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Apart from well-known functions of bile acids in digestion and solubilization of lipophilic
nutrients and drugs in the small intestine, the emerging evidence from the past two
decades identified the role of bile acids as signaling, endocrine molecules that regulate
the glucose, lipid, and energy metabolism through complex and intertwined pathways
that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR)
and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1).
Interactions of bile acids with the gut microbiota that result in the altered composition
of circulating and intestinal bile acids pool, gut microbiota composition and modified
signaling pathways, are further extending the complexity of biological functions of these
steroid derivatives. Thus, bile acids signaling pathways have become attractive targets
for the treatment of various metabolic diseases and metabolic syndrome opening the
new potential avenue in their treatment. In addition, there is a significant effort to
unveil some specific properties of bile acids relevant to their intrinsic potency and
selectivity for particular receptors and to design novel modulators of these receptors with
improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis
of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid
(obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic
acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary
disorders. This review presents an overview of the current knowledge related to bile
acids implications in glucose, lipid and energy metabolism, as well as a potential
application of bile acids in metabolic syndrome treatment with future perspectives.

Keywords: bile acids, metabolic syndrome, farnesoid X receptor, transmembrane G protein coupled receptor 5,
gut microbiota, diabetes, lipoprotein, atherosclerosis

INTRODUCTION

Metabolic syndrome is one of the major public health and clinical challenges worldwide.
This complex condition constituted of insulin resistance, hyperinsulinemia, glucose intolerance,
dyslipidemia, hypertension and obesity, increasing thus the incidence of cardiovascular diseases
and mortality (Hanson et al., 2002). The global prevalence of metabolic syndrome largely varies
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depending on geographic and sociodemographic factors, as well
as the diagnostic criteria used (McCracken et al., 2018). Results
obtained from National Health and Nutrition Examination
Survey estimated that 35% of adults in the United States, and
as much as 50% of the people aged over 60, had a diagnosis of
metabolic syndrome, with notably higher prevalence in women
compared with men (Aguilar et al., 2015). The prevalence of type
2 diabetes mellitus is worldwide increasing health disorder and
estimations indicate that is going to affect approximately 8% of
the population by 2030 (Lam and LeRoith, 2012).

Both genetic and environmental factors such as high-calorie
diet and low level of physical activity are evidently associated
with metabolic syndrome (Kaur, 2014). The complexity of
the metabolic syndrome etiology in combination with specific
metabolic profile and lifestyle of each patient contribute to the
lack of adequate efficacy with currently used drugs increasing
thus demand for developing novel therapeutic alternatives with
new mechanisms of actions.

Apart from classic functions of bile acids in digestion and
solubilization of lipophilic nutrients and drugs in the small
intestine (Mikov and Fawcett, 2006; Mircioiu et al., 2012), there
is emerging body of evidence pointing to the role of bile acids
and their derivatives as signaling, endocrine molecules that exert
variety of metabolic effects through complex and intertwined
pathways, thus becoming the attractive target for metabolic
syndrome treatment (Taoka et al., 2016; Chávez-Talavera et al.,
2017; de Boer et al., 2018; Molinaro et al., 2018; Shapiro et al.,
2018).

This review will provide an overview of the current knowledge
related to bile acids implications in glucose, lipid and energy
metabolism as well as potential application of bile acids
in metabolic syndrome treatment with recommendations for
further studies.

BILE ACID BIOSYNTHESIS AND
ENTEROHEPATIC RECIRCULATION

Biosynthesis of bile acids represents predominant metabolic
pathway of cholesterol catabolism in human organism.
Conversion of cholesterol to bile acids is a multiple enzymatic
process in which hepatocytes are the only cell type which contains
complete set of enzymes necessary for conversion of cholesterol
steroid nucleus, side chain removal and conjugation with either
glycine (∼75%) or taurine (∼25%). This results in generation of
two primary bile acids: cholic acid (3α,7α,12α-trihydroxy-
5β-cholan-24-oic acid, CA) and chenodeoxycholic acid
(3α,7α-dihydroxy-5β-cholan-24-oic acid, CDCA). Conversion of
cholesterol to bile acids involves the processes of hydroxylation,
C5-C6 double bond saturation, epimerization of C3 hydroxyl
group and oxidative cleavage of three carbon unit of side chain
(Gioiello et al., 2014). Abovementioned reactions take place
in several subcellular compartments including endoplasmic
reticulum, mitochondria, cytoplasm, and peroxisomes. Even
though four different biosynthetic pathways have been described,
the fact that intermediates in different pathways are substrates for
the same enzymes, as well as the transport of bile acids and their

precursors between subcellular compartments add complexity to
understanding bile acid synthesis (Vaz and Ferdinandusse, 2017).

Two predominant biosynthetic pathways in humans are so
called a classical (neutral) pathway and an alternative (acidic)
pathway (Figure 1). Through classical pathway, 90% of primary
bile acids are synthesized. Cholesterol 7α-hydroxylase (CYP7A1)
is a rate-limiting enzyme, which determines quantity of bile
acid pool size, catalyzing hydroxylation of cholesterol into
7α-cholesterol. Modifications of steroid nucleus and side chain
render CDCA formation. In addition, hydroxylation at C12
position by sterol 12α-hydroxylase (CYP8B1) results in CA
synthesis, therefore CYP8B1 is considered as an enzyme that
determines hydrophilicity of bile acid pool. In classical pathway
CA and CDCA are synthesized in almost equal amounts. In
alternative pathway, C27 bile acids and oxysterols produced
in different cell types are transported to the liver and further
metabolized. Main enzymes that manage side chain shortening
and 7α-hydroxylation are mitochondrial sterol 27-hydroxylase
(CYP27A1) and microsomal oxysterol 7α-hydroxylase (CYP7B1)
with CDCA being the major product (Li et al., 2013; Chiang,
2015). Primary bile acids are not released into biliary tree as
free carboxylic acids; instead, these molecules are activated with
acetyl-coenzyme A (CoA) by bile acid CoA synthetase (BACS)
and formed thioester is then linked by amide bond with amino
acids, either glycine or taurine (the reaction is catalyzed by bile
acid-CoA: amino acid N-acyltransferase, BAAT). This process of
conjugation resulting in bile salt formation reduces cytotoxic and
membranolytic potential compared to free bile acids (Chiang,
2009). In addition, whereas unconjugated bile acids are able to
diffuse across membranes, bile salts are actively transported.

Secretion of bile salts from the hepatocyte to the lumen of
biliary canaliculi is mediated by two ATP-binding cassette (ABC)
proteins – bile salt export pump (BSEP, ABCB11) and multidrug
resistance-associated protein-2 (MRP2, ABCC2), which represent
the main force for bile secretion (Dawson et al., 2009).
Mutations in ABCB11 and ABCC2 gene result in the development
of type-two progressive familial intrahepatic cholestasis, and
Dubin-Johnson’s syndrome, respectively (Baghdasaryan et al.,
2014). Following the meal, bile acids are released into intestinal
lumen by the activity of cholecystokinin, and by forming mixed
micelles, they facilitate digestion and absorption of lipophilic
xenobiotics. Within intestinal lumen, microflora exerts profound
effects on bile acids, with the primary aim to reduce bactericidal
activity. In the lumen of ileum and colon, non-absorbed bile
acids undergo deconjugation and 7α-dehydroxylation by the
activity of the enzymes of anaerobic microflora – the process
which results in the conversion of primary to the secondary
bile acids which affect the host metabolism: deoxycholic acid
(3α,12α-dihydroxy-5β-cholan-24-oic acid, DCA) and lithocholic
acid (3α-hydroxy-5β-cholan-24-oic acid, LCA) as well as
hydrophilic ursodeoxycholic acid (3α,7β-dihydroxy-5β-cholan-
24-oic acid, UDCA) which is produced by Clostridia species
through 7β-epimerization of CDCA) (Ramirez-Perez et al.,
2017).

Deconjugated bile acids are reabsorbed passively whereas
approximately 95% of ileal bile acids are efficiently reabsorbed
in the distal segments of ileum by the enterocyte apical
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FIGURE 1 | Classic and alternative pathways of bile acids synthesis. In human liver, two primary bile acids, cholic acid (CA), and chenodeoxycholic acid (CDCA), are
produced. Key regulatory enzymes in both pathways are shown. Microsomal cholesterol 7α-hydroxylase (CYP7A1) catalyzes the first the rate-limiting step in the
classic pathway converting cholesterol into 7-hydroxycholesterol, whereas the mitochondrial sterol 27-hydroxylase (CYP27A1) initiates the alternative pathway by
converting cholesterol into 27-hydroxycholesterol, which is then 7-hydroxylated by microsomal oxysterol 7-hydroxylase (CYP7B1). CYP8B1 regulates the cholic acid
synthesis in the classic pathway.

sodium-dependent bile acid transporter (ASBT, SLC10A2).
Trans-enterocyte shuttle of bile acid is facilitated by the
gastrotropin, intestinal bile acid-binding protein (IBAP,
FABP6), whereas basolateral heterodimeric organic solute
transporter (OST) α/β facilitates efflux into the portal circulation.
Hepatocytes uptake bile salts through sodium-dependent bile
acid transporter (NTCP, SLC10A1) whereas non-conjugated bile
acids are reuptaken by hepatocytes through sodium-independent
organic anion transporters (OATPs) localized in sinusoidal
membrane of hepatocyte (Zwicker and Agellon, 2013).
Composition of the bile acid pool, including both the
conjugated bile acids/salts following release from gallbladder
and deconjugated bile acids metabolized by intestinal microflora,
is variable during the day, depending upon dietary habits
and composition of intestinal microbiota (Ajouz et al., 2014).
Significant cytotoxic propensity of LCA results in fecal excretion
of this bile acid species, and small amount of hydrophobic
LCA recirculated in the liver undergoes sulfoconjugation in
hepatocytes by sulfotransferase 2A1 (SULT2A1) and fecal
excretion (Hofmann, 2004).

