A), during application of VEGF (labeled as B), and after addition of CAP (labeled as C). (C) Summary of patch-clamp

experiments with VEGF and CAP. The asterisks (**) indicate statistically significant increase with VEGF (n = 7; p < 0.01; paired tested) and unchanged magnitude of

currents in the presence of CAP (n = 4; p > 0.05; paired tested). (D) Maximal negative current amplitudes induced by a voltage step from 0 to −60mV are depicted in

percent of control values before application of 10 ng/ml VEGF. VEGF-induced inward currents (n = 7; *p < 0.05) were not increased in the presence of 20µM CAP (n

= 4; p > 0.05). (E) Maximal positive current amplitudes induced by a voltage step from 0 to +130mV are depicted in percent of control values before application of

10 ng/ml VEGF. VEGF-induced outwardly rectifying currents (n = 7; *p < 0.05) were not increased in the presence of 10µM CAP (n = 4; p > 0.05).

UM 92.1 cells, 1µM 3-T1AM increased the inward currents
from −8 ± 2 pA/pF (control) to −25 ± 9 pA/pF (p < 0.01;
n = 9; Figure 6C) whereas 20µM AMTB suppressed this rise
to −18 ± 10 pA/pF (p < 0.05; n = 7; Figure 6C). Similarly,
3-T1AM also increased the outward currents from 80 ± 24
pA/pF (control) to 142 ± 40 pA/pF, which AMTB suppressed
to 112 ± 45 pA/pF (n = 7–9; p < 0.05) (Figure 6C). Similar
results were obtained following current normalization shown in
Figures 6D,E.

3-T1AM Suppresses VEGF-Induced Rises
in Whole-Cell Currents
In TRPM8 transfected cells, 3-T1AM and BCTC increased and
inhibited Ca2+transients, respectively (Lucius et al., 2016). These
opposing effects were used to determine if TRPM8 activation

suppresses CAP induced rises in TRPV1 activity whereas BCTC
reduces the inhibitory effect of 3-T1AM on these responses to
CAP. 3-T1AM (5µM) induced a [Ca2+]i transient (p < 0.01; n
= 9; Figures 7A,C) whereas 20µMBCTC inhibited this response
(p< 0.05; n= 4; Figures 7B,C). Even though BCTC is reportedly
as a mixed TRPM8/ TRPV1 antagonist in some cell types, it
did not alter Ca2+ transients induced by a relatively high CAP
concentration in a heterologous expression system (Lucius et al.,
2016). 3-T1AM suppressed the 10 ng/ml VEGF-induced Ca2+

transient (Figures 7E,F). Another indication of suppression by
TRPM8 of VEGF transactivation by TRPV1 is that 1µM3-T1AM
suppressed VEGF-induced increases in the whole-cell currents
(n = 7; p < 0.01; Figure 8), Mimicking of this inhibitory effect
by icilin validates that 3-T1AM is a selective TRPM8 agonist
(Khajavi et al., 2015, 2017; Lucius et al., 2016; Schanze et al.,
2017).
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FIGURE 5 | AMTB suppresses menthol-induced rises in whole-cell currents in UM 92.1 cells. (A) Time course recording showing the current increases induced by

menthol (100µM) and reduction after application of 20µM AMTB. (B) Original traces of menthol-induced current responses to voltage ramps. Current densities are

shown before application (labeled as A), during application of menthol (labeled as B), and after addition of AMTB (labeled as C). (C) Summary of the patch-clamp

experiments with menthol and AMTB. The asterisks (*) indicate statistically significant differences of in- and outward currents with menthol without AMTB (n = 8;

inward currents; **p < 0.01; outward currents; *p < 0.05; paired tested) and in the presence of AMTB (n = 8; in- and outward currents *p < 0.05; paired tested). (D)

Maximal negative current amplitudes induced by a voltage step from 0 to −60mV are depicted in percent of control values before application of 100µM menthol.

