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Cystic fibrosis (CF) is a progressive, chronic and debilitating genetic disease caused by
mutations in the CF Transmembrane-Conductance Regulator (CFTR) gene. Unrelenting
airway disease begins in infancy and produces a steady deterioration in quality of
life, ultimately leading to premature death. While life expectancy has improved, current
treatments for CF are neither preventive nor curative. Since the discovery of CFTR the
vision of correcting the underlying genetic defect – not just treating the symptoms – has
been developed to where it is poised to become a transformative technology. Addition
of a properly functioning CFTR gene into defective airway cells is the only biologically
rational way to prevent or treat CF airway disease for all CFTR mutation classes.
While new gene editing approaches hold exciting promise, airway gene-addition therapy
remains the most encouraging therapeutic approach for CF. However, early work has
not yet progressed to large-scale clinical trials. For clinical trials to begin in earnest
the field must demonstrate that gene therapies are safe in CF lungs; can provide clear
health benefits and alter the course of lung disease; can be repeatedly dosed to boost
effect; and can be scaled effectively from small animal models into human-sized lungs.
Demonstrating the durability of these effects demands relevant CF animal models and
accurate and reliable techniques to measure benefit. In this review, illustrated with data
from our own studies, we outline recent technological developments and discuss these
key questions that we believe must be answered to progress CF airway gene-addition
therapies to clinical trials.
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INTRODUCTION

Cystic fibrosis (CF) is an insidious disease that slowly smothers the health and potential of too many
young lives. It is the most common fatal genetic disease in the developed world; 1 in 25–30 people
with Caucasian ancestry carry a single defective copy of the CFTR gene (Cystic Fibrosis Foundation,
2018) and have no symptoms; 1 in ∼3000 babies are born with mutations on both alleles, resulting
in the disease. CF is a multisystem disease that affects many organs, producing a life expectancy of
approximately 40 years (Australian Cystic Fibrosis Data Registry, 2016). Premature death usually
results from lung disease, after a lifetime struggling to deal with progressive respiratory failure.
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New mutation-specific modulator and corrector
pharmaceuticals such as Kalydeco (ivacaftor), Orkambi
(lumacaftor/ ivacaftor), and Symdeko (tezacaftor/ ivacaftor)
have given substantial benefit to some people with CF. Assuming
a patient has the right CFTR mutation class, these personalized
medicines can increase the presence and/or function of the
CFTR protein in the cell, improve lung function, and slow lung
disease progression. However, they have been neither preventive
nor curative since they do not address the CFTR gene defect
itself, and some have limited effectiveness. Importantly, the
cost of these once-daily medications is prohibitive and likely to
be unsustainable, with the health systems in several countries
declining to recommend Orkambi for governmental financial
support due to poor cost-benefit.

Since CF is a recessive genetic disorder, addition of a single
copy of the properly functioning CFTR gene into affected CF
airway cells is recognized as the only rational and feasible way
to prevent or treat CF airway disease (Griesenbach et al., 2016).
Gene therapy would provide proper cellular function, regardless
of the person’s CFTR mutation class. The vision for a child born
with CF is that treatment with a proven CFTR gene-addition
therapy at birth would prevent that child ever developing CF lung
disease. For those already living with CF, the same therapy would
halt progression of their lung disease.

Gene therapies for a range of inherited diseases have now
reached the clinic in China (Kim et al., 2008), Europe (Touchot
and Flume, 2017), and most recently in the United States
where Luxturna, a gene-addition treatment for retinal dystrophy
(Russell et al., 2017) was approved by the FDA in Dec 2017 as
a prescription medicine (Morrison, 2018). To 2017, there have
been almost 2600 gene therapy trials, including 36 for CF (Ginn
et al., 2018). Gene therapy is now a therapeutic reality for some
genetic diseases, but the challenge for the CF field is to convert
the extensive preclinical developments into an effective and safe
treatment option for people with CF.

DEVELOPMENTS IN AIRWAY GENE
TRANSFER TECHNIQUES

Although gene therapy has the potential to be efficacious for CF,
a range of challenges have been identified. Here we describe those
challenges and their solutions.