Bile acid pool is 4–14 times recycled during the day
and the fraction lost through feces is compensated by de
novo synthesis from cholesterol. Therefore, interruption of
enterohepatic recirculation and increased excretion of bile acids
represents effective therapeutic strategy in the treatment of
hypercholesterolemia (Chiang, 2013). Biosynthesis of bile acids
and their enterohepatic circulation with specific transmembrane
transport proteins in enterocytes and hepatocytes and are clearly
shown and explained in Figure 2.

BILE ACIDS AS SIGNALING MOLECULES

Enterohepatic recirculation of bile acids amplifies trans-hepatic
flux of bile acids that activate farnesoid X receptor (FXR), the
most significant transcription factor involved in the regulation of

bile acid biosynthesis and transport. Additionally, trans-intestinal
flux of reabsorbed bile acids activates intestinal FXR, regulating
enterohepatic recirculation of these amphiphilic molecules.
These hepatic and intestinal events prevent hepatocytes overload
and accumulation of toxic concentrations of bile acids and
prevent hepatocellular injury, by decreasing their own synthesis
and uptake, maintaining at the same time sufficient amounts of
bile acids in biliary tree and intestinal lumen for emulsification
of dietary lipids. Moreover, hepatocellular uptake of bile acids is
incomplete and micromolar range of concentrations spills from
portal into systemic circulation through hepatic veno-venous
anastomoses. These systemic concentrations are sufficient to
interact with several currently identified nuclear receptors;
FXR, pregnane X receptor (PXR), vitamin D receptor (VDR),
and constitutive androstane receptor (CAR), as well as bile
acid-coupled membrane receptor Takeda G-protein receptor-5
(TGR5, GPBAR) exerting systemic signaling effects beyond
enterohepatic tissues (Gioiello et al., 2014; Comeglio et al., 2017).

Farnesoid X receptor is a metabolic nuclear receptor which
primary role is to sense concentration of bile acids and prevent
their accumulation to toxic concentration in hepatocyte. Human
gene FXRα (NR1H1) which is located at chromosomal locus
12q23.1 encodes for FXR isoforms as a result of difference in
transcription initiation site (either exon one or exon three)
and alternative splicing between exons five and six (Kemper,
2011). FXR protein has been shown to be widely distributed
in the organism and metabolic significance of FXR has been
revealed in different cell- and tissue-types particularly by using
tissue specific FXR loss-of-function rodent models (Gardmo
et al., 2011). Like the other nuclear receptors, FXR contains
ligand-binding domain, DNA-binding domain that binds to
specific DNA sequences known as the FXR-response elements
(FXREs) and co-activator and co-repressor interacting activating
domains -1 and -2 (AF1, AF2) bridged by hinge region
(Gioiello et al., 2014). FXR regulates the expression of target
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FIGURE 2 | Biosynthesis and enterohepatic circulation of bile acids showing the individual transport proteins expressed in hepatocytes and enterocytes. Primary bile
acids synthesized in the liver from cholesterol are cholic acid (CA) and chenodeoxycholic acid (CDCA). The primary bile acids are then conjugated with glycine or
taurine in the liver and released into the gallbladder. Gut microbiota present in the intestine, by deconjugation, dehydroxylation, dehydrogenation and epimerization,
modify the primary bile acids converting them to the secondary bile acids-deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA). Around
95% of bile acids are reabsorbed into the distal ileum. Transporters involved in enterohepatic circulation of bile acids are apical sodium-dependent bile transporter
(ASBT) present in the brush border membrane of the enterocyte, ileal bile acid-binding protein (IBABP) involved in trans-enterocyte shuttle of bile acid, basolateral
organic solute transporters, OSTα/OSTβ that facilitate efflux into the portal circulation. Bile acids are actively transported into hepatocytes by sodium
sodium-taurocholate cotransporting polypeptide (NTCP) and organic anion transporters (OATP) while bile salt export pump (BSEP) and multidrug
resistance-associated protein-2 (MRP2) are involved in the process of exporting bile acids out of hepatocytes. Bile acids activation of FXR signaling pathways
regulates the expression of these transporters. In the hepatocyte, bile acid activation of FXR increases SHP expression, decreases the expression of NTCP and
OATP, while increases the expression of MRP2 and BSEP. In ileal enterocytes, bile acids signaling leads to upregulation of IBABP and OSTα/OSTβ and
downregulation of ASBT. (Bile acid direction is presented by black dashed narrow.)

genes mostly by hetero-dimerization with retinoic acid receptor
(RXR), inducing chromatin de-compaction through activating
acetylation of histones or by other (epi)genetic mechanisms,
resulting in the transactivation of target genes (Pavlovic et al.,
2017). FXR also induces gene repression mainly through the
small heterodimer partner (SHP), so called an “orphan” nuclear
receptor that lacks DNA-binding domain, and binds to regulatory
sequences of transcription factors leading to the transcriptional
repression of target genes. In the hepatocytes, FXR-SHP axis
suppresses bile acid synthesis and uptake transporters, whereas
in enterocytes, FXR-SHP axis suppresses uptake and induces
portal efflux of already absorbed bile acids (Ferrebee and Dawson,
2015). Ligand-dependent trans-activation of targeted genes by
bile acids is induced by the binding of bile acid as the most
potent endogenous ligands, with the CDCA being the most

potent agonist, whereas hydrophilic UDCA does not activate FXR
(Kemper, 2011). The potency of natural bile acids for FXR is
summarized in Table 1 (according to Gioiello et al., 2014). In
the intestine, FXR activates transcription of enterokine, fibroblast
growth factor-19 (FGF-19 or rodent FGF-15 ortholog) through
SHP, governing post-prandial bile acid and nutrient metabolism
(Mertens et al., 2017).

Additionally, as endobiotics, bile acids may activate PXR
(NR1I2, chromosome 3q13.33), which possesses the large
ligand-binding pocket allowing it to interact with a wide range
of structurally diverse hydrophobic compounds including drugs,
dietary supplements, environmental pollutants. Non-activated
PXR most commonly creates inhibitory complexes with silencing
mediator for retinoic acid receptor and thyroid hormone
receptor (SMRT), SHP and histone deacetylases (Pavlovic et al.,
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TABLE 1 | Potency of natural bile acids for FXR biding (modified according to
Gioiello et al., 2014).

Bile acid species Free
carboxylic

acid

Glycine
conjugated

bile salt

Taurine
conjugated

bile salt

CDCA (primary) 4.5 µM 10 µM 10 µM

CA (primary) >100 µM >100 µM >100 µM

LCA (secondary) 3.8 µM 4.7 µM 3.8 µM

DCA (secondary) 100 µM >100 µM >100 µM

UDCA (secondary) >100 µM >100 µM >100 µM

2017). Upon ligand binding, receptor undergoes conformational
changes and the release of corepressor factors induces histone
acetylation or recruitment of co-activating proteins like steroid
receptor coactivator-1 (SRC-1) (Pavek, 2016; Buchman et al.,
2018). The main bile acid ligand of PXR is LCA, its oxidized
metabolite 3-keto-LCA and acetylated DCA and CA derivatives,
while conjugated bile acids do not activate PXR (Carazo et al.,
2017). Studies have demonstrated that PXR can alleviate the
harmful effects of toxic hydrophobic bile acids such as LCA
through activation of cytochromes that hydroxylate bile acids to
less toxic, more hydrophilic bile acid species and by induction
of conjugation enzymes, sulfotransferase SULT2A1 and uridine
5′-diphospho-glucuronosyltransferases, involved in phase two
of metabolism and detoxification of bile acids (Wang et al.,
2012). PXR is mostly expressed in the intestine and liver, and
the main targets of this nuclear receptor are drug-metabolizing
enzymes and transporter proteins. Hence, the influence of
bile acids on the PXR activity may exert profound effects
on the pharmacokinetics of numerous drugs and therapeutic
outcome.

CAR (NR1I3, chromosome 11p15.5) is mainly expressed
in the liver and functions predominantly as a xenobiotic
sensor and transcriptional regulator of genes influencing drug
disposition. Additionally, CAR is unusual among the other
nuclear receptors in being constitutively active even in the
absence of ligands. Besides, CAR gets its name from two
androstane metabolites, which are identified as inverse agonists
that repress the constitutive activity of CAR. CAR has been
implicated in regulating the expression of multiple genes involved
mainly in drug metabolism and disposition (Carazo et al.,
2017; Pavlovic et al., 2017). CAR is a receptor for structurally
diverse molecules including bile acids as endogenous ligands,
with primary bile acid, CA, and keto derivatives 6-keto- and
7-keto-LCA being recognized to exert trans-repressive effect on
CAR activity (Stedman et al., 2004; Fiorucci et al., 2010). The
accumulation of bile acids during cholestasis and subsequent
activation of CAR reduces hepatocellular injury by the reduction
of bile acid synthesis as well as by inducing metabolizing
enzymes and transporter proteins, which mediates removal of
hydrophobic bile acids from hepatocytes (Li and Chiang, 2013;
Gabbia et al., 2017). Both CAR and PXR cooperatively diminish
bile acids toxicity. Combined loss of CAR and PXR leads to
increased sensitivity to bile acid toxicity, since LCA was tolerated
by wild-type and PXR-knockout mice, whereas in PXR/CAR

double knockout mice, significant accumulation of serum bile
acids and liver damage occurred (Uppal et al., 2005). On the other
hand, the repression of CAR decreased the bile acid accumulation
in cholestasis model of bile duct ligation in mice, indicating the
potential of selective CAR antagonists as therapeutic strategy
for cholestatic liver disease patients in the future. Even though
CAR and PXR display some overlapping functions, and the loss
of function of these receptors sensitizes the liver vulnerability
to bile acid-mediated toxicity, these receptors do not have
capacity to compensate the loss of each other (Stedman et al.,
2005).