Menthol-induced inward currents (n = 8; **p < 0.01) were clearly suppressed in the presence of 20µM AMTB (n = 8; **p < 0.01). (E) Maximal positive current

amplitudes induced by a voltage step from 0 to +130mV are depicted in percent of control values before application of 100µM menthol. Menthol-induced outwardly

rectifying currents (n = 8; **p < 0.01) were clearly suppressed in the presence of 20µM AMTB (n = 8; *p < 0.05).

Icilin and Menthol Mimic Suppression by
3-T1AM of VEGF Transactivation of TRPV1
As a positive control, the effects of CAP and VEGF were
determined using an alternative fluorescence Ca2+ imaging data
acquisitionmethod as described in the method section. As shown
in Figure 9A, a reduced CAP concentration (10µM) led to
an increase of f340nm/f380nm from 0.2021 ± 0.0004 (100 s) to
0.2094 ± 0.0013 (300 s) (n = 19; p < 0.005) whereas a washout
did not reduce the Ca2+ level. With 10 ng/mg VEGF instead
of CAP (Figure 9B), this ratio increased from to 0.2011 ±

0.0004 (100 s) to 0.2331 ± 0.0029 (300 s) (n = 85; p < 0.005)
and a washout did not augment this response Ca2+ transient
(Figures 9B,C). However, preincubation of the cells with icilin
suppressed the VEGF-induced increase to 0.2058 ± 0.0023 at
300 s (p < 0.005) and to 0.2187 ± 0.0034 at 600 s (both n = 65; p
< 0.01) (Figures 9C,D). Menthol had the same inhibitory effect
as icilin. Functional TRPM8 expression was validated based on a
correspondence between the transients induced by cooling from

20 to 18◦C (Figures 10A–C) and exposure to 200µM menthol
(Figures 10B,C). Furthermore, as with icilin, preincubation of
the cells with menthol suppressed the VEGF-induced Ca2+

transient even at a higher VEGF concentration since 20 ng/ml
VEGF increased the f340nm/f380nm ratio from 0.1991 ± 0.011
(100 s) to 0.2212 ± 0.0021 (250 s) (n = 25; p < 0.005)
(Figure 10D). In contrast, 200µM menthol completely blocked
this effect (e.g., f340nm/f380nm = 0.2009 ± 0.0007 at 250 s; n = 32;
p < 0.005) (Figures 10E,F). In summary, the near equivalence
between the transients induced by either icilin, menthol, or 3-
T1AM and their inhibitory effects on VEGF-induced TRPV1
transactivation confirms that this thyroid hormone metabolite is
a selective TRPM8 agonist.

Cannabinoid Receptor Type 1 Activity
Modulates Inhibition of TRPV1 by 3-T1AM
Since the G protein-coupled cannabinoid receptor 1 (CB1) is
expressed in uveal melanoma cells (Mergler et al., 2014), we
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FIGURE 6 | 3-T1AM elicits increases in whole-cell currents through TRPM8 channels in UM 92.1 cells. (A) Time course recording showing the current increases

induced by 3-T1AM and reduction after application of 20µM AMTB. (B) Original traces of 3-T1AM -induced current responses to voltage ramps. Current densities are

shown before application (labeled as A), during application of 3-T1AM (labeled as B), and after addition of AMTB (labeled as C). (C) Summary of patch-clamp

experiments with 3-T1AM and AMTB. The asterisks (**) indicate statistically significant increase with 3-T1AM (n = 9; p < 0.05 at the minimum; paired tested) and

decreases in the presence of AMTB (n = 7; p < 0.05; paired tested).). (D) Maximal negative current amplitudes induced by a voltage step from 0 to −60mV are

depicted in percent of control values before application of 1µM 3-T1AM. 3-T1AM-induced inward currents were clearly suppressed in the presence of 20µM AMTB

(n = 4; *p < 0.05). (E) Maximal positive current amplitudes induced by a voltage step from 0 to +130mV are depicted in percent of control values before application

of 1µM 3-T1AM. 3-T1AM-induced outwardly rectifying currents (n = 5; **p < 0.01) were clearly suppressed in the presence of 20µM AMTB (n = 4; *p < 0.05).