Vector Designs Affect Efficacy
A 12-month, monthly repeat-dose Phase II CFTR non-viral
(liposome) gene-transfer clinical trial showed significant, albeit
modest and transient, lung function benefits in CF patients
(Alton et al., 2015). That study confirmed that a CFTR
gene therapy can correct human CF lung disease, is likely
to be safe, have low immunogenicity, and be amenable to
repeated dosing. However, due to the poor efficiency and
transient response, that group has since concentrated their
development efforts on a more efficient lentiviral (LV) gene
vector (Alton et al., 2017). Recently, the delivery of CFTR
mRNA using nanoparticles has been shown to improve chloride
channel function in CF mice for 2 weeks, with a superior

response compared to liposomal delivery (Robinson et al., 2018).
However, the short duration of action may be a barrier to
adoption.

Initial CF gene-addition research used adeno- (Ad) and
adeno-associated viruses (AAV) as the gene vectors, but these
failed the clinical transition process for CF lung disease due to
significant side-effects, and/or lack of efficacy and duration (Moss
et al., 2007). AAV also has a DNA packaging capacity limit that
requires truncation of the CFTR gene, and AAV vector genomes
remain largely episomal (not integrated), meaning that gene
transfer to terminally differentiated airway cells is transient and
rapidly lost with airway cell turnover (Karda et al., 2016). Despite
these challenges [well described by Guggino and Cebotaru
(2017)] AAV vector development is continuing, including the
assessment of alternative serotypes (Steines et al., 2016; Guggino
et al., 2017; Duncan et al., 2018). Interestingly, an integrating
piggyBac/Ad CFTR vector was recently shown to phenotypically
correct CF pig airways, with the possibility that it could produce
extended gene expression (Cooney et al., 2018).

Lentiviral vectors are now one of the lead CF airway gene-
addition vectors for therapeutic development because they
transduce dividing and non-dividing cells, can be pseudotyped to
target specific cell types by altering surface receptor recognition
elements, integrate into the host cell chromosome providing
lasting benefit, and generate little immune response. LV vectors
have been effective in a range of preclinical studies (Copreni et al.,
2004; Cmielewski et al., 2014a; Cooney et al., 2016; Alton et al.,
2017). Supported by the clinical successes in effectiveness and
safety within ex vivo CAR-T cell therapies in cancer treatment
(Milone and O’Doherty, 2018), we believe that LV vectors are
currently the CFTR delivery vehicle of choice. The remainder of
this article focuses specifically on the barriers of translating LV
gene vectors for CF to the clinic.

Physical and Biological Barriers of the
Airway Surface Restrict Gene Delivery
The airway epithelium has evolved to protect cells against
foreign invaders such as viruses and bacteria. The normal
physical host defenses at the airway surface play a leading
role in limiting the efficiency of any type of gene transfer
into the airway epithelium (Kim et al., 2016). Mucus that
covers the epithelial surface traps vector particles, which are
then removed from the airway by mucociliary clearance (MCC)
efficiently preventing vector particles from reaching vector-
relevant receptors on the cell membrane surface (Castellani
and Conese, 2010). This situation is exacerbated in CF due
to the increased volume and viscosity of the mucus (Duncan
et al., 2016). Finally, for vectors designed to target the airway
stem cells, known to be a subpopulation of airway basal cells
at the deep-lying epithelial basement membrane (Rock et al.,
2009), access past the epithelial tight junctions is also needed.
These tight junctions separate the luminal surface from the
deeper layers, acting as a normal defense against pathogenic
particles.

Gene vectors must be able to penetrate the CF mucus barrier
and reach the underlying target epithelium and target cells. One
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recognized approach that enables gene vector particles to reach
the relevant airway-surface cell vesicular stomatitis virus (VSV-
G) receptors and the basal stem cells, is conditioning the airway
epithelium with the compound lysophosphatidylcholine (LPC)
prior to gene vector delivery. LPC is a normal component of
lung surfactant, and its primary role is to transiently permeabilize
airway tight-junctions, and it may also help to solubilize surface
mucus and enable greater vector access to airway cells. In vivo
acute and long-term reporter gene studies have shown the
effectiveness of LPC conditioning for enhancing gene expression
in mice (Limberis et al., 2002; Stocker et al., 2009; Cmielewski
et al., 2014a, 2017). In addition, successful gene expression using
the LacZ reporter gene has been achieved in short-term (7 day)
studies, transducing the conducting airways in sheep (Liu et al.,
2010) (a large lung model), marmosets (Farrow et al., 2013)
(a primate model), ferrets (Cmielewski et al., 2014b), and rats
(McIntyre et al., 2018).