Bile acids also activate membrane G-protein-coupled receptor
TGR5 through which these molecules exert non-genomic effects.
TGR5 was first identified as a G-protein-coupled bile acid
receptor (GPBAR1, MBAR, GPCR19) in 2002 (Maruyama et al.,
2002). Upon bile acids binding, the activation of TGR5 is
associated with an intracellular accumulation of cyclic AMP,
adenylate cyclase activation and calcium mobilization, followed
by downstream modulation of their target signaling pathways.
TGR5 is ubiquitously expressed in organism, being even
identified in the spinal cord and astrocytes, indicating that
bile acids exert numerous previously unanticipated functions.
In accordance with wide tissue distribution, bile acid-activated
TGR5 receptor is involved in regulation of diverse processes in
the organism, ranging from macrophage activation to glucose
metabolism regulation. Being expressed in immune cells, bile
acids via this receptor reduce production of inflammatory
cytokines, whereas in the skeletal muscle and brown adipose
tissue bile acids increase energy expenditure through the activity
of iodothyronine deiodinase D2 – an enzyme which converts
thyroxine to more potent form triiodothyronine, thus preventing
obesity (Deutschmann et al., 2018). By activating TGR5 in
intestinal entero-endocrine L cells bile acids stimulate the release
of insulinotropic glucagon-like peptide-1 (GLP-1), regulating
postprandial insulin release and blood glucose concentration
(Fiorucci et al., 2009). Studies have also shown that activation of
TGR5 on pancreatic β-cells stimulates glucose-induced insulin
release through cyclic AMP- and calcium-dependent manner,
evading stimulation of the glucagon release from α-cells (Kumar
et al., 2016).

Therefore, bile acids are becoming increasingly considered
as hormones which may affect various aspects of integral
metabolism. However, given that bile acids activate different
receptors, significant effort has been made to synthetize,
characterize and novel bile acid derivatives (as well as
non-bile acid synthetic ligands) with high specificity
toward certain receptor, ensuing dissection of signaling
pathways and uncovering novel therapeutic targets. Out of
numerous bile acid derivatives, only obeticholic acid (OCA,
6-ethyl-chenodeoxycholic acid, 6-ECDCA INT-747) has
currently been clinically useful and approved as a potent and
specific FXR agonist with 100-fold higher affinity compared to
the CDCA – endogenous FXR agonist with the highest potency
(Pellicciari et al., 2002). In addition, 6α-ethyl-23(S)-methylcholic
acid (INT-777) has been identified as a specific TGR5 agonist with
promising effects in treatment of glucose homeostasis disorders,
vascular inflammation and atherosclerosis, neuro-inflammation
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and hepato-gastro-intestinal and metabolic disorders (Pellicciari
et al., 2009; Guo et al., 2016).

UDCA is hydrophilic bile acid which β conformation of C7
hydroxyl group interrupts hydrophobic integrity of steroid core’s
hydrophobic surface, increasing hydrophilicity but significantly
affecting interaction with ligand-binding pocket (LBP) of FXR,
making impossible formation of hydrogen bond with tyrosine-
366 of LBP and activation of FXR (Katona et al., 2007). Even
though UDCA is not potent ligand for other bile acid receptors,
this bile acid species exerts various therapeutic effects by different
mechanism including antioxidative and anti-apoptotic functions,
the role of molecular chaperone regulating endoplasmic
reticulum homeostasis, protein folding and post-translational
modification of proteins (Perez and Briz, 2009; Cybulsky, 2017;
Mueller and Castro, 2018). UDCA modulates apoptosis by
tumor suppressor p53, through complexation of p53 with an
oncoprotein Mdm 2 (mouse double minute 2), preventing
therefore p53 nuclear transportation and activation (Amaral
et al., 2010). In addition to regulation of endoplasmic reticulum
homeostasis, UDCA stabilizes mitochondrial membrane
reducing pro-apoptotic potential of cell, which has profound
implications in pathologies with excessive apoptosis (Chun
and Low, 2012). This is particularly relevant for tauro-UDCA
which has proven beneficial therapeutic effect in central nervous
system in models of Parkinson’s disease, neuroinflammation,
retinal degenerative diseases, spinal cord injury (Lobysheva
et al., 2018; Miao et al., 2018; Rosa et al., 2018). In addition
to being a “neuroprotective conjugate,” tauro-UDCA has
therapeutic potential, endothelial dysfunction, protecting bile
acid composition during inflammatory conditions, reducing
the progression of high-fat diet-induced non-alcoholic fatty
liver disease (NAFLD), ameliorating intestinal inflammation,
improving function of intestinal barrier, and modulating the
composition of intestinal microbiota (Walsh et al., 2016; Hou
et al., 2017; Wang et al., 2018).

24-Norursodeoxycholic (norUDCA) is specific non-amidated
side chain-shortened C23 homolog of UDCA. NorUDCA
derivative has a property of targeting biliary canalicular
lumen, being shuttled through hepatocyte and excreted in
biliary tree as an anion, protonated at biliary pH. NorUDCA
induces bicarbonate-rich choleresis with cholangio-protective
effects. In addition, norUDCA has direct anti-inflammatory,
anti-lipotoxic, anti-fibrotic and anti-proliferative properties
having effects on different liver cell populations, representing
one of the most promising novel therapeutic approaches
targeting both the liver and the system of biliary tree at
multi-cell-type and multi-factorial levels (Trauner et al.,
2015). NorUDCA protects cholangiocytes from luminal
injury as hydrophilic bile acid. This bile acid derivative does
not undergo enterohepatic recirculation like conjugated
bile salts. Namely, protonated norUDCA is a non-polar
molecule that can passively diffuse through cholangiocytes
into the circulation of peribiliary plexus to be re-uptaken
by the liver cells and re-excreted into the bile in a process
known as ‘cholehepatic shunting.’ Since for each norUDCA
molecule that passes through cholangiocyte a bicarbonate
anion remains in the bile, this process increases biliary

bicarbonate concentration, which is known to have protective
propensity in cholangiopathies as ‘bicarbonate umbrella,’
favorably changing composition of bile (Halilbasic et al., 2015).
Indeed, norUDCA ameliorated both the liver and ductal injury
in Mdr2 knockout mice (Fickert et al., 2006). Opposite to
UDCA, which increases intra-biliary pressure in obstructive
cholestasis due to induced choleresis, norUDCA has been
demonstrated not to aggravate hepatocyte’s injury in a rodent
model with obstructive cholestasis, which may be explained by
the induction of alternative transporter proteins (Fickert et al.,
2017).

Overall, the role of bile acids has evolved to the
regulatory function which mode of action includes not only
receptor-mediated, but also receptor-independent cellular
signaling cascades and regulation of epigenetic machinery,
making these initially described intestinal emulsifiers as the
novel promising therapeutic agents in a plethora of metabolic,
inflammatory and even malignant diseases. The discovery that
bile acids activate cell receptors, having hence intrinsic property
of signaling function rather than exclusively emulsifying
function, initiated the renaissance in research in the field of bile
acid pharmacology and novel discoveries have been directed
toward identification of receptor specific analogs. The mode
of action of bile acids is complex and could be determined
by several premises: namely, it is structure-dependent
since small modifications in the structure significantly alter
physiological/pharmacological activity; the activity of these
molecules is tissue- and cell-type dependent and displays
variable effects in normal and malignant tissues, depending
on the context. Deciphering complex network underlying
currently described effects of bile acids and their derivatives
following administration in various preclinical and clinical
settings, as well as the effects of administration of synthetic
non-steroid bile-acid receptor modulators is beyond the scope
of this article. Therefore, this article is going to provide up to
date information regarding the role of bile acids and bile acid
derivatives in the treatment of the components of metabolic
syndrome.

STRUCTURAL AND
PHYSICO-CHEMICAL PROPERTIES OF
BILE ACIDS RELATED TO
PHARMACOLOGICAL ACTIVITY

Bile acids are characterized by specific chemical
structure derived from a hydrophobic hydrocarbon
perhydrocyclopentanophenanthrene with flexible acidic side
chain and polar hydroxyl groups. Steroid nucleus with angular
methyl groups at position C-18 and C-19 represents a convex
hydrophobic β-face, while hydrophilic concave α-face, contains
polar hydroxyl groups varying in their number and position
(Monte et al., 2009). Therefore, bile acids are amphiphilic
molecules that exhibit a great surface activity and tend to
self-associate in aqueous solutions forming micelles as long
as their concentrations are above a certain concentration,
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commonly called the critical micellar concentration (CMC)
(Hofmann and Hagey, 2008). The key factor that determines the
self-association of bile acids is their hydrophobicity that depends
on chemical structure, particularly the number and orientation
of hydroxyl groups. Bile acids with fewer hydroxyl groups are
usually more hydrophobic and vice versa (Ashby et al., 2018). The
most hydrophobic bile acid, based on chromatographic behavior
is LCA, followed by DCA, CDCA, CA and UDCA (Jia et al.,
2017). CMC values of selected bile acids reported by Roda et al.
(1989) are given in Table 2. In addition to the concentration,
bile acid hydrophobicity is the most important determinant of
their toxicity that is associated with cell membrane damage,
promotion of the generation of ROS, and eventually necrosis
and apoptosis. The more hydrophobic bile acids exhibit more
cytotoxic properties compared to hydrophilic bile acids (Perez
and Briz, 2009). Since the bile acids have been continuously
investigated for therapeutic applications, it is of high importance
to take in consideration inter-species variation in bile acid
metabolism and composition between animals and humans that
might contribute to the discordant toxicity.