determined if either this receptor or its coupled G-proteins affect
interactions between TRPM8 and TRPV1 in UM cells. To deal
with this question, the individual effects of the selective CB1
receptor antagonist, AM251, and a corresponding agonist, WIN
55,212-2 (both 10µM) were characterized by measuring their
effects on [Ca2+]i in UM92.1 cells.WIN 55,212-2 induced a Ca2+

transient at a different cell passage compared to our previous
studies (n = 27; p < 0.005). This validates CB1 involvement in
Ca2+ regulation in UM 92.1 cells (Figure 11A). Interestingly,
the WIN-induced Ca2+ increase was at significant higher levels
under Ca2+ free conditions (n= 53; p < 0.005) (Figures 11B,C).
Similarly, 1µM 3-T1AM also induced such a response. On the
other hand, preincubation of the cells with the CB1 blocker
AM251 (10µM) augmented this rise induced by 3-T1AM. The
transient reached with 3-T1AM by itself was 0.2155 ± 0.0014 (n
= 13) at 400 s only whereas with AM251 (10µM) it rose to 0.2446

± 0.0037 at the same time (n= 46; p< 0.005) (Figures 11D,E,G).
In contrast, 3-T1AM failed to induce a transient under Ca2+

free conditions (n = 39) (Figures 11F–G). In summary, changes
in CB1 activity and/or coupled G-protein activity modulate
interactions between TRPV1 and TRPM8.

DISCUSSION

We describe here TRPV1 and TRPM8 functional activity and
their interactions in modulating VEGF-induced signaling in UM
cells. Even though a short-term UM cell culture (P < 20) was
used in this study, variations may occur in gene expression
profiles between UM primary tumors and their derived cell lines.
Nevertheless, there were only moderate modifications in the gene
products (Mouriaux et al., 2016). Accordingly, Mouriaux et al.
suggested that cell lines might represent useful tools in functional
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FIGURE 7 | 3-T1AM elicits increases in Ca2+ entry through TRPM8 channels but instead suppresses VEGF-induced Ca2+ increases in UM 92.1 cells. 3-T1AM

(5µM) or VEGF (10 ng/ml) was added at the time points indicated by arrows. Data are mean ± SEM of 4–9 experiments. (A) Mean trace showing 3-T1AM-induced

Ca2+ increase (n = 9) whereas non-treated control cells showed a constant Ca2+ baseline (n = 13). (B) Same experiment as shown in (A), but in the presence of

BCTC (20µM). BCTC clearly suppressed the 3-T1AM-induced Ca2+ increase (n = 4). (C) Summary of the experiments with 3-T1AM and BCTC. The asterisks (**)

show significant Ca2+ increases with 3-T1AM (n = 9; 350 s; *p < 0.05; 490 s; **p < 0.01; paired tested). The hashtag (#) indicates a statistically significant difference

of fluorescence ratios between 3-T1AM with and without BCTC (n = 6; 490s; #p < 0.05; unpaired tested). (D) Mean trace showing VEGF-induced Ca2+ increase (n

= 6) whereas non-treated control cells showed a constant Ca2+ baseline (n = 9). (E) Same experiment as shown in (D), but in the presence of 3-T1AM (1µM).

3-T1AM clearly suppressed the VEGF-induced Ca2+ increase (n = 6). (F) Summary of the experiments with VEGF and 3-T1AM. The asterisk (*) shows a significant

Ca2+ increase with VEGF (n = 6; 400 s; *p < 0.05; paired tested). The hashtags (##) indicate statistically significant differences of fluorescence ratios between VEGF

with and without 3-T1AM (n = 6; 400 s; ##p < 0.01; unpaired tested).