Reporter gene expression is predominantly in ciliated cells, but
the LV vector also reaches the alveolar space where type I and II
cells and macrophages are transduced. LPC airway conditioning
has enabled transduction of endogenous adult airway stem cells
(Farrow et al., 2018), confirming the mechanistic basis for stem-
cell-based durable in vivo gene expression. These studies showed
the potential for life-long replenishment of therapeutic benefit
via the emergence of cell lineages that were corrected in situ
by the purposely transduced airway stem cells. LV vectors can
also robustly transduce human airway basal cells in vitro (Farrow
et al., 2018), and human air liquid interface (ALI) cultures,
supporting applicability to human airways.

While much understanding can be gleaned from reporter gene
studies, the gene transfer methods must also be demonstrated
to effectively alter a CF airway, by delivering the CFTR gene.
Previous studies have shown that LV vectors can partially
correct CFTR function in CF mouse nasal airways (the only site
of measurable CF airway functional pathophysiology in mice)
(Limberis et al., 2002; Stocker et al., 2009; Cmielewski et al.,
2014a). Improvement was significant and extended for at least
12 months after the single CFTR vector dose, validating the
strength and persistence of benefit possible with a LV vector.

The efficacy of LPC enhancement is also not limited to LV
vectors. Helper adenoviral vector studies in pigs have showed
strong and extensively distributed reporter gene transfer, with no
systemic toxicity or infection reported from use of the combined
LPC-hAdv vector aerosol (Cao et al., 2013). However, the key
question from these studies remains: can a CFTR gene-addition
process improve the course of disease in a CF lung?

Suitability of CF Animal Models for CFTR
Gene Therapy Research
A range of CF animal models have been developed, with the
mouse, pig, ferret and rat the most well characterized (Lavelle
et al., 2016; McCarron et al., 2018). Small animal models are
ideal for developing gene-addition techniques for CF for cost
and handling reasons, and the gene vector volume required to
treat the lungs is modest facilitating large well-powered studies.
Although many CF mouse models have been developed, the

CFTR Null mouse does not exhibit lung disease, and the β-ENaC
mouse is not suitable for gene-addition therapy development
because its lungs contain functional CFTR. The pig (Meyerholz,
2016) and ferret (Sun et al., 2014) models recapitulate human
lung disease but exhibit severe gut disease (Meyerholz et al.,
2010; Sun et al., 2010) that necessitates intensive husbandry
requirements with associated high costs. Lung gene vector dosing
requirements prohibit extensive testing in the pig.

Our group recently used CRISPR/Cas9 gene-editing to create
colonies of Phe508del (Class II) and 512X CF (Class I)
rats (McIntyre et al., 2017). Hallmark CF pathophysiology is
consistent with the United States CF rat (Tuggle et al., 2014;
Birket et al., 2018), with frequent severe gut obstruction and
increased gut motility, as well as poorly developed vas deferens,
seminal vesicles & epididymis. As in humans, the phenotype
of these two mutations is different. Both have higher mortality
than wild-type, with the 512X rats having higher pre- and post-
weaning mortality than the Phe508del. Both have a lower average
body weight compared to wild-type, although this effect appears
to be more pronounced in male animals.

Nasal-airway potential difference (PD) measurements have
confirmed altered CFTR airway function in both models. The
512X rats have no response, or a weak response to a chloride-free
environment that is consistent with classically defective CFTR
function. The Phe508del animals are also significantly different
to heterozygote/normal rats, but with an intermediate response
consistent with the presence of residual CFTR function seen in
the human Phe508del mutation. Since our treatment focus is
CF lung disease, we are investigating methods of performing
PD measurements in the trachea and/or deeper airways, as is
possible in humans (Davies et al., 2005), as a method for tracking
functional CFTR changes in the CF rat lung.