As weak acids, bile acids exist in their ionized form,
i.e., as bile salts, at physiological conditions. Conjugation of
these compounds with either glycine or taurine improves
their physico-chemical characteristics by decreasing hydrophobic
characteristics and increasing the water-solubility (Hofmann and
Hagey, 2008). In the intestinal tract, bile acids are mainly in the
form of mixed micelles composed mostly of bile salts, lecithin,
and cholesterol, reducing thus bile acid toxicity and representing
significant mechanism of cholesterol transport from the liver into
the intestine and its excretion from the organism (Roda et al.,
1983).

Specific structure of bile acids relating to amphiphilic
properties with both hydrophilic and hydrophobic regions is

TABLE 2 | Critical micellar concentrations (CMCs) of selected bile acids and their
conjugates (reported by Roda et al., 1989).

Trivial name Symbol Substituents CMC (0.15 M
Na+) (mM)

Dihydroxy bile acids

Chenodeoxycholic acid CDCA 3α,7α 4

Taurochenodeoxycholic acid TCDCA 6

Glycoursodeoxycholic acid GCDCA 10

Ursodeoxycholic acid UDCA 3α,7β 7

Tauroursodeoxycholic acid TUDCA 2.2

Glycoursodeoxycholic acid GUDCA 4

Deoxycholic acid DCA 3α,12α 3

Taurodeoxycholic acid TDCA 2.4

Glycodeoxycholic acid GDCA 2

Trihydroxy bile acids

Cholic acid CA 3α,7α,12α 11

Taurocholic acid TCA 6

Glycocholic acid FCA 10

Ursocholic acid UCA 3α,7β,12α 39

Tauroursocholic acid TUCA 40

Glycoursocholic acid GUCA 30

responsible for specific functions of these compounds (Monte
et al., 2009). The most important and well-known physiological
functions of bile acids are solubilization of fatty acids, cholesterol
and liposoluble vitamins in the intestinal tract, thus facilitating
their digestion and transport. However, there is a growing
body of evidence that the list of their physiological roles
is far longer and still not complete (Li and Chiang, 2015;
Chávez-Talavera et al., 2017). Discovery of novel functions of
bile acids as signaling molecules involved in a plethora of
metabolic pathways and signaling cascades represents a driving
force to design and synthesize novel selective and potent
modulators of these receptors with improved pharmacokinetic
and pharmacodynamic profiles. The meaningful challenge in
designing agonists of these receptors is to unveil some specific
properties that are relevant to their potency and selectivity for
particular receptors and to distinguish the desired therapeutic
effects from the undesired side effects (Pellicciari et al., 2009).

Introduction of α ethyl moiety in the C6 position of CDCA
was found to dramatically increase the agonist activity and
selectivity for FXR, thus resulting in discovery of OCA (Pellicciari
et al., 2002; Sato et al., 2008). Furthermore, Pellicciari et al. (2009)
reported that methylation at the C23-(S) position in the side
chain of bile acids such as CDCA and OCA, is a key feature to
improve potency and selectivity for TGR5.

Furthermore, the unique and specific structure of bile acids
make them attractive compounds in the drug development
process, as pharmaceutical tools and potential drug carrier
systems that could improve, control and localize drug delivery
(Stojančević et al., 2013). Since mid-1990s, much attention has
been paid to the investigations of keto derivatives of bile acids,
primarily 12-monoketocholic acid (12-MKC), as absorption
enhancers through different biological membranes (Al-Salami
et al., 2008, 2012; Kuhajda et al., 2009; Yang et al., 2011;
Chen et al., 2012; Danic et al., 2016). Replacing hydroxyl with
keto group in CA at C12 position produces less lipophilic
bile acid with higher CMC and consequently with diminished
cytotoxic property, but with preserved absorption-promoting
activity (Chen et al., 2012).

TRADITIONAL AND CURRENT
THERAPEUTIC USE OF BILE ACIDS

Beneficial effects on human health and therapeutic use of
bile acids have been recognized since ancient times (Mikov
et al., 2006). Bear bile has been used in Traditional Chinese
Medicine clinical practice for thousands of years. Bear bile was
used for detoxification, reduction of inflammation, swelling,
fever and pain, several liver diseases, including fibrosis, biliary
cirrhosis, and even liver cancer. Bile acids were recognized as the
main compounds in bear bile responsible for pharmacodynamic
activity (Li et al., 2016).

Clinical studies have confirmed the beneficial effects of bile
acids, particularly UDCA in a broad spectrum of cholestatic
liver diseases, including primary biliary cirrhosis, pediatric
cholestatic disorders, primary sclerosing cholangitis (PSC),
and drug-induced cholestasis (Paumgartner and Beuers, 2002).
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Western medicine recognized therapeutic potential of bile acids
during the 20th century. Only UDCA and CDCA were used for
the treatment of cholelithiasis for several decades, however, the
discovery at the end of 20th century that bile acids activate FXR
brought a renaissance in the research of bile acids. The search
for selective agonist of bile acid receptor resulted in the synthesis
and pre-clinical studies of numerous bile acid derivatives. In
the year of 2016, US Food and Drug Administration (FDA)
approved the use of CA in inborn disorders of bile acid
synthesis and as additional remedy in peroxisomal disorders
including Zellweger cerebro-hepato-renal syndrome, as well as a
local injection use of DCA for submental fat tissue contouring
(Mullard, 2016). During the same year, FDA gave approval for the
use of semi-synthetic potent and selective FXR agonist, OCA, for
primary biliary cirrhosis therapy in patients with unsatisfactory
response to UDCA administration as a monotherapy (Hirschfield
et al., 2015). This is the first approval of medicine for primary
biliary cirrhosis indication after more than two decades (Gerken
and Nitschmann, 2017). In addition, FXR agonist OCA has
been extensively investigated in clinical settings. Treatment with
OCA has been shown to improve biochemical and histological
parameters in patients with NAFLD (Neuschwander-Tetri et al.,
2015). During phase II study in a group of patients with NAFLD
and type 2 diabetes, OCA improved central and peripheral insulin
sensitivity and reduced parameters of hepatic inflammation and
fibrosis yielding promising results in larger studies (Mudaliar
et al., 2013). NorUDCA, as a novel bile acid derivative, has been
successfully implemented during phase II clinical trial in patients
with PSC. The safety profile of norUDCA was similar to placebo,
whereas serum parameters of cholangiocyte injury were reduced,
which gives promising expectations (Fickert et al., 2017).

Many bile acids derivatives have been synthesized and
characterized during past decade, and this is continuously
growing and promising field of biomedical research worldwide.
Today therapeutic role of bile acids appears to expand rapidly
attracting the great attention in the field of metabolic syndrome
treatment (Taoka et al., 2016).

BILE ACIDS IN REGULATION OF
GLUCOSE METABOLISM

Over the past decade, a growing body of evidence has
strongly indicated that bile acids regulate glycemic postprandial
metabolism displaying also anti-diabetic signaling capacities
by acting through bile acid-activating receptors, as well as
by improving protein folding and function, in addition to
antiapoptotic effects (Hylemon et al., 2009).

There are, however, some unsolved discrepancies in literature
between obtained results related to implication of bile acids in
glucose metabolism. Initial studies identifying the implication
of FXR in glucose metabolism showed that bile acids or
synthetic FXR-specific agonists induced the expression of the rate
controlling enzyme of gluconeogenesis, phosphoenolpyruvate
carboxykinase (PEPCK), increasing the total glucose output in
human and rat hepatocyte, as well as in mice in vivo (Stayrook
et al., 2005). On the contrary, Yamagata et al. (2004) have

shown that bile acids suppress the expression of gluconeogenesis
genes PEPCK, glucose-6-phosphatase (G6Pase) and fructose
1,6-bis phosphatase (FBP1) via the interaction between SHP with
hepatocyte nuclear factor 4 (HNF-4) or forehead transcription
factor Foxo1, in both in vivo and in vitro conditions. Decrease of
PEPCK expression appears to be an attractive possibility for type
2 diabetes treatment, given that type 2 diabetes is characterized by
an increased hepatic glucose output and hyperglycemia (Cariou
et al., 2005). In addition, the activation of hepatic FXR leads
to increased glycogen synthase activity by phosphorylation and
inactivation of glycogen synthase kinase 3 (GSK3b) (Mencarelli
and Fiorucci, 2010).

Zhang et al. (2006) showed that FXR deficiency in mice
is associated with glucose intolerance and insulin resistance
manifested by hyperglycemia, impaired glucose tolerance,
and severely impaired insulin signaling in liver, muscle and
adipose tissue. Accordingly, activation of FXR by the synthetic
non-steroidal agonist GW4064 in mice (30 mg/kg twice a
day) significantly decreased hepatic glucose production, lowered
blood glucose levels, increased glycogenesis, improved insulin
synthesis and secretion, and improved central (hepatic) and
peripheral insulin sensitivity in animals (Zhang et al., 2006).

