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Cardiovascular diseases, including myocardial infarction and its complications such as
heart failure, are the leading cause of death worldwide. To date, basic and translational
research becomes necessary to unravel the mechanisms of cardiac repair post-
myocardial infarction. The local inflammatory tissue response after acute myocardial
infarction determines the subsequent healing process. The diversity of leukocytes
such as neutrophils, macrophages and lymphocytes contribute to the clearance of
dead cells while activating reparative pathways necessary for myocardial healing.
Cardiomyocyte death triggers wall thinning, ventricular dilatation, and fibrosis that can
cause left ventricular dysfunction and heart failure. The ultimate goal of cardiac repair
is to regenerate functionally viable myocardium after myocardial infarction to prevent
cardiac death. Current therapies for heart failure after myocardial infarction are limited
and non-curative. At the moment in clinic, conventional surgical interventions such as
coronary artery bypass graft or percutaneous coronary interventions are only able to
partially restore heart function, with a minor improvement in the left ventricular ejection
fraction. The goal of this review is to provide an overview of endogenous myocardial
repair mechanisms possibly transferable to future treatment strategies. Among the
innovative factors identified as essential in cardiac healing, we highlight specialized pro-
resolving mediators as the emerging factors that provide the key molecular signals for
the activation of the reparative cells in the myocardium.
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INTRODUCTION

Cardiovascular such as myocardial infarction, diseases, are the leading cause of morbidity and
mortality worldwide, causing 31% of all global deaths (Benjamin et al., 2018). A history of acute
myocardial infarction is associated with a 5-fold increase in the incidence of heart failure after
5 years of myocardial infarction. Therefore, there is a need to prevent cardiac failure by enhancing
cardiac repair processes. Following infarction, the myocardium undergoes major changes both in
its function and structure (Frangogiannis, 2012). Immediately after myocardial infarction, a robust
inflammatory reaction occurs: immune cells mainly, neutrophils and monocytes, migrate into the
heart, due to the release of myocardial danger-associated molecular patterns (DAMPs) derived
by necrotic and stressed/injured cardiac cells (cardiomyocytes). Later, the resolution phase lasts
a few days to weeks and encompasses the reparative or resolving phase. Finally, the progression
phase lasts months or years depending on the resolution phase, which, if defective, leads to
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cardiac dysfunction, chronic heart failure, and mortality
(Frangogiannis, 2012). A representative image shows the different
stages of myocardial infarction (Figure 1). In the post-myocardial
infarction initiation phase, numerous leukocytes travel from the
splenic reservoir through the circulation to the myocardium
that generates an edematous inflammatory milieu (Swirski et al.,
2009). DAMPs bind to cognate pattern recognition receptors
of the innate immune system on infiltrating leukocytes and
activate the release of inflammatory cytokines, chemokines and
activate cell adhesion molecules. The initial recruitment of
immune cells can promote cardiac fibrosis and heart failure
(Epelman et al., 2015). However, only recently studies show
that immune cells also contribute to the repair process and the
acute inflammatory response is more recently seen and described
as essential and protective. Several studies in fact, report
that controlling inflamed leukocytes promote cardioprotection
(Nahrendorf et al., 2015). The balance between inflammation
and resolution becomes crucial for the cardiac functionality,
inappropriate inflammation delays the myocardial repair process.
At the moment, improvement of intrinsic wound healing has
emerged as a potential strategy to prevent heart failure.