Improvements in Airway and Lung
Function Must Be Measured
Measuring the effects of airway gene therapies on lung and airway
health has been a major challenge for all CF research groups, with
CFTR channel function typically assessed using transepithelial
potential difference measurements, along with Ussing chamber
and halide assays. However, these techniques all have limitations,
particularly for in vivo use in animal models. Fortunately, Phase
Contrast X-ray Imaging (PCXI) based approaches have recently
been demonstrated to be able to directly measure airway and lung
health in vivo.

Phase Contrast X-ray Imaging utilizes X-ray refraction to
achieve high spatial and temporal resolution as well as excellent
airway and lung soft tissue contrast, and has the potential to
dramatically reduce radiation doses (Kitchen et al., 2017). Using
PCXI it is now possible to measure changes in airway surface
liquid (ASL) depth following treatment (Siu et al., 2008; Morgan
et al., 2013, 2016), as well as the clearance of micron-sized marker
particles on the airway surface by mucociliary clearance (MCC)
(Donnelley et al., 2012a,b, 2014, 2017; Gradl et al., 2018). ASL
depth and MCC are the two key airway physiological parameters
that must show rapid beneficial changes if a CF airway gene
therapy is to be considered effective.
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Phase Contrast X-ray Imaging -based analyses have now also
been developed to provide quantitative measurement of lung
function, taking the focus away from the requirement to use
qualitative assessment of structure (i.e., via CT imaging) to infer
function. Structural changes that occur with CF lung disease alter
the flow of air in the lung and the regional patterns of lung
motion, whether by obstruction that increases airway resistance,
or by changes to the lung parenchyma that alter the mechanical
properties of the tissue. It follows that abnormal motion of lung
regions during respiration is an accurate indicator of disease
(Fouras et al., 2012). Lung motion can be tracked by combining
velocimetry techniques with the enhanced airway contrast offered
by PCXI. This technique can perform pinpoint spirometry – a
method referred to as 4DxV – and was developed and validated
in β-ENaC mice at the SPring-8 synchrotron (Stahr et al., 2016).
It allows local ventilation to be quantitatively measured at every
point in the lung, enabling local treatment effects to be assessed.
The 4DxV imaging methods can now be used in rat lungs at the
Imaging and Medical Beamline at the Australian Synchrotron
(Murrie et al., 2015), with commercially available turnkey systems
now available (4Dx, Melbourne, VIC, Australia).

With long-lived and easily maintained CF rats now available,
and the ability to measure changes in airway surface and lung
health in only those lung regions that are treated, it is now
possible to quantify the short- and long-term effects of contained,
local-region dosing of a gene therapy to the lungs of a living CF
animal model, without the need for post-mortem lung analyses.

Scalable Vector Production and
Precision Delivery Capabilities Are
Essential
Translating this gene-addition technology to humans requires
larger gene vector volumes, but there are a range of challenges
associated with upscaling LV vector production (McCarron et al.,
2016). Common methods currently employ adherent cell cultures
using cell-factories (Rout-Pitt et al., 2018), however, packed-bed
bioreactor approaches can now also yield unconcentrated titres
of 105–106 TU/ml. Once concentrated and purified for in vivo
use titres in our laboratory are 108–109 TU/ml. Commercially
available, suspension-based production methods such as the LV-
MAXTM LV Production System (Gibco) have the potential for
scalable production in stirred-tank bioreactors and are animal
component-free, important characteristics for establishing LV
manufacturing methods for future clinical use (McCarron et al.,
2016). In our laboratory unconcentrated LV-MAXTM titres are
already greater than 106 TU/ml and are easily scalable to human-
sized lung doses by using larger bioreactor vessels. However, until
stable packaging cell lines can be used, a major barrier to transient
transfection systems remains the production of large quantities of
plasmid DNA.

To translate successful preclinical developments into humans
it is important to determine whether viral gene therapy
techniques developed in small animal models are readily
translatable to a human-sized lung. Although intended to be
beneficial, these LV gene-addition therapies are deliberately
designed to induce permanent genetic alterations. It is the

authors’ opinion that the first LV CF gene vector trials in humans
will be accompanied by a heightened level of caution compared to
new transient-effect daily pharmaceuticals. We propose that the
first lung gene-addition trials with viral vectors in humans must
be performed bronchoscopically, to enable precise gene delivery
and to examine the gene vector effects in a specific limited region
of the lung. This method offers an “exit strategy” – by wedge
or lobe excision – should a treatment unexpectedly produce
unresolvable or unacceptable serious adverse events. However,
until recently this strategy could not be tested in small animal
models because bronchoscopic delivery was not possible.