FXR-induced activation of insulin transcription and secretion
in pancreatic β cells are regulated by different mechanisms
involving both, genomic as well as non-genomic effects. Genomic
effects of FXR activation are based on the induction of the
glucose-dependent transcription factor krueppel-like factor 11
(KLF11), which is proven to be an essential factor for insulin
gene transcription. Non-genomic effects of FXR activation in
βTC6 cells relay on the increase of Akt phosphorylation and
translocation of the glucose transporter type 2 (GLUT2), a
member of membrane proteins that facilitates transport of
glucose along a gradient of concentration at plasma membrane,
increasing the glucose uptake by pancreatic β cells (Renga et al.,
2010). Furthermore, FXR activation induces the expression of
GLUT4 glucose transporter in the liver, which expression is found
to be reduced, both in type 1 and 2 diabetic subjects (Garvey
et al., 1991, 1992). Activation of FXR was able to upregulate
GLUT4 expression through FXRE in the GLUT4 gene promoter.
Shen et al. (2008) reported that activation of FXR by CDCA
in concentration 10 µM could induce GLUT4 transcription in
3T3-L1 and HepG2 cell lines and increase the GLUT 4 protein
expression in C57BL/6J mice that were treated with CDCA
(20 mg/kg/day). Overall, these changes resulted in decrease in
plasma glucose level, decreased hepatic gluconeogenesis, and
increased hepatic glycogen synthesis (Mencarelli and Fiorucci,
2010).

Bile acids may also affect glucose homeostasis in an
FXR-independent manner (Stanimirov et al., 2012). In addition
to the role in energy expenditure (discussed in further text),
the activation of membrane receptor TGR5 by bile acids
has been shown to increase intestinal GLP-1 secretion from
entero-endocrine L cells, both in vitro and in vivo, stimulating the
release of insulin from the pancreatic β-cells without the release
of glucagon from α-cells, and reducing postprandial glycaemia
(Katsuma et al., 2005; Kumar et al., 2012; Duboc et al., 2014).
Furthermore, Maruyama et al. (2006) showed that TGR5-null
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mice have a 25% decrease in bile acid pool size, while female
TGR5-null mice showed significant fat accumulation with body
weight gain compared with that of the wild-type mice when fed a
high fat diet. Figure 3 clearly shows intertwined pathways of bile
acids implication in glucose metabolism mediated by FXR and
TGR5 signaling.

In vitro and in vivo genetic evidence indicate a strong
and causal link between the functional capacity of the
endoplasmic reticulum and insulin effects. Therefore, the
modulation of endoplasmic reticulum function might provide
a new approach for diabetes treatment (Ozcan et al., 2006).
Ozcan et al. (2006) showed that tauro-UDCA improves insulin
resistance by attenuating endoplasmic reticulum stress in type
2 diabetes animals resulting in normalization of hyperglycemia,
improvement of systemic insulin sensitivity and insulin action in
various tissues.

The efficacy of synthetic FXR agonists as potential therapy for
type 2 diabetes mellitus has been proven in an already mentioned
phase II clinical trial conducted by Mudaliar et al. (2013) showing
that administration of OCA to patients with both type 2 diabetes
mellitus and NAFLD for 6 weeks was well-tolerated, improving
insulin sensitivity, and reducing markers of liver inflammation
and fibrosis.

Bile Acid-Mediated Effects on Diabetes
After Bariatric Surgical Procedures
Recently, the search for the mechanisms underlying rapid
glycemic improvements following bariatric surgical procedures
[Roux-en-Y gastric bypass (RYGB) and vertical sleeve
gastrectomy] in patients with morbid obesity and type 2

diabetes confirmed the significant physiological effects of bile
acids in glucose homeostasis (Bradley et al., 2012; Pournaras
et al., 2012). These procedures caused an increase in free bile
acids both in serum and in the lower intestine (Madsbad et al.,
2014; Raghow, 2015). The increased concentration of free bile
acids in the intestinal lumen had direct incretin effect through
TGR5 – GLP-1 axis, enhancing insulin secretion, as well as
by activating intestinal FXR and its direct downstream target
FGF-15/19 – a postprandial hormone which improves glucose
tolerance, the protein which expression is, otherwise, reduced
in diabetic patients (Jansen et al., 2011; Schaap, 2012; Madsbad
and Holst, 2014). Beneficial effects mediated by the bile acid
receptors FXR and TGR5 following bariatric surgery were further
confirmed since in the absence of FXR signaling in FXR-null
mice or antagonizing GLP-1 signaling by exendin-(9-39), the
beneficial effects of bariatric surgery on body weight and glucose
metabolism were abolished (Salehi et al., 2011; Ryan et al., 2014).
The increase in free bile acid concentrations in the lower parts
of intestinal tract after RYGB creates an environment suitable
for growth of bile-tolerant bacteria such as phylum Proteobacter
taxonomic group (Osto et al., 2013). The overgrowth of
Proteobacter results in a decrease of secondary, more toxic bile
acid species, consequent increase of primary bile acid levels in
plasma and pronounced incretin effect (Vrieze et al., 2014).

Effects of Bile Acids–Gut Microbiota
Interactions in Glucose Metabolism
Human intestinal tract is colonized by a diverse collection of
microbes, with bacteria as the most numerous members. The
composition of gut microbiota is specific to the individual but

FIGURE 3 | Intertwined bile acids-mediated signaling pathways in glucose metabolism. Bile acids activation of FXR and TGR-5 signaling pathways inhibits
gluconeogenesis and promotes glycogen synthesis in the liver, promotes glucose-stimulated insulin release in pancreas, increases energy expenditure especially in
skeletal muscles and brown adipose tissue. In the brain, bile acids-TGR5 signaling mediates satiety.
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remains relatively constant over time (Stojančević et al., 2014).
Alterations of the human gut microbiome can play a role in
disease development (DeGruttola et al., 2016).

Intestinal microbiota regulates host metabolism by producing
numerous metabolites that signal through their cognate
receptors, thus affecting body weight, bile acid metabolism,
pro-inflammatory activity and insulin resistance, and modulation
of gut hormones (Han and Lin, 2014; Wahlstrom et al., 2016).
One important class of metabolites produced by microbes are
bile acids. Bacterial bile salt hydrolase (BSH), which is present
in all major bacterial species in the human gut, carry out bile
salt deconjugation thus increasing the resistance to bile toxicity,
while 7α-dehydroxylases convert the primary bile acids CA and
CDCA to the secondary bile acids DCA and LCA, respectively
(Wahlstrom et al., 2016). Other bile salt conversions performed
by the intestinal microbiota are oxidation and epimerization
of hydroxyl groups, 7-dehydroxylation, esterification and
desulfation, thus contributing to the great chemical diversity and
more hydrophobic bile acid pool (Ridlon et al., 2016). Besides,
bile acids can modulate gut microbiota composition both,
directly, by destroying the structures of bacterial membranes,
and indirectly, via FXR activation by promoting the transcription
of antimicrobial agents such as iNOS and IL-18 in the small
intestine and thereby inhibiting bacterial growth (Inagaki et al.,
2006; Wahlstrom et al., 2016).

Considering the complex relationship of bile acids with
intestinal microbiota, it is not surprising that in addition
to the changes in the composition of bile acids, diabetic
patients also have different composition and activity of intestinal
microbiota comparing to healthy individuals (Quercia et al.,
2014). Both type 1 and type 2 diabetes mellitus are associated
with a decrease in overall microbial diversity, characterized
with reduction of Firmicutes and butyrate-producing bacteria, as
well as a disturbed intestine barrier function and increased gut
permeability (DeGruttola et al., 2016; Knip and Siljander, 2016).
Supplementation with probiotic bacteria resulted in beneficial
modulation of host’s metabolism in terms of stimulated GLP-1
secretion by specific bacterial metabolites such as short chain
fatty acids (SCFAs) through GPR41/43-dependent mechanism
(Everard and Cani, 2014). Additionally, administration of
probiotic bacteria reduced the food intake and protected from
body weight gain and insulin resistance in animal models of
obesity and diabetes (Yadav et al., 2013). Studies performed by
our group have demonstrated that a multi-therapeutic approach
using combination of probiotics and bile acids as adjunct therapy
in a rat model of diabetes mellitus exerted even better glycemic
regulation and resulted in the alleviation of complications
compared to each treatment alone (Al-Salami et al., 2008,
2012). Synergistic effects of bile acids, probiotics and current
antidiabetic therapy are reviewed in detail by Mikov et al. (2017)
pointing to the potential application of this combination in
metabolic disorders with special emphasis on diabetes mellitus.

Thus, the therapeutic manipulation of the intestinal
microbiota by probiotic supplementation with secondary
effects on bile acid pool composition represents the attractive
and promising strategies for such conditions. Although further
studies are highly recommended to unveil the exact mechanisms

responsible for beneficial effects of bile acids-probiotic
co-administration, activation of complex FXR and TGR5
signaling pathways is proposed as one of possible explanations.