assays, as well as pharmacologic and genetic studies (Mouriaux
et al., 2016). The TRPV1 and TRPM8 functional activity
identified in these UM cells is consistent with the correspondence
between the mRNA and protein expression patterns previously
described in several other UM cell-line types (Mergler et al.,
2014). Similarly, functional interaction between TRPM8 and
TRPV1 is evident because TRPM8 activation inhibited increases
in TRPV1 functional activity induced by CAP in both corneal
epithelial and endothelial cells (Khajavi et al., 2015; Lucius et al.,
2016). Furthermore, TRPM8 activation blunts transactivation of
TRPV1 by VEGF in UM cells (Figures 7, 8). This modulation
of VEGF-induced increases in Ca2+ influx mediated by TRPV1
activation shows that this receptor triad contributes through
crosstalk to the growth promoting effects of VEGF in UM cells

derived frommalignant tumors. Such crosstalk is consistent with
other studies wherein TRPM8 activation dampens CAP-induced
TRPV1 activation by VEGF (Millqvist, 2016; Takaishi et al.,
2016). This consistency in interactions among this receptor triad
in different cell types suggests that results obtained with one cell
type may be applicable to various cell types.

TRPV1 Functional Expression Evidence
Even though CPZ has limited selectivity as a TRPV1 antagonist
(Docherty et al., 1997; Liu and Simon, 1997; Oh et al., 2001; Ray
et al., 2003; Teng et al., 2004) and limited TRPM8 selectivity
(Behrendt et al., 2004; Xing et al., 2007; Mergler et al., 2013),
its suppression of CAP-induced [Ca2+]i transients and whole-
cell currents in UM 92.1 cells are indicative of TRPV1 functional
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FIGURE 8 | 3-T1AM suppresses VEGF-induced rises in whole-cell currents in UM 92.1 cells. (A) Time course recording showing the current increases induced by

VEGF (10 ng/ml) and reduction after application of 10µM 3-T1AM. (B) Original traces of VEGF-induced current responses to voltage ramps. Current densities are

shown before application (labeled as A), during application of VEGF (labeled as B), and after addition of 3-T1AM (labeled as C). Current densities as function of voltage

were derived from the traces shown in panel A. (C) Summary of patch-clamp experiments with VEGF and 3-T1AM. The asterisks (***) indicate statistically significant

increase with VEGF (n = 40; ***p < 0.005; paired tested). The hashtags (##) indicate statistically significant differences of whole-cell in- and outward currents between

VEGF with and without 3-T1AM (n = 7–40; ##p < 0.01; unpaired tested). (D) Maximal negative current amplitudes induced by a voltage step from 0 to −60mV are

depicted in percent of control values before application of 10 ng/ml VEGF. VEGF-induced inward currents (n = 7; **p < 0.01) were clearly suppressed in the presence

of 1µM 3-T1AM (n = 7; *p < 0.05). (E) Maximal positive current amplitudes induced by a voltage step from 0 to +130mV are depicted in percent of control values

before application of 10 ng/ml VEGF. VEGF-induced outwardly rectifying currents (n = 7; ***p < 0.005) were clearly suppressed in the presence of 1µM 3-T1AM (n =

7; **p < 0.01).

activity (Figures 2, 3). Its functional expression was also clearly
detectable in both primary cultivated PM and healthy human
uveas (Mergler et al., 2014). However, TRPV1 receptor density
was probably at lower levels because of more extensive data
scatter and a delayed response to CAP inmost PMmeasurements
(Figure 1B). Nevertheless, the maximal rises in Ca2+ influx in
normal PM cells closely correspond to those in UM 92.1 cells.

The dynamic range of our Ca2+ imaging system was limited
to 0.20 for detecting increases in the fluorescence ratio because
the initial fluorescence responses of the two exciting wavelengths
were at a relatively high level, which compressed the dynamic
range of our measurements due to mathematical reasons.
Therefore, even ratio changes of only 0.015 for CAP were
significant and the measurements were clearly discernible and
reproducible (Figure 1A). Another indication of the adequate

resolving power of our measurements is that the effects of
CAP and icilin especially in UM 92.1 cells were irreversible
and reached a steady state in most experiments. Similarly, this
irreversibility was described in other eye tumor cells (Mergler
et al., 2012a, 2014; Garreis et al., 2016) as well as healthy eye
surface cells (Khajavi et al., 2015; Lucius et al., 2016).