CARDIAC REPAIR POST-MYOCARDIAL
INFARCTION IS A SUPERBLY
ORCHESTRATED PROCESS

During myocardial infarction, neutrophil infiltration occurs
immediately peaking at day 1 (Hansen, 1995). Neutrophils are
pivotal players in post-infarction healing by potentially favoring
the recruitment of inflammatory monocytes (Nahrendorf et al.,
2007; Soehnlein et al., 2008). These cells present at the
surface chemokine receptors (CCR) such as CCR2. CCR2
expression changes in a time-of-day–dependent manner, which
crucially affects cardiac monocyte recruitment during myocardial
infarction (Schloss et al., 2017). Experimental evidence also
suggests that neutrophils directly damage cardiomyocytes in
the myocardium through the release of toxic products, such as
high amount of reactive oxygen species (Vinten-Johansen, 2004).
However, in addition, data also demonstrate that neutrophils
can improve cardiac function and cardiac repair (Horckmans
et al., 2017). Recent studies indicate that neutrophils may
acquire different phenotypes and contribute to resolution
of inflammation through the release of anti-inflammatory
mediators. Thus, neutrophils have been proposed to shift toward,
pro-resolving/N2 phenotype instead of a N1 pro-inflammatory
phenotype to promote tissue repair in condition of myocardial
infarction (Ma et al., 2016). Neutrophils have both beneficial
and detrimental roles during myocardial infarction, depending
on their phenotype: too many N1 neutrophils damage tissue
and cells leading to more inflammation. Too few N2 neutrophils
may not be able to promote resolution of inflammation
and apoptotic cardiomyocyte clearance: the perfect balance
of N1 and N2 neutrophils becomes necessary for optimal
cardiac repair. Achieving this balance represents the ideal pro-
resolving conditions for patients with myocardial infarction

(Romson et al., 1983; Ma et al., 2013, 2016; Carbone et al., 2016;
Horckmans et al., 2017).

Macrophages represent another abundant cell population
after myocardial infarction. They remain predominant in the
infarcted left ventricle during the late phases of myocardial
infarction (Yan et al., 2013; Hilgendorf et al., 2014). Macrophages
regulate multiple aspects of the cardiac healing response, such as
clearance of dead cells via Tyrosine-protein kinase Mer activation
during myocardial infarction (DeBerge et al., 2017). Macrophages
are classified in inflammatory macrophages (M1) during the
initial phase of myocardial infarction and anti-inflammatory
macrophages (M2) in the later phase of myocardial infarction
(Nahrendorf et al., 2007; Troidl et al., 2009). M1 macrophages
display the classical M1 surface marker expressing Ly-6Chigh

and CD206low and higher levels of pro-inflammatory mediators
(nitric oxide synthase, IL-6 IL-1b, and IL-12a). M2 macrophages
express Ly-6Clow and CD206high with pro-resolving signature
genes such as IL-10, arginase-1, and TGF-b. Interestingly, M2
macrophages mediate the beneficial effects of bone marrow-
derived mesenchymal stromal cells in infarct healing and repair
(Ben-Mordechai et al., 2013).

Among all the cells that contribute to the cardiac functionally
there are also lymphocytes, observed in patients that had
myocardial infarction (Nunez et al., 2008). Lymphocytes,
consisting of T cells, B cells, and natural killer (NK) cells have
important roles in both innate and adaptive immune responses
in myocardial infarction. However, not much attention has been
paid to these cells in the context of cardiac healing. Regulatory
cells also often have potent effects, despite their relative scarcity
(Epelman and Mann, 2012). Proliferative T cells: Th cells (CD4),
cytotoxic T cells (CD8), and Foxp3 + regulatory CD4 + T
cells are present in heart draining lymph nodes (Hofmann
et al., 2012). During myocardial infarction, T cells number
increases, due to the recruitment in the heart, since there are
no studies reporting any increase of lymphocyte proliferation.
B- and T-cell levels reach the peak after 7 days of myocardial
infarction (Yan et al., 2013). Studies reported that patients with
myocardial infarction have lower CD4+ but higher CD8+ T
lymphocytes (Blum and Yeganeh, 2003; Liu et al., 2011; Yan
et al., 2015). CD4+ T lymphocytes can differentiate into Th1
and Th2 lineage in response to the local milieu of cytokines
during myocardial infarction. Th2 cells show protective role
during myocardial infarction (Engelbertsen et al., 2013). NK
cells are cytotoxic lymphocytes critical to the acute immune
system during myocardial infarction (Yan et al., 2015). Not much
is known about B lymphocytes during myocardial infarction.
However, several studies using for example, mice deficient in B
cells, demonstrate their crucial role during ischemia/reperfusion
models (Kalogeris et al., 2012; Zouggari et al., 2013).