BILE ACIDS AND LIPID METABOLISM

As a main product of cholesterol catabolism, bile acids exert
profound effects, not only on cholesterol metabolism, but
also on the metabolism of triacylglycerols, regulating therefore
metabolism of various lipoprotein species. Increased synthesis of
bile acids increases the utilization of cholesterol as a substrate.
By activating FXR bile acids inhibit CYP7A1 – the rate limiting
enzyme of bile acid synthesis and cholesterol catabolism in
the hepatocytes. In accordance, long term supplementation
of either 750 mg or 375 mg/day of CDCA in patients with
gallstone disease results in a modest increase in low density
lipoprotein cholesterol (LDL) level (Schoenfield and Lachin,
1981). The increase in LDL occurred in 85.2% of patients
receiving 750 mg/day, and, in 82.8% of patients receiving
375 mg/day, however, the increase of 67.0% was recorded in a
group of patients receiving placebo, possibly as a consequence of
the main disease. On the other hand, in vitro studies demonstrate
that FXR agonist CDCA (250 µM) stabilizes mRNA of LDL
receptor and increases LDL receptor activity in human cultured
hepatic cell line increasing thus the uptake and clearance of
LDL particles (Nakahara et al., 2002). Changes in circulating
cholesterol level through the FXR activation in vivo are distinct
among rodent models and humans. Namely, CYP7a1 expression
in rodents, is opposite to the humans regulated by two nuclear
receptors, the liver X receptor-α (LXR-α) and FXR, both of
which abundantly expressed in the liver. LXR-α may be activated
by cholesterol derivatives including 24(S),25-epoxycholesterol
and 24(S)-hydroxycholesterol, and following its activation LXR
interacts with a response element within the CYP7a1 promoter,
stimulating thereby gene expression. The translation of effects
observed in rodents has been puzzling since in these species
circulating cholesterol is predominantly packed in the form of
HDL lipoproteins, opposing to LDL species dominant in human.
In chimeric mice whose livers mostly contain human hepatocytes
and a “humanized” lipoprotein profile, treatment with potent
specific FXR agonist, semi-synthetic bile acid derivative OCA
(10 mg/kg/day), results in the increase of circulating LDL and
HDL reduction, similarly to the FXR activation in humans.
The increase in LDL correlated with decreased sterol regulatory
element-binding protein-2 (SREBP-2) activity and its target
gene expression, including a significant downregulation in the
expression of LDL receptor protein (Papazyan et al., 2018). The
administration of OCA, 25 or 50 mg/day for 2 weeks, during
clinical trials resulted in similar effects (Mudaliar et al., 2013;
Walters et al., 2015).

The reduction in HDL level by FXR activation [using chow
supplemented with 0.5% w/w taurocholic acid (TLCA) for a
6 days] may be explained by the repression of the apolipoprotein
A-I gene, as well as the hetero-exchange of cholesteryl esters
and triacylglycerols between plasma HDL and ApoB-containing
lipoproteins by inducing cholesteryl ester-transfer protein
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expression (Lambert et al., 2003; Gautier et al., 2013). On the
other hand, FXR targeting may also reinforce the reverse
transport of cholesterol, a process in the cholesterol transport
from peripheral tissues and cells to the hepatocytes and biliary
system, in order to eliminate cholesterol through intestinal route.
Northern blot analysis of liver specimens of C57BL/6 male mice,
fed by 1% CA supplemented diet for a month, revealed that
abovementioned effects are mediated via phospholipid-transfer
protein, a protein which mediates the delivery of phospholipids
and cholesterol from LDL to HDL lipoprotein particles. Observed
effects are also a consequence of the changes in expression
of the scavenger receptor-B1 (SR-B1), which is involved in
the recognition of HDL particles and their uptake by the
hepatocytes (Urizar et al., 2000). Also, the activation of
direct FXR target, enterokine FGF15/19 has been shown to
stimulate robust secretion of cholesterol into the intestinal lumen
via the sterol-exporting heterodimer adenosine triphosphate
(ATP)-binding cassette subfamily G member 5/8 (ABCG5/G8)
in mice (de Boer et al., 2017). This finding has potential
implication in developing strategies aimed at reduction of
intestinal cholesterol resorption. The administration of 10 or
25 mg of OCA per day in healthy volunteers induced sustained
elevation of serum LDL concentration and reduction of HDL,
with a slight elevation of total cholesterol level independently
of dose (Pencek et al., 2016). Similar changes were noted in
patients with type 2 diabetes mellitus as well as in patients with
biopsy-confirmed non-alcoholic steatohepatitis (Mudaliar et al.,
2013; Neuschwander-Tetri et al., 2015). However, in patients with
primary biliary cholangitis treated with 5–10 mg of OCA per day
for 1 year, the rise in LDL and reduction in HDL level was smaller
in amplitude and transient (Nevens et al., 2016). Effects of FXR
activation by repeated administration of 5, 10, or 25 mg OCA
per day for either 2 weeks or 20 days have been estimated in
clinical trial recruiting healthy volunteers (Pencek et al., 2016).
The results observed in this study confirmed the results of
previous clinical studies in terms of slight disturbances in lipid
status; namely, treatment with OCA induced a dose-independent
reduction in HDL, as a result of reduction in small and medium
HDL particles concentration, and increase in LDL cholesterol
level (Pencek et al., 2016). Even though the activation of FXR
by bile acids and bile acid derivatives may induce potentially
pro-atherogenic phenotype in terms of the shift in lipoprotein
fractions, large randomized multicenter clinical studies are highly
needed to elucidate clinical impact of such dyslipidemic effects
treated with bile acids or bile acid derivatives.

On the other hand, bile acids supplementation with 0.5%
(w/w) CA for 8 weeks has been shown to modulate triacylglycerol
metabolism through several distinct mechanisms, predominantly
via FXR activation. By activating FXR bile acids repress
triacylglycerol synthesis de novo through FXR downstream target,
SHP-mediated inhibition of transcription of sterol regulatory
element binding protein-1c (SREBP-1c), a key factor that
controls transcription of several genes regulating fatty acids and
triacylglycerol synthesis, including a master lipogenic enzyme
in the liver, fatty acid synthase (Watanabe et al., 2004). FXR
activation has also been demonstrated to induce the expression
of nuclear receptor peroxisome-proliferator-activated receptor-α

(PPAR-α) and of pyruvate dehydrogenase kinase isoenzyme-4
promoting fatty acid oxidation, whereas by SHP-mediated
inhibition of the microsomal triacylglycerol transfer protein
expression to reduce the VLDL assembly (Pan et al., 2010).
Moreover, FXR promotes the activity of enzyme anchored to
the luminal surface of vascular endothelial cells, a lipoprotein
lipase (LPL) catalyzing therefore hydrolysis of triacylglycerols
by inducing expression of LPL-activating apoC-II in C57BL/6J
mice fed for 3 weeks with diet containing 0.5% sodium cholate.
Additionally, FXR activation induced the expression of the VLDL
receptor, facilitating the clearance of VLDL particles in HepG2
cells incubated with 50 µM of CDCA for 24 h (Jiao et al., 2015).
In addition to reduce symptoms of bile acid diarrhea in patients,
oral supplementation of 25 mg of OCA per day for 2 weeks
resulted in increase in FGF-19 level and triacylglycerol decrease,
which implicates the potential role of FGF-19 on triacylglycerol
metabolism (Walters et al., 2015).

The additional complexity of signaling network between
bile acids and triacylglycerol network arises upon interactions
with intestinal microbiota, which is commonly changed in
Western-type diet fed persons as well as in obese. Indeed, even
short-term administration of oral non-absorbable antibiotics
resulted in intestinal dysbiosis followed by the decrease
in amounts of secondary bile acids DCA and LCA liver
concentrations, and reduced serum triacylglycerol level, which
did not recover even after bile acid supplementation (Kuno
et al., 2018). The results of the study suggest that secondary bile
acids produced by intestinal bacterial species exert significant
regulatory role in maintaining serum triacylglycerol levels and
metabolism in the host.

THE ROLE OF BILE ACIDS IN
NON-ALCOHOLIC FATTY LIVER
DISEASE

Non-alcoholic fatty liver disease, characterized by excess
triglyceride accumulation within hepatocytes, or steatosis, is
the most prevalent chronic liver disease. Simple steatosis is
regarded as to as relatively benign and non-progressive while
non-alcoholic steatohepatitis (NASH) is considered to be the
most serious form of NAFLD, characterized by hepatocellular
injury, chronic inflammation, and a higher risk of end stage
liver diseases such as cirrhosis and liver cancer (Wree et al.,
2013; Benedict and Zhang, 2017). NAFLD is strongly associated
with the components of metabolic syndrome, mainly type 2
diabetes mellitus and obesity, being thus the important risk
factor for both hepatic and cardiovascular mortality (Demir
et al., 2015). NAFLD is the most prevalent chronic liver disease,
which affects up to 40% of the population, and nearly 30% of
patients with NAFLD progress NASH (Sanyal, 2011). In addition,
both NAFLD and type 2 diabetes mellitus are dominant health
disorders associated with the issue of global overweight and
obesity epidemic (Feneberg and Malfertheiner, 2012).

Non-alcoholic fatty liver disease is therefore categorized as a
hepatic manifestation of metabolic syndrome. NASH represents
advanced grade of NAFLD characterized by hepatocellular injury,
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inflammatory infiltrate with deposition of collagen. Insulin
resistance is known as fundamental feature in the pathogenesis
of type 2 diabetes mellitus as well as in NAFLD, being also
considered a principal disorder in the initiation and development
of NASH (Kitade et al., 2017). In addition to insulin resistance,
oxidative stress, hypoadiponectinemia, and visceral adiposity
contribute to the progression to NASH (Gruben et al., 2014).
The accumulation of triacylglycerols in hepatocytes is a result of
lipolysis due to the insulin resistance, increased fatty acid tissue
from mal-functional adipose tissue, impaired mitochondrial fatty
acid oxidation or impaired VLDL particles assembly and export,
as well as by activating inflammatory pathways (Bellanti et al.,
2018).