The ability to accurately and precisely deliver fluid doses
to a small region of the lung has been almost impossible in
small animals such as rats and mice due to the small size of
their airways. However, the first reliable bronchoscopic dosing
technique that can target pre-selected regions of the rat lung
was recently reported (McIntyre et al., 2018), and is based on a
1.1 mm diameter rigid sialendoscope normally used for human
salivary duct procedures. This miniature bronchoscope system
has light, video vision, two access channels, and can be used
to dose fluid into at least the fourth-generation branches of
the rat airway in ∼200 gram rats. That study showed that rats
lungs are amenable to reporter gene delivery and expression
at a similar level and with similar cell type distributions
across nasal and lung regions as found in mouse studies. LacZ
expression was present in ciliated and goblet / secretory cells,
the two most relevant cell populations on the conducting-airway
surface epithelium. However, unlike nasal or tracheal delivery,
bronchoscopic delivery limited transduction to only the treated
lung lobe/region.

Together, bronchoscopic dosing and bioreactor production
methods allow the developments in small animal models to be
easily scaled to the levels required for translational to human
clinical trials.

THE MAIN CHALLENGES FOR THE
FIELD

An effective gene-addition therapy for CF lung disease requires
accurate compound delivery to the target location, high levels
of transduction, and effective CFTR protein expression in the
cells relevant to CF disease. Reliable and relevant measurements
of the benefit to the treated region, as well as the whole lung,
are essential. However, several challenges remain before genetic
therapies for CF lung disease can be translated to the clinic.

Gene Therapy Efficacy Should Be
Validated in a CF Lung
The ability of a viral gene-addition vector to adequately
modify CF lung disease health and progression has never been
demonstrated, but it is the authors’ opinion that this is essential
prior to human clinical trials. Certainly, the effectiveness of CFTR
gene-addition per se has been validated clinically by the UK CF
Gene Therapy Consortium (Alton et al., 2015), and that group has
undertaken extensive preparation for clinical trials of lung CFTR
gene-addition using a SIV LV vector. Although the consortium
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has not yet reported in vivo CFTR functional improvements
in a CF animal model, they have approval for human trials
(Alton et al., 2017). Similarly, the Iowa United States CF gene
therapy research group have used uninfected neonatal CF pigs
to examine LV-CFTR gene transfer efficacy, but the absence of
suitable outcome measures (as described in the previous section)
meant that the CF pigs were necessarily humanely killed 2 weeks
later for lung-tissue analysis (Cooney et al., 2016). The ability
to perform localized delivery of LV-CFTR into a diseased CF
rat lung, combined with non-invasive PCXI based assessments
is expected to enable the first-ever in vivo long-duration testing
of LV gene addition therapy for CF lung disease. Future long-
term studies should also assess survival differences produced by
CFTR gene-addition, to estimate the likely human therapeutic
benefit.

The Safety Profile of LPC and LV Must Be
Demonstrated in a CF Lung
The power of gene therapy was illustrated following clinical trials
using first generation γ-retroviral vectors, which successfully
treated genetic disorders such as SCID-X1. However, they
resulted in serious adverse events such as acute lymphoblastic
leukemia due to viral promoters that upregulated proto-
oncogenes lying close to the integration site (Hacein-Bey-Abina
et al., 2008; Howe et al., 2008). LV vectors were subsequently
redesigned to improve their safety profile. Those modifications
included reducing the amount of native HIV genome in the
vector and modifying the viral long terminal repeat (LTR)
to remove endogenous viral promoter sequences to render
the vectors replication deficient (Yu et al., 1986; Dull et al.,
1998). Finally, the viral components required for replication
were separated onto separate plasmids and delivered in trans.
Nonetheless, comprehensive integration site analyses remain
essential for vectors destined for clinical trials.