The inflammatory response that occurs during myocardial
infarction is seen as an important element for the clearance of
dead cells and the stimulation of the reparative processes. If dying
cells are not eliminated this can further promote permanent
loss of cardiac functionality and heart failure. The process of
cardiac repair involves phagocytosis/clearance of apoptotic cells
in the heart, predominantly promoted by macrophages, but other
non-professional phagocytes have been shown to participate in

Frontiers in Pharmacology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1342

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01342 November 22, 2018 Time: 18:5 # 3

Leoni and Soehnlein Instruct the Heart to Repair

FIGURE 1 | Three major phases post-myocardial infarction. Cardiomyocyte death (Benjamin et al., 2018) recruitment of neutrophils and pro-inflammatory monocytes
(Frangogiannis, 2012) release of anti-inflammatory mediators and promotion of angiogenesis and repair (Swirski et al., 2009).

this process such as cardiomyocytes and fibroblasts. Fibroblasts
during myocardial infarction become activated and differentiate
into myofibroblasts (Dutta et al., 2015; Nakaya et al., 2017).
Cardiomyocytes can phagocytose latex particles in vitro (Garfield
et al., 1975) and potentially cardiomyocyte debris in vivo
(Hurle et al., 1977, 1978). Myofibroblasts mediated clearance
of dying cells after myocardial infarction via milk fat globule
epidermal growth factor (Han et al., 2016). Myofibroblasts are
capable of other roles, such as extracellular matrix metabolism,
contractile activity, producing and secreting greater levels
of extracellular matrix proteins, including several types of
collagen, important to strengthen the infarct and to protect it
against rupture and neovessel formation (Frangogiannis et al.,
2002). During myocardial infarction injury, cardiac fibroblasts
interact with cardiomyocytes and this interaction is important
for the heart to heal and recover (Fu et al., 2018). Other
interactions among extracellular matrix, endothelial cells, and
macrophages are also important for cardiac repair and neovessel
formation/angiogenesis (Carmeliet, 2000). Angiogenic agents
such as vascular endothelial growth factor (VEGF) and basic
fibroblast growth factor (bFGF) are rapidly released in the

ischemic myocardium and facilitate growth of blood flow vessels,
heart tissue repair and prevent the onset of heart failure (Zhao
et al., 2010).

RESOLVING BUT NOT DAMPENING
INFLAMMATION FOR CARDIAC
HEALING

Maintaining the optimal balance of inflammation is crucial
to induce myocardial healing (Kain et al., 2014). Several
experimental studies have shown a better outcome in infarcted
myocardium using anti-inflammatory treatment. However,
some of the anti-inflammatory treatments failed in clinical
practice (Silverman and Pfeifer, 1987; Saxena et al., 2016). As
consequence, current guidelines recommend against the use
of broad-range anti-inflammatory therapy corticosteroids and
non-steroidal anti-inflammatory drugs–in patients with acute
myocardial infarction (Task Force on the management of St-
segment elevation acute myocardial infarction of the European
Society of Cardiology (ESC) et al., 2012). In fact, the inhibition
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of COX-2 and TNF-α reduce cardiac functionality post-infarct
in patients and COX-2 inhibitors (rofecoxib and celecoxib)
in clinical settings accelerate the myocardial infarction events
(Chung et al., 2003; Saito et al., 2003; Mann et al., 2004; Kimmel
et al., 2005; Antman et al., 2007; Skyschally et al., 2007; Listing
et al., 2008; Kleinbongard et al., 2010). Also a recombinant
IL-1 receptor antagonist increase rates of recurrent myocardial
infarction within 12 months, however, a larger study evaluating
longer term IL-1 inhibition is active at the moment (Ridker et al.,
2011; Morton et al., 2015). Possible reasons for failure of anti-
inflammatory agents for myocardial infarction in clinical trials
are that preclinical studies mostly involve healthy and young
animals, unlike human patients (with different ages and gender)
that often present chronic comorbidities. Another possible
reason is that the targets were often non-specific. Diagnostic
techniques such as tomography may be used to develop goal
directed therapies (Herrero et al., 2007).