The positive effects of bile acids-mediated FXR and TGR5
activation in a wide range of metabolic processes, including
glucose metabolism and insulin signaling, triglyceride and
cholesterol metabolism as well as the inflammation, put the
focus of research interest on bile acids to develop effective
therapeutic strategies for this liver-associated metabolic disease.
Due to its characterization and pre-clinical evaluation, OCA
has become one of the most commonly ligands used for
decoding FXR signaling network both in vivo and in vitro.
During preclinical studies OCA administration had significant
beneficial effects in numerous disorders of enterohepatic system
including improvement of estrogen-induced cholestasis, liver
fibrosis, NASH, insulin signaling, portal hypertension, reduction
of intestinal inflammation and improvement of ileal barrier
function during cholestasis, improved bile acid-induced chronic
diarrhea (Fiorucci et al., 2004, 2005; Adorini et al., 2012;
Verbeke et al., 2014; Walters et al., 2015). Per os administration
of 25 mg of OCA for 72 weeks has been demonstrated to
improve histological features of the livers of patients with NASH
during phase two of FLINT clinical trial (Neuschwander-Tetri
et al., 2015). Beneficial effects of FXR activation in patient with
NAFLD include improved central insulin sensitivity in the liver
and consequently increased glycogen synthesis, decrease in de
novo lipogenesis in liver, improved insulin sensitivity adipose
tissue (decreasing lipotoxic effects) and improved function
of peroxisome proliferator-activated receptor-gamma (PPAR-γ)
and PPAR-α, regulating fatty acid and glucose metabolism both
in adipose tissue and liver (Fiorucci et al., 2007). The diet
supplementation with OCA (10 mg/kg/day) to fast food diet
animal model of NASH, mimicking the metabolic syndrome
features ablated micro RNA-21 (miR21) and activated PPAR-α
that resulted in significant steatosis reduction, inflammation and
lipo-apoptosis, unraveling restoration of miR21/PPAR-α axis in
liver and muscle tissue by FXR and OCA (Rodrigues et al., 2017).
The activation of FXR by OCA (10 mg/kg/day, administered
by oral gavage for 7 weeks) and of TGR5 by 8-week-long diet
intervention containing 30 mg/kg/day of INT-777, improved
liver steatosis and insulin resistance in rodent model of NAFLD
and obesity (Thomas et al., 2009; Cipriani et al., 2010). The
administration of OCA (25, 50 mg/day per os during 6 weeks) in
patients with type two diabetes mellitus and NAFLD significantly
reduced body weight, improved insulin sensitivity and reduced
serum level of gamma-glutamyltransferase, whereas increase in
serum FGF-19 intestinal enterokine confirmed the activation

of FXR in the patients (Mudaliar et al., 2013). Additionally,
OCA (10 mg/kg) prevented hepatic inflammation by preventing
detrimental nuclear factor κB-mediated immunomodulation and
inflammation. Also, through inhibition of hepatic stellate cells
activation, incubation with 10 µM of OCA prevented progression
toward liver fibrosis and development of cirrhosis (Goto et al.,
2018). Treatment with this FXR agonist resulted in improved
biochemical and liver histological features in patients with NASH.
These functions indicate that FXR is an attractive therapeutic
target for liver diseases (Massafra and van Mil, 2018). Further
large randomized clinical studies are highly desirable to confirm
effects of “knocking on the FXR door” as a potential therapeutic
approach in which change in bile acid pool size and composition
may be exploited for the treatment of metabolic disorders.

BILE ACIDS AND ATHEROSCLEROSIS

In addition to the systemic effects on serum lipid profile, bile
acids may exert anti-atherosclerosis effects via FXR directly act
at the level of the arterial wall. Vascular wall is not typically
involved in bile acids metabolism, however, FXR has been
found to be expressed in the endothelial cells and vascular
smooth muscle cells (Mencarelli and Fiorucci, 2010). Activation
of FXR by circulating bile acids may have a beneficial effect on
vascular tone by suppressing the potent vasoconstrictive peptide,
endothelin-1, and by inducing the production of the vasodilating
agent, nitric oxide (NO). In vitro incubation of rat pulmonary
artery endothelial cells with CDCA (6.25–50 µM) activated
FXR in these cells and reduced expression of endothelin-1 in
a concentration-dependent manner. Similarly, the incubation
of rat pulmonary microvasculature endothelial cells and bovine
aortic endothelial cells with CDCA (12.5 and 50 µM) resulted in
increase in endothelial nitric oxide synthase (eNOS) level through
transcriptional activation of the eNOS gene promoter by FXR
(He et al., 2006; Li et al., 2008). In addition, FXR activation
increases the production of physiological vaso-relaxing molecule,
hydrogen sulfide (H2S) by activating cystathionase (CSE), the
main enzyme in the trans-sulfuration pathway. CSE has been
shown to be FXR target gene both in vitro (following incubation
of HepG2 cells with 10 µM for 18 h) and in vivo (5 mg/kg of
OCA administered intraperitoneally to C57BL/6j mice), reducing
the portal pressure and attenuating endothelial dysfunction in the
model of isolated and perfused cirrhotic rat livers (Renga et al.,
2009).

The incubation of rat aortic smooth muscle cells in medium
containing 30 µM of OCA and subsequent FXR activation
has been shown to inhibit inflammatory responses as well
as migration of vascular smooth muscle cells by inhibiting
interleukin 1β-induced expression of inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2) genes, by
reducing NF-κB activation. The same authors reported that
NF-κB activation by IL-1β is downregulated by FXR and
SHP. FXR ligands also were shown to reduce platelet-derived
growth factor-β (PDGF-β) migration of rodent and human
aortic vascular smooth muscle cells (Li et al., 2007). However,
in vitro incubation of HUVEC cells with CDCA (100 µM), DCA
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Ðanić et al. Bile Acids and Metabolic Syndrome

(100 µM), and LCA (33 µM) induced the expression of adhesion
molecules, such as intracellular adhesion molecule-1 (ICAM-1),
vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin,
promoting adhesion of monocytes to endothelial cells – the
pivotal step in initiating the process of atherosclerosis (Qin et al.,
2006).

Pharmacological activation of TGR5 by dietary
supplementation with 6α-ethyl-23(S)-methyl-cholic acid
(INT-777 30 mg/kg/day) for 12 weeks in LDL receptor-knockout
mice resulted in inhibition of vascular lesion formation by
reducing macrophage inflammation and lipid uptake (Pols et al.,
2011). TGR5, which is abundantly expressed in macrophages has
been responsive to INT-777 treatment (30 µM) that inhibited
cytokine production through cAMP-NF-κB signaling pathway
(Pols et al., 2011). Therefore, macrophage inflammation –
a central event in the majority of aspects contributing to
development of the atherosclerosis, from the initiation of
atherosclerosis up to plaque formation and rupture, which
results in the initiation of the formation of thrombus, could
be prevented by circulatory bile acids and bile acid derivatives
as the agents that could affect atherosclerosis development on
pleiotropic fashion.

Semi-synthetic bile acid derivative INT-767 (α-ethyl-
24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium salt) is
a dual FXR/TGR5 agonist. Treatment of ApoE- and LDL
receptor- knockout mice fed a Western-type diet supplemented
with 30 mg/kg of INT-767 reduced atherosclerotic plaque
formation downregulating the expression of pro-inflammatory
cytokines and chemokines in aortic tissue (Miyazaki-Anzai
et al., 2014). Treatment of ApoE knockout mice with INT-767
has also resulted in decreased levels of interleukins IL-1β, IL-6,
IL-8, and IL-12 and reduced aortic expression of inflammatory
mediators such as TNF-α, IL-6, IL-1β, and MCP-1. The observed
anti-inflammatory effects of INT-767 rely on the activation of
TGR5 but not of FXR (Miyazaki-Anzai et al., 2014).

In addition, the incubation of TGR5 expressed endothelium
of the bovine aorta with TLCA (10–100 µM) resulted in
dose-dependent nitric oxide synthesis (Kida et al., 2013). Among
other bile acids, LCA (100 µM) also significantly increased
nitric oxide production, however, incubation with DCA (100
µM) and CDCA (100 µM) only marginally increased NO
production. These results are in agreement with the potency of
different bile salts as TGR5 ligands to increase cAMP production
in the following order: TLCA > LCA > DCA > CDCA.
The established efficiency and good safety profile of UDCA
in treatment of hepato-biliary disorders inspired research
on the potential benefit of UDCA administration in
treating pathological conditions affecting other systems of
organs, e.g., cardiac disorders such as atherosclerosis and
myocardial infarction. Six weeks long UDCA supplementation
(13–19 mg/kg, administered twice a day) in patients with
coronary artery disease improved endothelium-dependent
nitric oxide-independent vasodilatation (Sinisalo et al.,
1999). In addition, UDCA exerts in vitro anti-atherogenic
effects in a model of diabetic atherosclerosis by inhibiting
non-enzymatic glycation and oxidation of proteins and lipids
in diabetes, which is confirmed by incubation of Raw 264.7

and HUVEC cells with 100 µM of UDCA (Chung et al., 2016).
UDCA ameliorated endoplasmic reticulum stress and the
downstream signaling pathway thereof in endothelial cells and
aortic tissues of diabetic ApoE knockout mice, and inhibited
reactive oxygen species production through induction Nrf2
as a main transcription factor stimulating transcription and
synthesis of antioxidative enzymes, and inhibited NF-κB and
Janus N-terminal kinase (JNK)-mediated vascular endothelial
inflammation. Also, UDCA suppressed foam cell formation
through upregulation of ABCA1 and ABCG1 expression,
reduction of hyperglycemia-induced receptor for advanced
glycation end-product (RAGE) expression, and suppression of
macrophage inflammatory responses, significantly ameliorating
atherosclerosis (Chung et al., 2016). These findings indicate
that UDCA as a commonly used chemical chaperone could
be beneficial therapeutic agent for prevention or treatment
of diabetic atherosclerosis. Furthermore, UDCA (100 µM)
expressed anti-atherogenic effects by blocking the endoplasmic
reticulum stress and inflammatory response in endothelial cells
induced by disturbed flow. In vivo, UDCA supplementation
(∼400–600 mg/kg/day) abolished development of atherosclerotic
lesions in a ApoE KO murine model with disturbed flow-induced
atherosclerosis (by partial ligation of the left coronary artery)
fed on high-fat-diet, and observed effects are at least partially
mediated by inhibiting the activation of endoplasmic stress
downstream signaling through XBP-1 and CHOP, and
down-regulating expression of adhesion molecules (Chung
et al., 2015).