Different TRPM8 Expression Levels in UM
92.1 Cells and PM
In healthy human uveas, TRPM8 mRNA expression was not
evident whereas the TRPA1 PCR signal was present at very high
levels (Mergler et al., 2014). On the other hand, icilin (Rawls et al.,
2007) increased Ca2+ transients in UM 92.1 cells (Figure 1D)
whereas this effect was not evident in PM (Figures 1E,F). Even
though menthol activates TRPM8 (Eccles, 1994; Galeotti et al.,
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FIGURE 9 | Icilin suppressed VEGF-induced Ca2+ increase in UM 92.1 cells. Drugs were added at the indicated time points (arrows). Data are mean ± SEM of

15–85 Ca2+ traces in each set of experiments. (A) CAP (10µM) induced an irreversible Ca2+ increase (n = 19). A washout did not reduce the Ca2+ levels.

Non-treated control cells showed a constant Ca2+ baseline (n = 15). (B) The similar Ca2+ response pattern could be observed with 10 ng/ml VEGF instead of CAP (n

= 85). (C) Same experiment as shown in (B), but in the presence of icilin (10µM) (n = 65). Icilin partially suppressed the VEGF-induced Ca2+ increase (n = 65).

Non-treated control cells showed a constant Ca2+ baseline in the presence of icilin (n = 36). (D) Summary of the experiments with CAP, VEGF and icilin. The asterisks

(***) show significant Ca2+ increases with CAP and VEGF (n = 15–85; **p < 0.01 at the minimum; unpaired tested).

2002; Bautista et al., 2007; Pedretti et al., 2009), the magnitudes
of these transients did not correlate with the TRPM8 expression
levels in certain cancer cells indicating a TRPM8-independent
signaling pathway (Naziroglu et al., 2018). Irrespective of that,
menthol also activated TRPM8 in the absence of extracellular
Ca2+, whereas responses to icilin are Ca2+ dependent (McKemy
et al., 2002; Chuang et al., 2004). Therefore, icilin appears to
induce Ca2+ transients by increasing Ca2+ influx from the
extracellular medium (McKemy et al., 2002; Andersson et al.,
2004; Behrendt et al., 2004). Nevertheless, TRPA1 involvement
cannot be excluded because icilin can also interact with TRPA1
even though icilin was relatively ineffective at inducing Ca2+

transients and there is no detectable TRPA1 mRNA expression in
this cell type (Mergler et al., 2014). Therefore, TRPM8 activity in
PM and human uveas is relatively low compared to higher levels
in malignant uveal cell types (Mergler et al., 2014). In contrast,

the CAP-induced Ca2+ transients were comparable suggesting no
difference in TRPV1 expression levels in these two different cell
types (Figure 1B).

Crosstalk Between VEGFR and TRPV1
VEGF transactivated TRPV1 through its interaction with
VEGFR since the Ca2+ transients and their underlying
currents were both fully blocked during exposure to CPZ.
Furthermore, the stimulation by VEGF of TRPV1 was maximal
since supplementation with CAP failed to augment the
increases in whole-cell currents induced by VEGF application
(Figures 4, 7, 8).

Unlike with CPZ, the TRPM8 blocker AMTB (Lashinger
et al., 2008) failed to suppress these transients induced by VEGF
suggesting that VEGFR solely transactivates TRPV1 (Figure 2).
This agrees with what was described in a benign tumor (Garreis
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FIGURE 10 | Menthol suppressed VEGF-induced Ca2+ increase in UM 92.1 cells. Drugs were added at the indicated time points (arrows). Data are mean ± SEM of

15–40 Ca2+ traces in each set of experiments. (A) Moderate cooling (≈27 to 18◦C) induced a Ca2+ increase, which partially recovered (n = 17). Non-treated control

cells showed a constant Ca2+ baseline (n = 15). (B) TRPM8 activation by menthol (200µM) led to a Ca2+ increase, which is at lower levels compared to moderate

cooling (n = 40). (C) Summary of the experiments with cooling and menthol. The asterisks (*) show significant Ca2+ increases with moderate cooling and menthol (n