Promotion of cardiac repair is a key therapeutic goal against
the failure of survival during ischemia. Low oxygen content
that occurs during myocardial infarction is the major cause of
this cardiac cell death. Re-introducing oxygen into the infarcted
area represents a promising goal. A novel oxygen delivery
system able to continuously release oxygen to the infarct area,
protects the cardiac cells, could represent a new therapeutic
approach for patients with myocardial infarction. The system
was based on a thermosensitive injectable and fast gelation
hydrogel, characterized by its capacity of oxygen releasing
microspheres. With this technique the release of oxygen lasts
4 weeks and it significantly increases survival of cardiac cells,
neovessel formation, and cardiac functionality, under the hypoxic
condition that mimicked the infarcted hearts (Fan et al., 2018).
Treatments with angiogenic or anti-apoptotic factors are very
promising for improving cardiac functionality in condition of
myocardial infarction. Despite the use of pro-angiogenic factors
in clinical trials has led to good results in the improvement of
cardiac function, there are still difficulties to overcome. In fact,
clinical trials involving VEGF or bFGF do not have the expected
beneficial effects (Hedman et al., 2003; Henry et al., 2003; Kukula
et al., 2011). For example, a proper spatio-temporal delivery of
multiple therapeutic proteins represents a major challenge in
therapy strategies aimed to induce myocardial regeneration after
myocardial infarction and on the other hand the pro-angiogenic
growth factors expression has to be very tightly regulated in
order to avoid side effects such as the promotion of tumor
growth (Alfranca, 2009). Another important issue in therapeutic
angiogenesis is that the delivery of a single growth factor might
be insufficient to mimic the complex regulatory mechanisms
driving neovascularization. Many of the strategies failed in
the clinical setting and they rely upon using a single-targeted
approach, directed to only one specific molecule or intracellular
signaling pathway. Therefore, a multi-targeted approach directed
to more than one intracellular signaling pathways may have
more cardioprotective effects, considering also the presence of
a co-morbidity in patients (Tsang et al., 2005). Several new
approaches are discovered, such as VEGF enriched nanoparticles
administration via local injection into the peri-infarct region
is able to increase the angiogenic and therapeutic efficiency

of VEGF in promoting cardiac repair (Oduk et al., 2018).
VEGF-loaded microsphere patch for local protein delivery to
the ischemic heart after myocardial injury in rats are even
more promising: VEGF-patched hearts have better blood vessels
growth, tissue repair and heart function (Rodness et al., 2016).
The use of three-dimensional matrices despite the encouraging
results in terms of cardiac regeneration and performance remains
a relatively invasive method since they are surgically implanted
over the infarct region. Drug administration in conditions of
myocardial infarction at the moment includes oral or needle-
based routes which can lead to patient discomfort (Suarez et al.,
2015). Engineered cardiac patches are currently considered as
a promising therapeutical approach for regeneration of the
heart, however, their integration within the myocardium by
sutures may cause further damage. A new suture-free technology
for the attachment of engineered tissues positioned on the
myocardium and irradiated with a laser represents an even
better therapeutic approach at the moment (Malki et al., 2018).
Also, inhaled calcium phosphate nanoparticles can deliver to the
myocardium therapeutic compounds in a less invasive and better
way (Miragoli et al., 2018). Inhalation therapy could represent
a promising alternative to increase blood flow in the setting of
chronic ischemia to preserve cardiac function.