On the other hand, elevated circulating levels of secondary bile
acid, DCA (even at in vitro concentration of 5 µM), induced
by high-fat diet have been shown to induce vascular smooth
muscle cell proliferation and migration by upregulating JNK
and platelet-derived growth factor β-receptor (Shimizu et al.,
2014). Observed dysfunction of endothelial cells in Western-type
diet subjects may the result of long-term change in intestinal
microbiota composition and increased production of DCA by
enterobacteria, which indicates that disturbances in intestinal
microbiota may play role in the pathogenesis of cardiometabolic
disorders by changing bile acid pool composition. At the same
time this offers potential therapeutic/preventive strategy by
manipulating intestinal microflora composition and therefore the
pool size and composition of bile acids.

Overall, the influence of bile acids has promising therapeutic
effects in different models of atherosclerosis and dyslipidemia,
the features of metabolic syndrome. The observed effects
are both FXR- and TGR5- dependent and independent
(summarized in Figure 4) forcing the need for developing
novel bile acid derivatives as potential therapeutic agents.
Given the differences between bile acid pool and composition
in rodents and humans, tissue- and cell-specific activity of
bile acids and context dependency on the mode of their
action, the translation of obtained knowledge in preclinical
settings could not be straightforwardly implemented in clinical
settings. Therefore, significant effort should be carried out
to identify and characterize novel bile acid derivatives as
useful pharmacodynamic agents and therapeutics in the
future.
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FIGURE 4 | Receptor-dependent and receptor-independent regulation of metabolic and signaling pathways by bile acids in metabolic syndrome. The effects of bile
acid-activated receptors FXR and TGR5 on glucose, lipid and energy metabolism as well as on vascular events associated with atherosclerosis. FXR and TGR5 have
significant number of currently identified overlapping effects. On the other hand, the effects of UDCA are not associated with activation of these bile acid receptors,
instead UDCA exerts various physiological/pharmacological effects which are associated with its specific structural properties.

BILE ACIDS, OBESITY, AND
CARDIOMETABOLIC DISEASES

Obesity, a central facet of metabolic syndrome, represents a
major health issue in both developed and developing countries,
being associated with several comorbidities as independent risk
factors for cardiovascular disease. In addition to adipose tissue
excess, obese patients often display dysfunctional adipocytes.
Obesity is additionally associated with dyslipidemia and elevated
circulating levels of cholesterol, triacylglycerols and free fatty
acids, and disturbances in lipid metabolism result in ectopic
lipid deposits leading to hepatic steatosis and consequently to
NAFLD. Subsequent “spill over” of free fatty acids from insulin
resistant, dysfunctional adipose tissue initiates a phenomena of
lipotoxicity caused by the accumulation of triacylglycerol-derived
toxic metabolites in non-adipose tissues, inducing therefore
inflammatory pathways, cellular dysfunction including insulin
resistance, followed by impaired glucose control and type 2
diabetes (Mendez-Sanchez et al., 2018). Obesity is also associated
with hemodynamic alterations and arterial hypertension which
contribute to cardiac morphology changes predisposing to
impairment of ventricular function and heart failure (Alpert et al.,
2018).

Increased circulating bile acid level in obese individuals
has been found to positively correlate with body mass index
(Prinz et al., 2015). Also, insulin resistance is associated
with Foxo-1-mediated downregulation of CYP8B1 resulting in
depletion of 12α-hydroxylated bile acid pool, which may be

explained by hyperglycemia-induced Foxo degradation, and
therefore a lack to activate CYP8B1, whereas in type 2
diabetic patients concentration of DCA has been found to
be elevated (Brufau et al., 2010; Haeusler et al., 2013). Thus,
interventions manipulating bile acid pool composition could
represent novel therapeutic strategies in insulin resistance.
Changes in bile acid pool size and composition following
bariatric surgery in obese individuals are reflected in improved
metabolic homeostasis (Penney et al., 2015). It is therefore,
reasonable to assume that supplementation with bile acids or
bile acid derivatives, changing bile acid signaling, could be
considered as potential cardioprotective intervention improving
metabolism and decreasing inflammation level. Indeed, the
activation of TGR5 in macrophages and endothelial cells by
micromolar levels of circulating bile acids both during fasting
and in postprandial state when bile circulating bile acids
reach concentration peak, exert anti-atherogenic effects and
inhibit atherosclerosis and coronary artery disease (Steiner
et al., 2011). TGR5 receptor, expressed in adipocytes regulates
energy expenditure and body weight (van Nierop et al.,
2017). Bile acid-induced GLP1 also exerts beneficial effects on
endothelial function, blood pressure, myocardial metabolism,
left ventricular ejection fraction, atherosclerosis and response
to oxidative injury induced by ischemia-reperfusion (Kang
and Jung, 2016). RYGBP procedure in obese patients results
in increase in GLP1 level having therefore cardioprotective
effects. In addition, increased intestinal flux of bile acids
following RYGBP leads to the activation of intestinal FXR
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Ðanić et al. Bile Acids and Metabolic Syndrome

and its downstream target, an enterokine FGF15/19, which has
been shown to repress apo(a) gene expression by ERK1/2
phosphorylation-mediated cascade, reducing circulating level of
highly atherogenic lipoprotein(a) (Chennamsetty et al., 2012).
The administration of recombinant human FGF19 or FGF19
overexpression in leptin deficient diabetic mice was shown to
reduce weight gain, reverse diabetes, increase lipid oxidation rate
decreasing also hepatic triacylglycerol content (Fu et al., 2004).
Bariatric surgery procedures also result in increase in circulating
levels of bile acid species, both in fasted and postprandial state,
as well as qualitative changes in bile acid pool composition,
due to increased hepatic synthesis and reabsorption and reduced
intestinal elimination, or by changes in microbiota composition
(De Giorgi et al., 2015; Dutia et al., 2016). In accordance, the
increase in concentration of bile acids both in intestinal lumen
and systemic circulation, as potent ligands for FXR and TGR5,
mediates the improvement of metabolic rate, glucose and lipid
metabolism, increases thermogenesis resulting in reduction of
body weight, ameliorates body-wide inflammation, and even
promotes brown adipose tissue browning (Fang et al., 2015).
These metabolic improvements implicate that change in bile
acid composition or pool size by pharmacological approach or
metabolic surgery affects systemic metabolism with favorable
outcome, suggesting novel therapeutic approach in treating
obesity and components of metabolic syndrome. However,
given that bile acids activate multiple nuclear receptors and
possibly more than one GPCR, careful dissection and in
depth evaluation of bile acid-mediated signaling pathways on
tissue specific manner should provide useful information in
future development of novel specific and selective bile acid
derivatives as novel therapeutic agents in treatment of metabolic
syndrome.

CONCLUSION

Traditional approaches, such as diet and increased physical
activity, have shown to be insufficient in decreasing the
prevalence of metabolic diseases that are becoming more and
more common in overall population. The emerging evidence in
the past decade has pointed to the role of bile acids as signaling,
endocrine molecules that regulate the glucose, lipid, and energy
metabolism through complex and interrelated pathways that
mainly include FXR and TGR5 signaling cascade. Thus, the
modulation of these signaling pathways by using bile acids
and their derivatives and by co-administration with probiotic
bacteria with secondary effects on bile acid pool composition

has become an attractive area in modern research offering a new
approach for metabolic syndrome treatment. However, many
of the obtained results derived from studies carried out in
animal models that should be taken into consideration during
interpretation of results due to major differences in bile acid
metabolism and gut microbiota composition between animals
and humans. Additionally, interindividual differences in gut
microbiota composition, i.e., specific bacterial fingerprint in
certain individuals contributes to highly person-specific bile
acids profiles as well, which differentially influence pathogenesis
of disease, and conceivably the response to bile acid-related
preventive and therapeutic interventions, requiring further
studies and elucidation. From a therapeutic point of view, a more
in depth insight metabolic effects of each of the natural and
synthetic bile acid species in vivo is highly desirable. Probiotics, as
potential strategy to modulate the composition of gut microbiota,
should be further studied to help the restoration of bile acid
metabolism and potentially aid in the treatment of metabolic
disorders. Future research should be relied on metabolomic,
proteomic and lipidomic approaches in both healthy and diseased
populations in order to identify bile acid-related biomarkers that
may be valuable for prediction of bile acid related therapy of
different metabolic disorders.

To conclude, targeting the interactions between bile acids,
microbiota, and bile acid receptors signaling seems to derive
a promising approach for the treatment of metabolic diseases,
but additional detailed pre-clinical research and translation of
obtained knowledge in clinical studies are highly recommended
in order to confirm the efficacy of bile acids and bile acid
derivatives in such conditions.
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