= 17 - 40; ***p < 0.005; paired tested). (D) The Mean trace showing VEGF-induced Ca2+ increase (n = 25). (E) Same experiment as shown in (D), but in the

presence of menthol (200µM). Menthol clearly suppressed the VEGF-induced Ca2+ increase (n = 32). (F) Summary of the experiments with VEGF and menthol. The

asterisks (*) show significant Ca2+ increases with VEGF (n = 25; ***p < 0.005; paired tested). The hashtags (###) show significant Ca2+ decreases in the presence of

menthol (n = 32; ###p < 0.005; unpaired tested).

et al., 2016). The smaller inhibitory effects of BCTC on VEGF-

induced increases in Ca2+ influx than those induced by CPZ are
supportive of the notion that BCTC is a mixed TRPV1/TRPM8

antagonist (Behrendt et al., 2004; Weil et al., 2005; Vriens et al.,
2009; Benko et al., 2012; Liu et al., 2016). In contrast, AMTB

is a more selective TRPM8 antagonist (Lashinger et al., 2008)
since it failed to block VEGF-induced transactivation of TRPV1

(Figures 2D, 3A,B). The limited specificity of BCTC as a TRPV1
blocker is supported by our finding that at a relatively high CAP
concentration (20µM), BCTC was ineffective as a blocker of
TRPV1 activation in human corneal epithelial cells (Lucius et al.,
2016). The marked difference between the large inhibitory effect
of CPZ and the minimal effect of AMTB on increases in currents
induced by VEGF confirms that VEGF solely transactivates
TRPV1 (Figure 3). However, VEGFR is also known to regulate
multiple channels including TRPs (Garnier-Raveaud et al., 2001;
Hamdollah Zadeh et al., 2008; Thilo et al., 2012; Reichhart et al.,

2015; Wu et al., 2015; Qin et al., 2016). Specifically, McNaughton
et al. demonstrated that nerve growth factor (NGF) receptors
in HEK293 cells transfected with plasmids containing cDNAs
coding for TRPV1 and for the Tropomyosin receptor kinase A
(TrkA) receptor for NGF increased the expression level of TRPV1
but did not sensitize or activate the receptor (Zhang et al., 2005;
Vay et al., 2012). One explanation may be that NGF is different
from VEGF or that our study used non-excitable (tumor) cells.

TRPM8 Activation Suppresses
VEGF-Induced Rises in Ca2+ Influx
3-T1AM suppressed VEGFR transactivation of TRPV1
(Figures 7D–F, 8) was blocked by BCTC in TRPM8-transfected
cells, in corneal and conjunctival epithelial cells derived from
normal cells (Khajavi et al., 2015; Lucius et al., 2016) and in
UM 92.1 cells (Figures 7, 8) as well as in thyroid PCCL3 cells
(Schanze et al., 2017). These effects were similar to those induced
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FIGURE 11 | 3-T1AM modulation of TRPV1 is associated with cannabinoid receptor type 1 activity. Drugs were added at the indicated time points (arrows). Data are

mean ± SEM of 13–53 Ca2+ traces in each set of experiments. (A) WIN 55,212-2 (10µM) induced a Ca2+ increase, (n = 27). Non-treated control cells showed a

constant Ca2+ baseline (n = 34). (B) Ca2+ free condition reduced the intracellular Ca2+ level (baseline) and extracellular application of WIN 55,212-2 (10µM) strongly

increased the intracellular Ca2+ level (n = 53). (C) Summary of the experiments with WIN 55,212-2 with and without external Ca2+. The asterisks (***) show

significant Ca2+ increases with WIN 55,212-2 (n = 27 - 53; ***p < 0.005; paired tested). The hashtags (###) show significant stronger Ca2+ increase under external

Ca2+ free conditions (n = 53; ###p < 0.005; unpaired tested). (D) Mean trace showing 3-T1AM-induced Ca2+ increase (n = 13) whereas non-treated control cells

showed a constant Ca2+ baseline (n = 29). (E) Same experiment as shown in (D), but in the presence of AM251 (10µM) (n = 46). The 3-T1AM-induced Ca2+

increase is at higher levels compared to the effect without the CB1 blocker. (F) Same experiment as shown in (B), but with 1µM 3-T1AM instead of WIN 55,212-2.