The safety of airway conditioning compounds must also be
established. LPC action is transient, dose-controllable, and well-
tolerated in in vivo animal studies. Despite demonstrating that
LPC enables effective gene-addition and is well-tolerated in
multiple animal species, it is not known whether the desired
transient tight-junction permeabilization in a CF airway, where
infective bacteria are normally present, may bring unacceptable
risks. Potentially allowing those pathogens access to normally
protected sub-surface regions, raises the possibility of additional
local or even systemic infections to occur. The theoretical dangers
of altering airway barrier function, even transiently, in the
infective milieu of a CF lung are obvious. However, LPC has
a convincing preclinical history of safe use, so the potential of
airway conditioning and gene-addition therapy in humans with
CF must not simply be dismissed as too risky in the absence
of any evidence. The rule primum nil nocere, first do no harm
(Smith, 2005), which drives much of the bioethics of medicine, it
is not an absolute. For example, acceptance of the harm, pain, and
risk from myeloablative conditioning is accepted as an essential
conditioning procedure for bone marrow transplantation. These
important questions related to the acceptability of airway / lung
conditioning are yet to be answered.

Methods to Increase Gene Expression
Levels Must Be Developed
The ability to achieve reporter or CFTR gene transfer using
LV vectors has previously been established, with in situ
transduction of resident airway basal cells that replenish the
airway with transgene-expressing daughter cells the likely basis
for this long-term expression. However, in most mice gene
expression eventually wanes, and in some reduces to zero
after only 6-months (Cmielewski et al., 2014a). This data, and
the inherent uncertainties of translating in vivo mouse data
to a human disease, suggests that it may be beneficial or
necessary to produce higher levels of gene expression through
initial multi-dosing, or by repeat-dosing if gene expression
wanes. However, a host immune response directed against the
gene transfer agent may block initial gene expression and/or
prevent expression arising from repeated doses. Few studies have
examined strategies for effectively re-administering LV vectors to
the airways.

Feline immunodeficiency virus (FIV) and simian
immunodeficiency virus (SIV) LV vectors have been successfully
re-administered to the airways without loss of effectiveness,
suggesting LV vectors may evade adaptive immune responses
(Sinn et al., 2008; Griesenbach et al., 2012). These vectors
were pseudotyped with the GP64 and F/HN envelopes,
respectively, which both target receptors located on the
apical surface of the airway, so they are unlikely to be
able to reach or transduce the basal stem cells located
on the basolateral airway surface. The SIV study showed
repeat dosing was feasible but did not increase transgene
expression. These studies also highlighted that expression
levels are highly dependent on the dose timing and the choice
of transgene delivered at each dose. The knowledge that
patients will continue to benefit from additional doses will
revolutionize CF airway gene therapy and pathways to clinical
trials.

Dosing Methods Need to Be Optimized
in Human-Sized Lungs
The ability to dose human sized lungs must also be
established early. Human lungs are substantially larger
than in small animal models. They are also differently
developed and branched, and cell type distributions and
proportions along the conducting airways where CF
pathophysiology begins are different. Confirming the
feasibility and effectiveness of LV gene-addition techniques
in human-sized lungs, such as in pigs or sheep, along with
the necessary vector production requirements, is of vital
importance.

CONCLUSION

While expensive daily drug-based options for treating the
downstream effects of the CFTR gene defect are emerging, gene-
addition therapies are the only approach with the immediate
potential to prevent or halt CF lung disease. Although treatment
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for pancreatic insufficiency, CF related diabetes and other CF
associated pathologies will still be required, by dealing with the
fundamental gene defect at its source within airway cells, airway
gene therapy can be expected to transform the treatment options
for CF lung disease.

A range of proven LV gene vectors and adequate novel
vector production techniques have been developed. LPC and
LV gene-addition techniques have already been validated in
multiple animal models. The production of new animal models
such as the CF rat will enable significant advances in CF
translational capability, with bronchoscopic delivery techniques
able to dose individual lobes of the rat lung. Innovative new
non-invasive PCXI-based measurements of airway and lung
function can now be used to complement standard measurement
techniques.

It is the authors’ opinions that key questions that
must be answered before airway gene therapy can be
translated to the clinic involve clearly demonstrating long-
term efficacy and the safety of LPC and LV delivery in
a CF lung, the ability to re-dose to boost CFTR gene
expression levels, and the ability to translate these techniques
into human-sized lungs. Together the new capabilities
described here will allow these key questions that will enable
the translation of airway gene therapy to humans to be
answered.
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