Stem cells secrete high amounts of paracrine factors that
can stimulate endogenous repair mechanisms (Henning, 2018).
Human embryonic stem cell-derived cardiomyocytes repair the
macaque monkey hearts by reducing scar tissue and improving
cardiac functionality (Liu et al., 2018). Mesenchymal stem cells
are at the moment under clinical investigation as a treatment
for patients with advanced heart failure after myocardial
infarction to improve myocardial function (Makkar et al., 2012;
Malliaras et al., 2014). Injection in the myocardium of swine
of human mesenchymal cell-derived extracellular vesicles (EVs)
increase blood flow to ischemic myocardial tissue by stimulating
capillary and arteriolar growth via activation of the protein
kinase B/endothelial nitric oxide synthase and mitogen-activated
protein kinase signaling pathways (Ponikowski et al., 2014). EVs
significantly improve cardiac output and stroke volume (Potz
et al., 2018). EVs containing anti-inflammatory proteins (e.g.,
Annexin A1) are also shown to activate wound repair circuits in
another organ therefore they could also be beneficial for cardiac
healing post-ischemia (Leoni et al., 2015). Annexin A1 during
the acute phase of myocardial infarction present protective
effects by controlling haematopoietic stem cell mobilization
and inflammation (D’Amico et al., 2000; Qin et al., 2013; Qin
et al., 2017; Ritchie et al., 2005). More studies are needed to
explore its role during later cardiac repair events. In the context
of myocardial infarction, members of EVs called exosomes
are important for the regenerative effects in the myocardium.
Cardiosphere-derived cell exosomes deliver in the myocardium
decrease scarring and improve ejection fraction in a porcine
myocardial infarction model (Gallet et al., 2017). Their beneficial
effects have been demonstrated in multiple animal models and
also in a phase 1 human study (Johnston et al., 2009; Makkar
et al., 2012; Malliaras et al., 2012, 2014). To reverse injury post-
myocardial infarction, cardiosphere-derived cells are currently in
phase 2 clinical trials with scar reduction as the major endpoint.
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Novel treatments to resolve inflammation during myocardial
infarction become necessary. Several interesting studies
demonstrate the protective role of pro-resolving mediators
during the resolution phase of inflammation (Keyes et al.,
2010; Kain et al., 2015; Halade et al., 2016). Well-known drugs
such as statins lower permeability and reduce the transit of
unfavorable inflammatory leukocytes into the infarcted tissue,
consequently improving left ventricular outcome (Bauersachs
et al., 2001; Ramasubbu et al., 2008; Leenders et al., 2018).
Statin treatment also improve endothelial barrier function
during myocardial healing in ApoE−/− mice (Leenders et al.,
2018). A phase III clinical trial demonstrates that a statin
called rosuvastatin has beneficial effects in patients with heart
failure (McMurray et al., 2009). Aspirin also, contributes to
the stimulation of the generation of pro-resolving mediators
(SPMs) classified as lipoxins, resolvins, protectins, maresins,
and Annexin A1 (Serhan et al., 2002; Gilroy, 2005; Serhan et al.,
2011; Dalli et al., 2015a; Perretti et al., 2015). Experimental
models of self-resolving inflammation demonstrate their potent
anti-inflammatory and pro-resolving properties in several
models (Serhan, 2010). Recently, a study shows that mice treated
with 15-epi-lipoxin A4 present improved ejection fraction after
5 days of myocardial infarction (Kain et al., 2017). Furthermore,
resolvin D1 has similar cardioprotective effects (Kain et al.,
2015). Two recent studies present a quantification of SPMs in the
infarcted left ventricles and spleens, after myocardial infarction
(Tourki and Halade, 2017; Halade et al., 2018b). Interestingly,
the peak of neutrophils after 24 h post-myocardial infarction
correlates with an increase of resolvin D series in the infarcted
myocardium. Later, at day 5 post-myocardial infarction, N2
neutrophils represent the most amount population in the left
ventricle and spleen. Interestingly, resolvin D1 activated its
receptor (lipoxin A4 receptor/formyl peptide receptor-2) to
promote clearance in the infarcted heart (Kain et al., 2015).
Furthermore, resolvin D1 accelerate clearance of leukocytes
from an infarcted area by the activation of the miRNA circuit

(Halade et al., 2018a). Human artery segments and primary
cultured human vascular cells generate D-series resolvins and
maresins when the relevant fatty acid precursors are present, and
in the absence of leukocytes (Chatterjee et al., 2017). Recently,
novel molecules termed maresin conjugates in tissue regeneration
(MCTR), protectin conjugates in tissue regeneration (PCTR),
and resolvin conjugates in tissue regeneration (RCTR) are
identified as other pro-repair inducers (Dalli et al., 2014, 2015b;
Dalli and Serhan, 2018). These new compounds could represent
new therapeutical treatments for patients with myocardial
infarction. The discovery of lipid mediators will serve as a novel
therapeutical approach based on endogenous mechanisms for
treating inflammatory response through the stimulation of
resolution instead of inhibiting the inflammation.