3-T1AM did not change the intracellular Ca2+ concentration. (G) Summary of the experiments with 3-T1AM with and without AM251 or external Ca2+. The asterisks

(***) show significant Ca2+ increases with 3-T1AM (n = 13–46; ***p < 0.005; paired tested). The hashtags (###) show significant difference of the 3-T1AM-induced

Ca2+ increase with and without AM251 (n = 13–46; ###p < 0.005; unpaired tested).

by AMTB, which is consistent with significant antagonism by
BCTC of TRPM8 (Figures 5, 6, 7A–C).

The 3-T1AM mediated Ca2+ transients as well as increases
in their underlying currents occurred at lower concentrations in
UM 92.1 melanoma cells than those in healthy cells or thyroid
cells (Khajavi et al., 2017; Schanze et al., 2017). Specifically,
3-T1AM was used over a concentration range from 0.2 to
10µM with 1–5µM having maximal stimulatory effects on
whole-cell currents, which agrees with previous studies using
corneal epithelial cells (Lucius et al., 2016). 3-T1AM had a
concentration dependent inhibitory effect on Ca2+ transients

that may be attributable to different modes of action. With
0.5µM 3-T1AM, only whole-cell currents increased without any
inhibitory effect on VEGF-induced rises in Ca2+ influx (data not
shown). However, with 1µM 3-T1AM VEGF-induced rises in
Ca2+ influx also declined with a time course that was similar to
that obtained with CPZ (Figures 2B, 7E, 11D). It is conceivable
that the effect of 0.5µM 3-T1AM is membrane delimited rather
than causing release of Ca2+ from intracellular stores. Perhaps,
1µM 3-T1AM is at a high enough concentration for it to gain
access to cytosolic intracellular TRPV1 binding sites with which
CPZ also binds? If this supposition is proven to be correct,
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FIGURE 12 | Suggested Ca2+ signal transduction model accounting for how TRPM8 activation affects receptor-linked signaling pathways (Mergler et al., 2014;

Khajavi et al., 2017). Ca2+ channels such as TRPs of the TRPV1 subtype (capsaicin receptor) can be selectively activated by heat (>43◦C) or capsaicin and blocked

by CPZ (Figure 1A) (Mergler et al., 2014). VEGF-A activating VEGFR-1/VEGFR-2 can also activate TRPV1 (Figures 2, 3). The TRPM8 subtype (menthol receptor) can

be selectively activated by cold (23–28◦C), menthol, icilin or 3-T1AM and blocked by BCTC/AMTB (Figures 1D, Figures 5, 6) (Mergler et al., 2014; Khajavi et al.,

2017). Notably, a G-protein coupled receptor (GPCR) coupled to Gi/o proteins could be activated by 3-T1AM (Dinter et al., 2015a; Khajavi et al., 2017; Schanze et al.,

2017). 3-T1AM may also directly activate TRPM8 by a GPCR-independent mechanism (↑[Ca2+]i]) (Khajavi et al., 2017). If TRPM8 is activated by 3-T1AM, 3-T1AM

suppresses VEGRF via TRPV1 (Figures 7, 8). Notably, 3-T1AM may also directly suppress TRPV1 via VEGFR by a GPCR-independent mechanism (↓[Ca2+]i])

(Figure 8) Menthol and icilin mimic the 3-T1AM effect and suppresses increases in TRPV1 activity by VEGF (Figures 9, 10).

3-T1AM may have dual effects that include activating TRPM8
and at higher concentrations also suppressing TRPV1 activation
induced by VEGF. As the effects of modulators of TRP channel
activity on Ca2+ influx mirrored those on whole-cell currents
(Figures 7, 8), this agreement supports the notion that 3-T1AM
has a relevant role in regulating VEGF-mediated Ca2+ regulation
in tumor cells. In addition, we could demonstrate that TRPM8
activation by menthol or icilin mimic the 3-T1AM effect and is
able to suppress increases in TRPV1 activity by VEGF (Figures 9,
10). To the best of our knowledge, this report is the first one
describing such control in both benign eye surface tumor cells
(Garreis et al., 2016) and now in metastatic UM 92.1 cells. On
the other hand, the possible Ca2+ signal transduction pathways
activated by 3-T1AM as a specific activator of TRPM8 may
be more complex as suggested in Figure 12 (Khajavi et al.,
2017).

There are numerous studies showing that 3-T1AM also
regulates beta-adrenergic receptors, trace amine-associated
receptor 2, muscarinic receptors, and K+ channels (Scanlan et al.,
2004; Ghelardoni et al., 2009; Panas et al., 2010; Cichero et al.,
2014; Dinter et al., 2015b; Hoefig et al., 2016). 3-T1AM has also
been described as an antagonist of muscarinic type 3 receptor
(Laurino et al., 2016). Furthermore, beta-adrenergic receptors
and muscarinic receptors are expressed in multiple melanoma
cells including primary uveal melanoma (92.1, Mel202) (Janik
et al., 2017). In addition, changes in K+ channel activity
have been implicated in modulating progression of melanoma
(Oppitz et al., 2008; Luo et al., 2017). These studies indicate

that 3-T1AM may not be directly or solely targeting TRPM8
(Figure 12).

G Protein-Coupled Cannabinoid
Receptor-1 Modulates 3-T1AM
Suppression of TRPV1 Channels
It has been suggested that 3-T1AM is a multitarget ligand (Zucchi
et al., 2014) interacting with different TRP channel subtypes
including TRPM8 (Khajavi et al., 2015, 2017; Lucius et al., 2016).
Since functional CB1 expression has been described in ocular
tumor cells (Mergler et al., 2012a, 2014) and in healthy ocular
cells (Stumpff et al., 2005; Yang et al., 2010, 2013), we determined
if 3-T1AM interacts also with the cannabinoid receptor 1 CB1.
CB1 activation by WIN 55,212-2 induced Ca2+transients, which
were larger in a Ca2+ free conditions than with 2mM external
Ca2+ (Figures 11A–C). On the other hand, 3-T1AM failed to
elicit a Ca2+ transient in a Ca2+ free medium (Figure 11F)
whereas in the presence of AM251 and external Ca2+ in the
medium 3-T1AM-induced Ca2+ transients that were larger in the
presence of the CB1 blocker than in its absence (Figures 11D,E).
Since CB1 activation also suppresses TRPV1 activation (Yang
et al., 2013; Mergler et al., 2014), there may be an inverse
relationship between increases in TRPM8 activity and declines
in CB1 activity. Overall, the mechanisms involved in 3-T1AM
modulation of TRPV1 channels may also involves contributions
by other receptors such as CB1 and/or its coupled G-protein
mediators.
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Clinical Relevance
3-T1AM is a potential therapeutic agent for suppressing UM
expansion as already indicated in other studies demonstrating
that this thyroid hormone metabolite reduces cancer cell growth
and viability (Rogowski et al., 2017; Shinderman-Maman et al.,
2017). In UM cells, modulation of their metastatic activity
appears to include changes in TRPV1 activity induced by
TRPM8 and possibly CB1. The model for such control shown in
Figure 12 proposes that VEGF secreted by UM cells stimulates
intracellular Ca2+ influx in endothelial cells, which is a requisite
for driving angiogenesis and promotes UM proliferation and
metastasis. Since TRPM8 activation has an opposing effect on
TRPV1 activity, targeting TRPM8 may provide an effective
alternative to suppress metastatic melanoma progression without
side effects. Such an approach appears to be tenable based on
the fact that functional TRPM8 expression is only detectable
in the UM cells rather than PM cells. There is an urgent
need for further assessment of the validity of this option since
there are no measures currently available to reverse melanoma
metastasis.
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