Another important factor that controls the severity of
myocardial infarction is aging. Cardiac aging is a process
characterized by increased levels of reactive oxygen species,
genomic DNA damage and telomere and epigenetic
modifications. Aging also disregulates the level of arachidonic
acid post-myocardial infarction and lipoxins release, responsible
for neutrophils infiltration inhibition (Takano et al., 1998;
Serhan et al., 2000; Halade et al., 2016; Serhan and Levy, 2018).
Aging has effects on the innate immune response, through
dysregulation of pro-inflammatory cytokines such as IL-6, IL-1β,
TNF-α, and TGFβ, which lead to chronic inflammation, and
thus contribute to the “inflammaging phenotype,” often observed
in the elderly people (Ershler and Keller, 2000; Franceschi
et al., 2000; Bruunsgaard et al., 2003). In the elderly, defects in
dying-cell clearance could lead to a non-resolving inflammation
and maladaptive cardiac repair, thereby accelerating heart failure
(Chen and Frangogiannis, 2010). Since little is known about the
pro-resolving mediators in aging itself more studies are needed
to assess whether in human patients pro-resolving molecules
are less abundant or less effective with increasing age and how
these factors impact cardiac repair. The capacity of the heart
to heal after a myocardial infarction is not enough to restore

FIGURE 2 | Potential new therapeutic approaches to promote myocardial repair. The optimal process of repair after myocardial infarction, arising from occlusion of
the coronary circulation, requires timely induction and resolution of inflammation.
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normal cardiac function. Resolution of inflammation can be
influenced by diet. Only a good balance of omega-3 and -
6 fatty acids demonstrates protective effects on cardiovascular
system (Ramsden et al., 2013). High amount of omega-6
decrease specialized pro-resolving mediators (D and E-series),
also increase macrophage accumulation in the myocardium and
promote cardiorenal inflammation (Halade et al., 2016). Of
note, omega-3 fatty acids are known for their cardiovascular
benefit or to reduce elevated triglycerides using higher doses
(Smith et al., 2006). Thus, omega-3 fatty acids has positive
effects on controlling inflammation, including the reduction of
cytokines, endothelial cell activation and platelet aggregation,
heart rate and cardiac function. A clinical phase III trial
demonstrates in fact that long-term administration of omega-3
result in a significant reduction in both all-cause mortality and
cardiovascular readmissions in patients with heart failure (Yancy
et al., 2013). Lifestyle-related post-myocardial infarction setting
opens a new future perspective studies to prevent the progression
of heart failure.

Clearly, there is still much unknown in the field of
cardiac healing, nevertheless progress has been made, opening
exciting new potential therapeutic options for patients affected
by myocardial infarction, as shown in Figure 2. Several
studies enhance the crucial role of endogenous pro-resolving

mediators during myocardial infarction. Significant increases
in resolvins, protectin, and maresin are observed after 1
and 5 days post-myocardial infarction and their increase
correlate with leukocyte recruitment (Howlett et al., 2016).
Therefore, the abundance of SPMs could also predict the
risk of future cardiovascular events (Emami et al., 2015). The
advantage of using pro-resolving mediators is that they act
on specific cellular receptors to regulate leukocyte trafficking
and blunt the release of inflammatory mediators, while
also promoting clearance of dead cells and tissue repair.
These mediators could inform the development of therapeutic
strategies encompassing a novel resolution pharmacology
approach.

In future, nanocarriers engineered to recognize pro-resolving
specific receptors at the cellular levels and to deliver pro-resolving
mediators into the diseased sites to subpopulations of immune
cells represents a highly appealing approach to specifically
improve cardiac repair.
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